半干旱黄土丘陵沟壑区主要树种人工林密度效应评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以山西省方山县峪口镇土桥沟流域内的人工林(刺槐林、白榆林、油松林、侧柏林、油松—刺槐混交林)为研究对象,通过野外调查、定性与定量分析相结合的研究方法,分析了不同树种、不同密度的林分结构特征和生长特点,对林下植物群落特征、枯落物水文效应以及土壤理化性状做了较深入系统的研究,并且运用主成分分析方法首次对该区的人工林密度效应进行评价,为黄土丘陵沟壑区选择高效的人工林密度配置方式和低效低质残次林改造提供理论依据。结果表明:
     (1)林木生长特征。在密度相同时,阔叶林的平均胸径大于针叶林。利用Weibull分布函数对所有林分直径进行拟合,结果表明密度为475株/hm2的刺槐林、925株/hm2的刺槐林、925株/hm2的白榆林、1600株/hm2的油松林、550株/hm2的油松—刺槐混交林、1850株/hm2的油松—刺槐混交林不符合Weibull分布,林木直径分布特征数分析结果表明林木直径分布规律性较差,分布曲线均存在偏离正态分布的现象;树高分布主要有单峰或双峰不对称山状分布以及近正态分布。
     (2)生物多样性。所有草本层物种丰富度和多样性明显高于灌木层。针阔混交林草本层丰富度指数、多样性和均匀度指数最好,其次为刺槐林、油松林,最差的为白榆林、侧柏林;进行聚类分析表明,草本层可分成猪毛蒿(Artemisia scoparia)群系,长芒草(Stipa bungeana)群系,赖草(Leymus scalinu)群系,铁杆蒿(Artemisia gmelini)4个群系;针阔混交林林下物种数量最多,其次是油松林和刺槐林,白榆林生境条件最差;密度相同时,油松—刺槐混交林林下干生物量明显大于其它同密度的林分。
     (3)枯落物水文效应。不同林分类型枯落物蓄积量的范围为2.36~8.08t/hm2;针阔混交林枯落物蓄积量大于阔叶林,而阔叶林又好于针叶林;针阔混交林枯落物层的最大持水量好于纯林,油松林好于刺槐林、白榆林,最小的为侧柏林;林下枯落物的持水量与浸水时间可以用公式W=klnt+b来拟合,t为时间;林下枯落物吸水速率与浸泡时间可以用公式V=ktn来拟合,t为浸水时间;流域内各林分类型有效拦蓄水深为0.29~1.22mm;针阔混交林枯落物水文效应要好于纯林。
     (4)土壤物理性质。刺槐林、油松林、侧柏林、油松—刺槐混交林等土壤机械组成的分形维数都比农田小,密度为1150株/hm2和1850株/hm2白榆林分的土壤机械组成的分形维数大于农田;林地土壤容重较农田均有所降低,不同林分类型土壤容重均随深度的增加而增大;刺槐林、油松林的土壤孔隙度和通气度都要好于农田,密度为1150株/hm2和1850株/hm2白榆林、1600株/hm2和1850株/hm2侧柏林、550株/hm2的油松—刺槐混交林孔隙度较差;在刺槐林分中,最大持水量和毛管持水量都好于农田;在白榆林中,密度为925株/hm2林分持水量最好;油松林、侧柏林持水量好于农田;密度相同时,针阔混交林的土壤改良作用好于纯林。
     在所有林分内,密度为1600株/hm2刺槐林分土壤饱和含水量最大,密度为925株/hm2白榆林分土壤非毛管持水量最高,不同林分土壤涵蓄降水量不同,密度为925株/hm2白榆林分最大,密度为1600株/hm2油松林分有效涵蓄量最大,为383.83mm。
     (5)土壤化学性质。土壤有机质、全氮、速效氮、速效钾的含量随土壤深度的增加有减小的趋势,有明显的表聚现象;不同的林分,土壤化学性质差异性较大;密度相同时,油松—刺槐混交林的土壤有机质含量、速效磷、速效钾的平均含量>刺槐林>油松林>侧柏林>白榆林,针阔混交林较纯林好;土壤全氮和速效氮平均含量,刺槐林>油松—刺槐混交林>油松林>侧柏林>白榆林。
     密度为1600株/hm2的刺槐林分土壤质量最好,密度为875株/hm2油松—刺槐混交林次之;最差的林分为密度为1850株/hm2的白榆。
     (6)密度效应评价。1600株/hm2的刺槐林分密度效应综合评价指数最高,密度为875株/hm2的针阔混交林次之;密度为1150株/hm2和1850株/hm2的白榆林与侧柏林密度效应较差;在林分密度相同时,针阔混交林密度效应综合评价指数要好于纯林。
A variety of plantations(Robinia pseudoacacia, Ulmus pumila, Pinus tabulaeformis, Platycladus orientalis, Pinus tabulaeformis and Robinia pseudoacacia mixed forests) were investigated in Tuqiaogou basin, Fangshan County, Shanxi province. Through field survey, qualitative and quantitative analysis, the structure and growth character of forest stands with different species in different density were determined, and plant community feature, hydrological effects of litter, and soil physicochemical properties in the plantations were systematically studied, and plantation density effect was assessed through principal component analysis (PCA). These data were theoretically valuable for selection of artificial vegetation restoration modes and deteriorated forest innovation. The main results are shown as follow:
     (1) Plantation structure character. The average diameter at breast height (DBH) of broad-leaved forest is bigger than that of evergreen needle-leaf forest at the same stand density. Stand diameter was simulated using Weibull distribution function, and it is shown that Robinia pseudoacacia plantation with density of 925 plants/hm2, Ulmus pumila plantation with density of 925 plants/hm2, Pinus tabulaeformis and Robinia pseudoacacia mixed forests with density of 550 plants/hm2 and 1850 plants/hm2 do not match Weibull distribution. In those plots, the distributions of DBH is in confusion and deviated from normal distribution, while the height distribution shows a single or double peak pattern, or shows normal distribution, and the stand volume increased firstly and then decrease with increasing stand density.
     (2) Biodiversity. The plant species diversity and richness of herb layer is obviously higher than those of shrub layer. In herb layer, all indexes of richness, diversity and evenness of evergreen conifer and broad-leaved mixed forest are higher than those of pure forests, and Robinia pseudoacacia or Pinus tabuleaformis pure forest is better than Ulmus pumila and Platycladus orientalis pure forest. The species in herb layer are divided into 4 groups according their relations:Artemisia scoparia group, Stipa bungeana group, Leymus scalinu group, and Leymus scalinu group. Evergreen conifer and broad-leaved mixed forest have the most plants, while the habitat condition of Robinia pseudoacacia or Pinus tabuleaformis pure forest is worst. Under the same conditions, the biomass of shrub layer in Pinus tabuleaformis and Robinia pseudoacacia mixed forest is obviously more than other plantation with the same density.
     (3) The hydro-ecological effects of litter. The litter mass (LM) in different plantation type vary in 2.36~8.08 t/hm2. LM of evergreen conifer and broad-leaved mixed forest is higher than that of broad-leaved forest, and LM of evergreen conifer is the lowest. The maximum water holding capacity (MWHC) of litter layer in evergreen conifer and broad-leaved mixed forest is higher than that of pure forest, in which MWHC of Pinus tabuleaformis pure forest is higher that of Ulmus pumila pure forest and Platycladus orientalis forest is with the lowest one. The relation between water holding capacity of litter and immersion time can be simulated by the following equation:W=klnt+b, in which t was time. And the equation of V=ktn can show the relation between litter absorption rate and immersion time, in which t was immersion time. The modified interception of litter under different stands varys in 2.94~12.22 t/hm2, and the difference of effective interception depth is 0.29~1.22mm. The hydro-ecological effect of litter in evergreen conifer and broad-leaved mixed forest is better than that of evergreen conifer or broad leaved pure forest.
     (4) Soil physical properties. All the fractal dimensions of soil particle in Robinia pseudoacacia, Pinus tabuleaformis, and Platycladus orientalis pure forest and mixed forest of Robinia pseudoacacia and Pinus tabuleaformis are smaller than that in farmland, while high density Ulmus pumila pure forest is with bigger one. On the contrary, the soil bulk density (SBD) in all kinds of forest is lower than that in farmland, and the SBD increases with increasing the soil depth under all forests. Soil porosities and aeration degrees in Robinia pseudoacacia or Pinus tabuleaformis pure forest are higher that in farmland, while porosities are lower in high density Ulmus pumila or Platycladus orientalis pure forest and low density mixed forest of Robinia pseudoacacia with Pinus tabuleaformis. In Robinia pseudoacacia pure forest, MWHC and capillary water capacity are higher than that in farmland, and water holding capacity in low density forest is higher than that in high density one. Pinus tabuleaformis and Platycladus orientalis plantation have higher water holding capacity than farmland. Under those same conditions, evergreen conifer and broad-leaved mixed forest hold higher capacity to improve soil conditions than pure forest.
     The Robinia pseudoacacia plantation with density of 1600 plants/hm2 is with the biggest saturated soil water content, and the Ulmus pumila pure forest with density of 925 plants/hm2 holds the biggest non-capillary water-holding capacity. Soil precipitation storage is varied in different plantations, the Ulmus pumila pure forest with density of 925 plants/hm2 is with the biggest one, while the Pinus tabuleaformis pure forest with density of 1600 plants/hm2 holds the biggest available soil water storage of 383.83mm.
     (5) Soil chemical properties. The content of soil organic matter, total nitrogen, available nitrogen, available kalium decrease with increasing soil depth, and show obvious surface assembly phenomenon. Soil chemical properties are obvious different in different plantations. In the same density stands with different species, the average content of soil organic matter, available phosphor, available kalium show the following order:mixed forest of Pinus tabuleaformis with Robinia pseudoacacia>Robinia pseudoacacia plantation>Pinus tabuleaformis plantation>Platycladus orientalis plantation>Ulmus pumila plantation, in general, evergreen conifer and broad-leaved mixed forest is better than pure forest. However, the average content of total nitrogen and available nitrogen show a different order:Robinia pseudoacacia plantation>mixed forest of Pinus tabuleaformis with Robinia pseudoacacia>Pinus tabuleaformis plantation>Platycladus orientalis plantation>Ulmus pumila plantation.
     After the conversion of cropland to forest, the soil is better than that in the farmland. The best one is Robinia pseudoacacia plantation with 1600 plants/hm2, and mixed forests of Pinus tabuleaformis and Robinia pseudoacacia with 875 plants/hm2 are better than Ulmus pumila plantation with 1850 plants/hm2.
     (6) Density effect assessment. Robinia pseudoacacia plantation with 1600 plants/hm2 holds the best comprehensive assessment values, and the evergreen conifer and broad-leaved mixed forests with 875 plants/hm2 is with better ones, and the density effect is worst in height density Ulmus pumila plantation and Platycladus orientalis plantations. In general, the evergreen conifer and broad-leaved mixed forests are better than pure forest under the same conditions.
引文
1. 丁访军,王兵,钟洪明,等.赤水河下游不同林地类型土壤物理特性及其水源涵养功能[J].水土保持学报,2009,23(3):179-183.
    2. 卜耀军,张雄艾,海舰,等.榆林风沙草滩区物种多样性研究[J].水土保持通报,2008,28(4):80-85.
    3. 卜耀军,温仲明,焦峰,等.模糊聚类分析在植被自我修复演替研究中的应用[J].西北林学院学报,2005,20(2):32-35.
    4. 尹娜,魏天兴,张晓娟.黄土丘陵区人工林土壤养分效应研究[J].水土保持研究,2008,15(2):209-211.
    5. 文海燕,傅华,赵哈林.退化沙质草地开垦和围封过程中的土壤颗粒分形特征[J].应用生态学报,2006,17(1):55-59.
    6. 王云琦,王玉杰,张洪江,等.重庆缙云山几种典型植被枯落物水文特性研究[J].水土保持学报,2004,18(3):41-44.
    7. 王永安.论我国水源涵养林建设中的几个问题[J].水土保持学报,1989,3(4):74-82.
    8. 王玉杰,王云琦,齐实,等.重庆缙云山典型林地土壤分形特征对水分入渗影响[J].北京林业大学学报,2006,28(2):73-78.
    9. 王克勤,王斌瑞.黄土高原刺槐林间伐改造研究[J].应用生态学报,2002,13(1):11-15.
    10.王克勤,王斌瑞.集水造林防止人工林植被土壤干化的初步研究[J].林业科学,1998,34(4):14-21.
    11.王凯博,陈美玲,秦娟,等.子午岭植被自然演替中植物多样性变化及其与土壤理化性质的关系[J].西北植物学报,2007,27(10):2089-2096.
    12.王波,张洪江,徐丽君,等.四面山不同人工林枯落物储量及其持水特性研究[J].水土保持学报,2008,22(4):90-94.
    13.王秉术.落叶松人工林采伐前后下层植被的演替[J].东北林业大学学报,1996,24(5):82-85.
    14.王树力,袁伟斌,杨振.镜泊湖区4种主要森林类型的土壤养分状况和微生物特征[J].2007,21(5):50-54.
    15.王树力.不同经营类型红松林对汤旺河流域土壤性质的影响[J].水土保持学报,2006,20(2):90-93.
    16.王晓宁,向家平,赵廷宁,等.晋西黄土丘陵沟壑区植被演替规律研究[J].水土保持通报,2009,29(3):103-107.
    17.王娓,郭继勋.东北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放CO2贡献[J].生态学报2002,22(5):655-660.
    18.王莉,张强,牛西午,等.黄土高原丘陵区不同土地利用方式对土壤理化性质的影响[J].中国生态农业学报,2007,15(4):53-56.
    19.王清奎,汪思龙,高洪,等.土地利用方式对土壤有机质的影响[J].生态学杂志,2005,24(4):360-363.
    20.王琳,欧阳华,周才平,等.贡嘎山东坡土壤有机质及氮素分布特征[J].地理学报,2004,59(6):1012-1019.
    21.王德,傅伯杰,陈利顶,等.不同土地利用类型下土壤粒径分形分析—以黄土丘陵沟壑区为例[J].生态学报,2007,27(7):3081-3088.
    22.王燕,王兵,赵广东,等.江西大岗山3种林型土壤水分物理性质研究[J].水上保持学报,2008,22(1):151-153.
    23.卢萍,单玉华,杨林章,等.秸秆还田对稻田土壤溶液中溶解性有机质的影响[J].土壤学报,2006,43(5):736-741.
    24.卢琦等.黄山松天然林与人工林物种多样性和林分生长规律的比较研究[J].林业科学研究,1996,9(3):273-277.
    25.叶海英,赵廷宁,赵陟峰.半干旱黄土丘陵沟壑区几种不同人工水土保持林枯落物储量及持水特性研究[J].水土保持研究,2009,16(1):121-125.
    26.司彬,姚小华,任华东,等.黔中喀斯特植被恢复演替过程中土壤理化性质研究[J].江西农业大学学报,2008,30(6):1123-1125.
    27.田大伦,陈书军.樟树人工林土壤水文物理性质特征分析[J].中南林学院学报,2005,25(2):1-6.
    28.田涛,张国芝,赵廷宁.杭锦旗穿沙公路周边植被群落特征与多样性研究[J].水土保持通报,2009,29(3):137-140.
    29.龙健,江新荣,邓启琼,等.贵州喀斯特地区土壤石漠化的本质特征研究[J].土壤学报,2005,42(3):419-427.
    30.伍玉容,王洁,郭建英,等.黄土丘陵植被恢复区不同植被类型对土壤物理性质的影响[J].灌溉排水学报,2009,28(3):96-98.
    31.刘云慧,宇振荣,张凤荣,等.县域土壤有机质动态变化及其影响因素分析[J].植物营养与肥料学报,2005,11(3):294-301.
    32.刘少冲,段文标,赵雨森.莲花湖库区几种主要林型枯落物层的持水性能[J].中国水土保持科学,2005,3(2):81-86.
    33.刘世梁,傅伯杰,陈利顶,等.卧龙自然保护区土地利用变化对土壤性质的影响[J].地理研究,2002,21(6):682-687.
    34.刘玉,李林立,赵柯,等.岩溶山地石漠化地区不同土地利用方式下的土壤物理性状分析[J].水土保持学报,2004,18(5):142-145.
    35.刘刚才,范建容,张建辉,等.四川盆地紫色丘陵区土地利用类型对土壤理化性质的影响[J].山地学报,2005,23(2):209-212.
    36.刘灿然,马克平.北京东灵山地区植物群落多样性研究[J].生态学报,1997,17(6):584-592.
    37.刘畅,满秀玲,刘文勇,等.帽儿山地区主要林分类型土壤水分物理性质研究[J].哈尔滨师范大学自然科学学报,2007,23(1):86-89.
    38.刘勇,王凯博,上官周平.黄土高原子午岭退耕地土壤物理性质与群落特征[J].植物资源与环境学报,2006,15(2):42-46.
    39.刘彦随,陈百明.中国可持续发展问题与土地利用/覆被变化研究[J].地理研究,2002,5(3):324-330.
    40.刘晓冰,刑宝山.土壤质量及其评价指标[J].农业系统科学与综合研究,2002,18(2):109-112.
    41.刘梦云,安韶山,常庆瑞,等.不同土地利用方式下土壤化学性质特征研究[J].西北农林科技大学学报(自然科学版),2005,33(1):39-42.
    42.刘梦云,常庆瑞,安韶山,等.土地利用方式对土壤团聚体及微团聚体的影响[J].中国农学通报,2005,21(11):247-250.
    43.刘鸿雁,黄建国.缙云山森林群落次生演替中上壤理化性质的动态变化[J].应用生态学报,2005,16(11):2041-2046.
    44.刘增文,段而军,付刚,等.一个新概念:人工纯林土壤性质的极化[J].土壤学 报,2007,44(6):155-162.
    45.刘增文,段而军,付刚,等.秦岭北山几种典型人工纯林土壤性质极化问题研究[J].土壤,2008,40(6):997-1001.
    46.吕粉桃.青海大通山地退耕还林生境演变特征及其评价研究[D].北京:北京林业大学博士论文,2006.
    47.孙立达,朱金兆主编.水土保持林体系综合效益研究与评价[M].中国科学技术出版社,1995.
    48.安轩,李树人,姜风歧.长江中游栓皮栎水文生态效益研究[J].水土保持学报,2001,15(3):20-23.
    49.巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域植被恢复的土壤养分效应研究[J].水土保持学报,2005,19(1):93-96.
    50.曲红.晋西黄土高原人工林营造对植物多样性的影响[D].北京:北京林业大学博士论文,2008.
    51.朱志诚,黄可.陕北黄土高原森林草原地带植被恢复演替初步研究[J].山西大学学报(自然科学版),1993,16(1):94-100.
    52.何艺玲,傅懋毅.人工林林下植被的研究现状[J].林业科学研究,2002,15(6):727-733.
    53.余新晓,赵玉涛,程根伟.贡嘎山东坡峨眉冷杉林地被物分布及其水文效应初步研究[J].北京林业大学学报,2002,24(5/6):14-18.
    54.吴永波,郝奇林,薛建辉,等.岷江上游主要森林群落枯落物量及其持水特性[J].中国水土保持科学,2009,7(3):67-72.
    55.吴统贵,吴明,萧江华.杭州湾滩涂湿地植被群落演替与物种多样性动态[J].生态学杂志,2008,27(8):1284-1289.
    56.吴钦孝,赵鸿雁,韩冰.黄土高原森林枯枝落叶层保持水土的有效性[J].西北农林科技大学学报,2001,29(5):95-98.
    57.吴钦孝等.森林枯枝落叶层涵养水源保持水土的作用评价[J].土壤侵蚀与水土保持学报,1998,4(2):23-28.
    58.吴鹏飞,朱波.桤柏混交林林下植被结构及生物量动态[J].水土保持通报,2008,28(3):44-48.
    59.宋轩,李树人,姜凤岐.长江中游栓皮栎林水文生态效益研究[J].水土保持学报,2001,15(2):76-79.
    60.宋贵琴.黄土高原土地资源研究的理论与实践[M].北京:中国水利水电出版社.1996.
    61.张东辉,施明恒,金峰,等.土壤有机碳转化与迁移研究概况[J].土壤,2000(6):305-309.
    62.张玉斌,吴发启,曹宁,等.泥河沟流域不同土地利用土壤养分分析[J].水土保持通报,2005,25(2):23-26.
    63.张光灿,夏江宝,王贵霞,等.鲁中花岗岩山区人工林土壤水分物理性质[J].水土保持学报,2005,19(6):44-48.
    64.张丽霞,张峰,上官铁梁.芦芽山植物群落的多样性研究[J].生物多样性,2000,8(4):361-369.
    65.张社奇,王国栋,张蕾.黄上高原刺槐林对土壤养分时空分布的影响[J].水土保持学报,2008,22(5):91-95.
    66.张社奇,王国栋,时新玲,等.黄土高原油松人工林地土壤水分物理性质研究[J].干旱地区农业研究,2005,23(1):60-64.
    67.张社奇,刘云鹏,刘建军,等.黄土高原汕松人工林地上壤颗粒的分形特[J].西北农林科技大学学报,2007,35(11):151-155.
    68.张远东,刘世荣,罗传文,等.川西亚高山林区不同上地利用与土地覆盖的地被物及上壤持水特征[J].生态学报,2009,29(2):627-634.
    69.张建军,毕华兴,魏天兴.晋西黄土区不同密度林分的水土保持作用研究[J].北京林业大学学报,2002,24(3):50-53.
    70.张建军,贺维,纳磊.黄土区刺槐和油松水土保持林合理密度的研究[J].中国水土保持科学,2007,5(2):55-59.
    71.张治伟,傅瓦利,朱章雄,等.石灰岩区土壤分形特征及其与土壤性质的关系[J].土壤,2009,41(1):90-96.
    72.张勇,庞学勇,包维楷,等.土壤有机质及其研究方法综述[J].世界科技研究与发展,2005,27(5):72-78.
    73.张祖荣,古德洪.重庆四面山次生植被不同演替阶段土壤理化性质的比较研究[J].林业科技,2008,33(6):21-25.
    74.张健,刘国彬,许明祥,等.黄土丘陵区沟谷地植被恢复群落特征研究[J].草地学报,2008,16(5):485-490.
    75.张健,刘国彬,许明祥,等.黄土丘陵区植被次生演替灌木初期的土壤养分特征[J].西北林学院学报2009,24(1):53-57.
    76.张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报,2005,19(3):139-143.
    77.张浩,王正银,董燕,等.砂质土壤pH对中性缓释复合肥养分释放特性的影响研究[J].水土保持学报,2005,19(3):9-12,45.
    78.张静,常庆瑞.渭北黄土高原不同林型植被对土壤肥力的影响[J].水土保持通报,2006,26(3):26-28.
    79.时忠杰,王彦辉,徐丽宏,等.六盘山主要森林类型枯落物的水文功能[J].北京林业大学学报,2009,31(1):91-98.
    80.李师翁,薛林贵,冯虎元,等.陇东黄土高原丘陵沟壑区天然草地植物多样性研究[J].植物研究,2007,27(2):238-243.
    81.李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响[J].土壤,2005,37(6):581-586.
    82.李红云,杨吉华,鲍玉海,等.山东省石灰岩山区灌木林枯落物持水性能的研究[J].水土保持学报,2005,19(1):44-48.
    83.李忠佩,王效举.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟[J].应用生态学报,1998,9(4):365-370.
    84.李保国.分形理论在上壤科学中的应用及其展望[J].土壤学进展,1994,22(1):1-10.
    85.李洪建,王孟本,柴宝峰.黄上高原北部河北杨林地土壤水分特征[J].山地学报,2002,20(5):606-610.
    86.李恩香,蒋忠诚,曹建华等.广西弄拉岩溶植被不同演替阶段的主要土壤因子及溶蚀率对比研究[J].生态学报,2004,24(6):1131-1139.
    87.李清磊,李林延,李清焱.几种常见林型枯落物层蓄水功能差别的研究[J].黑龙汀生态工程职业学院学报,2007,20(5):36-37.
    88.李裕元,邵明安.子午岭植被自然恢复过程中植物多样性的变化[J].生态学报,2004,24(2):252-260.
    89.李新宇,唐海萍,赵云龙,等.怀来盆地不同上地利用方式对土壤质量的影响分析[J].水土保持学报,2004,18(6):103-107.
    90.杨小波,张桃林,吴庆书.海南琼北地区不同植被类型物种多样性与上壤肥力的关系[J].生态学报,2002,22(2):190-196.
    91.杨弘,李忠,裴铁璠,等.长白山北坡阔叶红松林和暗针叶林的土壤水分物理性质生态应用学报[J].2007,2007,18(2):272-276.
    92.杨光,丁国栋,常国梁,等.黄土高原不同退耕还林地森林植被改良土壤特性研究[J].水土保持研究,2006,13(3):204-207.
    93.杨华斌,韦小丽,党伟.黔中喀斯特植被不同演替阶段群落物种组成及多样性[J].山地农业生物学报,2009,28(3):203-207.
    94.杨吉华,张永涛,李红云,等.不同林分枯落物的持水性能及对表层土壤理化性状的影响[J].水土保持学报,2003,17(2):141-144.
    95.杨忠芳,陈岳龙,钱鑂,等.土壤pH对镉存在形态影响的模拟实验研究[J].地学前缘,2005,12(1):252-260.
    96.杨承栋,焦如珍,屠星南,等.杉木林下植被对5-15cm土壤性质的改良[J].林业科学研究,1995,8(5):514-519.
    97.杨海龙,王芳,包昱峰,等.晋西黄土区蔡家川封禁流域植被演替规律[J].水土保持研究,2008,15(5):129-131.
    98.杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
    99.杨景成,韩兴国,黄建辉,等.土壤有机质对农田管理措施的动态响应[J].生态学报,2003,23(4):787-796.
    100.沙丽清,邱学忠,甘建民,等.云南保山西庄山地流域土地利用方式与土壤肥力关系研究[J].生态学杂志,2003,(4):9-11.
    101.肖洋,陈丽华,余新晓.北京密云水库地区2种人工林生态系统水文效应研究[J].中国水土保持科学,2009,7(1):37-42.
    102.苏乙奇.樟子松人工林树高结构规律的研究[J].黑龙江生态工程职业学院学报,2008,21(4):28-30.
    103.苏里坦,宋郁东,陶辉.不同风沙土壤颗粒的分形特征[J].土壤通报,2008,39(2):244-248.
    104.邱丽萍,张兴昌.子午岭不同土地利用方式对土壤性质的影响[J].自然资源学报,2006,21(6):965-976.
    105.邵新庆,石永红,韩建国,等.典型草原自然演替过程中土壤理化性质动态变化[J].草地学报,2008,16(6):566-571.
    106.陈小红,段争虎,何洪泽,等.荒漠-绿洲边缘区生态过渡带的土壤颗粒分形特征[J].土壤,2009,41(1):97-101.
    107.陈云民.黄土丘陵半干旱区人工沙棘林水土保持和土壤水分效益分析[J].应用生态学报,2002,13(11):1389-1393.
    108.陈东来,秦淑英.山杨天然林林分结构的研究[J].河北农业大学学报,1994,17(1):36-43.
    109.陈永国,李永良.青海大通地区人工林林下植被结构及其生境分析[J].青海草业,2007,16(4):44-49.
    110.陈海滨,刘淑明,党坤良,等.黄上高原沟壑区林地土壤水分特征的研究—土壤水分有效性及其亏缺状况的分析[J].西北林学院学报,2004,19(1):5-8.
    111.卓慕宁,李定强,朱照宇.城乡结合部开发建设扰动土壤质量变化特征[J].土壤,2008,40(1):61-65.
    112.周先容,陈劲松.川西亚高山针叶林土壤颗粒的分形特征[J].生态学杂志,2006,25(8):891-894.
    113.周华坤,赵新全,周立,等.青藏高原高寒草甸的植被退化与土壤退化特征研究[J].草业学报,2005,14(3):31-40.
    114.周泽福,王延平,张光灿.五台山林区典型人工林群落物种多样性研究[J].西北植物学报,2005,25(2):321-327.
    115.孟宪宇.测树学[M].北京:中国林业出版社,1996.
    116.季冬,关文彬,谢春华.贡嘎山暗针叶林枯落物截留特征研究[J].中国水土保持科学,2007,5(2):86-90.
    117.季轶群,王子芳,高明,等.紫色丘陵区不同土地利用方式下土壤团粒的分形特征[J].土壤通报,2009,40(2):221-225.
    118.岳庆玲,常庆瑞,刘京,等.黄土高原不同土地利用方式对土壤养分与酶活性的影响[J].西北农林科技大学学报(自然科学版),2007,35(12):103-108.
    119.庞学勇,包维楷,张咏梅.岷江上游中山区低效林改造对枯落物水文作用的影响[J].水土保持学报,2005,19(4):119-122.
    120.林开敏,黄宝龙.杉木人工林林下植物物种p多样性的研究[J].生物多样性,2001,9(2):157-161.
    121.欧祖兰,李先琨,苏宗明.广西阳朔岩溶植被演替过程种群变化及物种多样性[J].生态科学,2005,24(4):295-297.
    122.武天云,Jeff,J.S.,李凤民,等.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004,15(4):717-722.
    123.罗云建,张小全.多代连栽人工林碳贮量的变化[J].林业科学研究,2006,19(6):791-798.
    124.罗绪强,王世杰,张桂玲,等.喀斯特石漠化过程中土壤颗粒组成的空间分异特征[J].中国农学通报,2009,25(12):227-233.
    125.范燕敏,朱进忠,武红旗.北疆退化荒漠草地土壤颗粒的分形特征[J].草原与草坪,2008(4):10-13,19.
    126.侯本栋,马风云.不同树种的刺槐混交林对上壤化学性质及上壤酶活性影响的研究[J].山东农业大学学报(自然科学版),2007,38(1):53-57.
    127.侯庆春,韩蕊连.黄土高原植被建设中的有关问题[J].水土保持通报,2000,20(2):53-56.
    128.姚茂和,盛炜彤,胸有强.杉木林下植被对立地的指示意义[J].林业科学,1992,28(3):208-212.
    129.姚爱静,朱清科,张宇清,等.林分结构研究现状与展望[J].林业调查规划,2005,30(2):70-76.
    130.宫渊波,陈林武,罗承德,等.嘉陵江上游严重退化地5种森林植被类型枯落物持水功能比较[J].林业科学,2007,43(增刊1):12-16.
    131.胡文力.长白山过伐林区云冷杉针阔混交林分结构的研究[D].北京:北京林业大学硕士论文,2003.
    132.胡泓,刘世全,陈庆恒,等.川西亚高山针叶林人工恢复过程的土壤性质变化[J].应用与环境生物学报,2001,7(4):308-314.
    133.胡相明,程积民,万惠娥.黄上丘陵区人工林下草本层植物的结构特征[J].水上保持通报,2006,26(3):41-44.
    134.胡淑萍,余新晓,岳永杰.北京百花山森林枯落物层和上壤层水文效应研究[J].水土保持学报,2008,22(1):146-150.
    135.贺金生,江明喜.长江三峡地区退化生态系统植物群落物种多样性特征[J].生态学报,1998,18(4):399-407.
    136.赵明智.槽式太阳能热电站微观选址的方法研究[D].内蒙古工业大学博士论文,2009.
    137.赵陟峰.半干旱黄土区不同密度刺槐林生态效益研究[D].北京:北京林业大学硕士论文,2009.
    138.赵霁巍,穆兴民.黄河断流的根源与对策[J].自然资源学报,2000,15(1):31-35.
    139.郝占庆,陶大立.长白山北坡阔叶林及其次生白桦林高等植物物种多样性比较[J].应用生态学报,1994,5(1):16-23.
    140.唐炎林,邓晓保,李玉武,等.西双版纳不同林分土壤机械组成及其肥力比较[J].中南林业科技大学学报:自然科学版,2007,27(1):70-75.
    141.徐明岗,于荣,王伯仁.长期不同施肥下红壤活性有机质与碳库管理指数变化[J].土壤学报,2006,43(5):723-729.
    142.秦嘉海,金自学,王进,等.祁连山不同林地类型对土壤理化性质和水源涵养功能的影响[J].水土保持学报,2007,21(1):92-94.
    143.莫彬,曹建华,徐祥明,等.岩溶石漠化演替阶段土壤质量退化的预警指标评价[J].水土保持研究,2007,14(3):16-18.
    144.袁正科,田育新,李锡泉,等.缓坡梯土幼林林下植被覆盖与水土流失[J].中南林学院学报,2002(2):21-24.
    145.贾志清.太行山封育区森林土壤肥力的特性研究[J].水土保持通报,2002,22(3):28-31.
    146.贾晓红,李新荣,李元寿.干旱沙区植被恢复过程中土壤颗粒分形特征[J].地理研究,2007,26(3):518-524.
    147.郭旭东,傅伯杰,陈利顶,等.低山丘陵区土地利用方式对土壤质量的影响[J].地理学报,2001,56(4):447-455.
    148.高人,周广柱.辽宁东部山区几种主要森林植被类型枯落物层持水性能研究[J].沈阳农业大学学报,2002,33(2):115-118.
    149.高岗.以水源涵养为目标的低功能人工林更新技术研究[D].内蒙古农业大学博士论文,2009.
    150.高明,陈汉江,李智叁.帽儿山主要森林类型凋落物层水文效应研究[J].林业科技情报,2008,40(2):3-5.
    151.高贤明,黄建辉.秦岭太白上弃耕地植物群落演替的生态学研究[J].生态学报,1997,17(6):619-625.
    152.高雪松,邓良基,张世熔.不同利用方式与坡位土壤物理性质及养分特征分析[J].水土保持学报,2005,19(2):53-58.
    153.常庆瑞,安韶山,刘京.陕北农牧交错带土地荒漠化本质特性研究[J].上壤学报,2003,40(4):518-523.
    154.曹鹤,薛立,谢腾芳,等.华南地区八种人工林的土壤物理性质[J].生态学杂,2009,28(4):620-625.
    155.黄文丁,张立均.农林复合系统林分直径分布动态[J].南京林业大学学报,1989,4:86-91.
    156.黄庆丰,高健,吴泽民.巢湖低丘不同森林类型物种多样性数量特征研究[J].安徽农业大学学报,2003,30(2):163-167.
    157.黄竹林.主成分与支持向量机组合的上市公司财务预警模型研究[D].中南大学硕士论文,2008.
    158.黄丽,丁树文,董舟,等.三峡库区紫色上养分流失的试验研究[J].上壤侵蚀与水土保持学报,1998,4(1):8-13.
    159.黄启堂,陈爱玲,贺军.不同毛竹林林地土壤理化性质特征比较[J].福建林学院学报,2006,26(4):299-302.
    160.黄承标,李保平,赖家业,等.桂西北主要退耕还林模式土壤水文—物理性质研究[J].水土保持通报,2009,29(3):108-122.
    161.黄昌勇.土壤学[M].中国农业出版社,1999.
    162.傅伯杰,郭旭东,陈利顶,等.土地利用变化与土壤养分的变化—以河北省遵化县为例[J].生态学报,2001,21(6):926-931.
    163.彭文英,张科利,杨勤科.黄土坡面土壤性质随退耕时间的动态变化研究[J].干旱区资源与环境,2006,20(5):153-158.
    164.彭文英,张科利,陈瑶,等.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报,2005,20(2):272-278.
    165.惠刚盈,克劳斯·冯佳多[德].德国现代森林经营技术[M].北京:中国科学技术出版社,2001,66-134.
    166.惠刚盈,盛炜彤.林分直径结构模型的研究[J].林业科学研究,1995,8(2):127-131.
    167.惠淑荣,颜翎羽,胡万良,等.不同红松林型下土壤理化性质差异的初步研究[J].福建林业科技,35(1):117-119.
    168.温仲明,焦峰,卜耀军,等.黄土沟壑区植被自我修复与物种多样性变化—以吴旗县为例[J].水土保持研究,2005,12(1):1-3.
    169.温仲明,焦峰,刘宝元,等.黄土高原森林草原区退耕地植被自然恢复与土壤养分变化[J].应用生态学报,2005,16(11):2025-2029.
    170.游秀花,蒋尔可.不同森林类型土壤化学性质的比较研究[J].江西农业大学学报,2005,27(3):357-360.
    171.游秀花.马尾松天然林不同演替阶段土壤理化性质的变化[J].福建林学院学报,2005,25(2):121-124.
    172.焦如珍,杨承栋,孙启武,张家诚.杉木人工林不同发育阶段土壤微生物数量及其生物量的变化[J].林业科学,2005,41(6):163-165.
    173.程金花,张洪江,史玉虎,等.三峡库区几种林下枯落物的水文作用[J].北京林业大学学报,2003,25(2):8-13.
    174.程积民,万惠娥,王静.黄上丘陵区山桃灌木林地土壤水分过耗与调控恢复[J].上壤学报,40(5):691-696.
    175.董莉丽,郑粉莉.陕北黄土丘陵沟壑区土壤粒径分形特征[J].中国水土保持科学,2009,7(2):35-41.
    176.董莉丽,郑粉莉.黄土丘陵区不同土地利用类型下土壤酶活性和养分特征[J].生态环境2008,17(5):2050-2058.
    177.韩书成,濮励杰,陈凤,等.长江三角洲典型地区土壤性质对土利用变化的响应—以江苏省锡山市为例[J].土壤学报,2007,44(4):612-619.
    178.韩玉萍,李雪梅,刘玉成.缙云山常绿阔叶林次生演替序列群落物种多样性动态研究[J].西南师范大学学报(自然版),2000,25(1):62-68.
    179.韩同吉,裴胜民,张光灿,等.北方石质山区典型林分枯落物层涵蓄水分特征[J].山东农业大学学报(自然科学版),2005,36(2):275-278.
    180.慈恩,杨林章,程月琴,等.不同耕作年限水稻土土壤颗粒的体积分形特征研究[J].上壤,2009,41(3):396-401.
    181.褚建民,卢琦,崔向慧,等.人工林林下植被多样性研究进展[J].世界林业研究,2007,20(3):9-13.
    182.廖行.不同浓度保水剂与外源物质的耦合关系[D].北京:北京林业大学硕士论文,2008.
    183.廖晓勇,陈治谏,刘邵权,等.三峡库区小流域土地利用方式对土壤肥力的影响[J].生态环境,2005,14(1):99-101.
    184.樊登星,余新晓,岳永杰,等.北京西山不同林分枯落物层持水特性研究[J].北京林业大学学报,2008,30(增刊):177-181.
    185.薛立,梁丽丽,任向荣,等.华南典型人工林的土壤物理性质及其水源涵养功能[J].土壤通报,2008,39(5):986-989.
    186.魏文俊,王兵,冷泠.宁夏六盘山落叶森林凋落与枯落物分布及持水特性的研究[J].内蒙古农业大学学报,2006,27(3):19-23.
    187. Allen R.B.et al.Biodiversity in New Zealand plantation.N.Z.Forestry,1995,26-29.
    188. Arya L M, Paris J F. A physico-empirical model to predict the soil moisture characteristic from particlesize ditribution and bulk density data [J]. Soil Soc. Am. J,198145:1023-1031.
    189. Black P E. Research issues in forest hydrology [J].J.Amer.Water Resource,1998,34 (4):98-115.
    190. Boix-Fayos C,Calvo-CasesA,Imeson AC,et al. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators[J].Catena,2001,44:47-67.
    191. Burgess D, Baldock JA, Wetzell S, et al. Scarification, fertilization and herbicide treatment effects on planted conifers and soil fertility [J]. Plantand Soil,1995,168-169:513-522.
    192. Burle ML,Mielniczu K J,Focchi S. Effects of croppings ystems on soil chemical characteristics with emphasis on soil acidification [J].Plant and Soil,1997,190:309-316.
    193. Chastain Jr R A,Currie W S,Townsend P A. Carbon sequestration and nutrient cycling implications of the ever-green understory layer in Appalachia forests[J].Forest Ecology and Management, 2006,231:63-77.
    194. Daniel H Pote, Brandon C Grigg, Catalino A Blanche, et al. The global impacts of land use change [J]. Bioscience,1994,44(5):300-304.
    195. Daniel H Pote, Brandon C Grigg Catalino A Blanche, et al. Effects of pine straw harvesting on quantity and quality of surface runoff[J].Journal of Soil and Water Conservation,2004,59(5): 197-203.
    196. Thomas Dunne, Weihua Zhang, Brain F Aubry.Effects of rainfall, vegetation and microtopography on infiltration and runoff [J]. Water Resour.Res,1991,27(9):2271-2285.
    197. Elliot, W J. The effects of forest management on erosion and soil productivity [J]. In Lal, R (ed.)Soil quality and soil erosion, CRC Press, New York,1999,195-208.
    198. Fabia A, Martins M C, Cerverira C, et al. Influence of soil and organic residue management on biomass and in a Eucalyptus globules Labill Plantation [J]. Forest Ecology and Management,2002, 171:87-100.
    199. France R L.Potential for soil erosion from decreased litter fall due to riparian clearcutting implications for boreal forestry and warm-and coil-water fisheries [J].Journal of Soil and Water Conservation,1997,52(6):452-455.
    200. Francioso,O.,Ciavatta,C.,Sanchez,S.,et al.Spectroscopic characterization of soil organic matter in long-term amendment traits[J].Soil Sci,2000,165:495-504.
    201. Fu B J, Chen L D, Ma K M, et al. The relationship between land us and soil conditions in the hilly area of Loess Plateau in norther Shaanxi,China[J].Catena,2000,39:69-78.
    202. Graham RT, Harvey AE, Jurgensen M F. Effect of site preparation on survival and growth of Douglas-fir (Pseudot suga menziesii Mirb. Franco.) seedlings [J]. New Forest,1989,3:89-98.
    203. Helvey J D, Patric J H. Canopy and litter interception of rainfall by hardwoods of eastern United States [J]. Water Resources Research,1965,1:193-206.
    204. Islam K R,Weil R R.Land use effects on soil quality in a tropical forest ecosystem of Bangladesh[J]. Agriculture Ecosystems and Environment,2000,79:9-16.
    205. Kershaw K A. Qmantitative and Dynamic Ecology [M]. London:Edward Arnold,1993:72-74.
    206. Kume A,Satomura T,Tsubei N,et al.Effects of understory vegetation on the ecophysiological characteristicsof an overstory pine,Pinus densiflora[J].Forest Ecology and Management, 2003,176:195-203.
    207. Kvalseth TO. Note on biological diversity, evenness, and homogenety measures [J].Oikos,1991,62: 123-127.
    208. Lee R, Granillo A B.Soil protection by natural vegetation on clearcut forest land in Arkansas [J]. Journal of Soil and WaterConservation,1985,40(4):379-382.
    209. Loughlin C.O.The sustainability paradox an examination of the plantation affects a review of the environmental effects of plantation forestry in New Zealand [J].N.E.Forestry,1995,3-8.
    210. Lugo A E.The apparent paradox of reestablishing species richness on degraded lands with tree monocultures [J]. For. Ecol. Man,1997,99(7):9-19.
    211. Mac Kenzie MD, Schmidt MG, Bedford L. Soil micro climate and nitrogen availability 10 years after mechanical site preparation in northern British Columbia[J].Canadian Journal of Forest Research,2005,35:1854-1866.
    212. Margalef R. Diversity, stability and materiality in natural ecosystems [A].In:Dobben WH, Lowe-Mcconnell RH eds.Unifying Concepts in Ecology [M]. Wageningen:Centre for Agricultural publishing and Documentation.1975,151-160.
    213. McNaughton S J.Stability and biodiversity of ecological communities [J].Nature,1978, 274:251-253.
    214. Motohisa F,Tetsya K,Valdir C,et al. Hydrological processes at two subtropical forest catchments: the Serra do Mar,Sao Paulo, Brazil[J]. Journal of Hydrology,1997,196:26-46.
    215.Nesdoly RG, van Rees KCJ. Redistribution of extractable nutrients following disc trenching on Luvisols and Brunisols in Saskatchewan[J]. Canadian Journal of Soil Science,1998,78:367-375.
    216. Odum EP. The strategy of ecosystem development [J]. Science,1969,164:262-270.
    217. Orlander G, Egnell G, Albrektson A. Long-term effects of site preparation on growth in Scots pine[J]. Forest Ecology and Management,1996,86:27-37.
    218. Page-Dumroese D, Harvey AE, Jurgensen MF, et al. Impacts of soil compaction and tree stump removal on soil properties and outplanted seedlings in northern Idaho, USA[J].Canadian Journal of Soil Science,1998,78:29-34.
    219. Patricia M. Holmes shrub land restoration following woody Alien invasion and mining:Effects of top soil depth, seed source, and fertilizer addition [J]. Restor. Ecol,2000,9(1):71-84.
    220. Potthoff M, Jackson L E. Soil biological and chemical properties in restored perennial grassland in California [J]. Restor.Ecol,2005,13(1):61-73.
    221. Putuhena W M, Cordery I.Estimation of interception capacity of the forests floor[J].J.Hydrol, 1996,180:283-299.
    222. Rieu M, Sposito G. Fractal fragmentation of soil porosity and soil water properties [J]. Application.Soil Sci.Am.J,1991,55:1231-1238.
    223. Rosoman G. The plantation effects [M].Greenpeace, New Zealand,1998,48.
    224. Sari Pitkanen. Classification of vegetational diversity in managed boreal forests in eastern Finland Plant Ecology,2000,146:11-28.
    225. Sato Yoshinobu,Kumagai Tomo'omi,Kume Atsushi,et al.Experimental analysis of moisture dynamics of litter layers:The effects of rainfall conditions and leaf shapes. Hydrologica Processes, 2004,18(16):3007-3018.
    226. Schmidt MG, Macdonald SE, Rothwell RL. Impacts of harvesting and mechanical site preparation on soil chemical properties of mixed-wood boreal forest sites in Alberta [J].Canadian Journal of Soil Science,1996,76:531-540.
    227. Schoenholtz SH, van Miegroet H, Burger JA. A review of chemical and physical properties as indicators of forest soil quality:Challenges and opportunities [J].Forest Ecology and Management, 2000,138:335-356.
    228. Scott W T, Stephen W W. Application of fractal mathematics to soil water retention estimation [J].Soil Sci.Soc.Am.J.1989,53:987-996.
    229. Scott W T, Stephen W W. Fractal scaling of soil particles size distributions:Analysis and limitation[J].Soil Sci.Soc.Am.J.,1992,56:362-369.
    230. Simard SW, Jones MD, Durall DM, et al. Chemical and mechanical site preparation:Effects on Pinus contorta growth, physiology, and microsite quality on steep forest sites in British Columbia [J].Canadian Journal of Forest Research,2003,33:1495-1515.
    231. Sparling GP, Schipper LA, Bettjeman W, et al. Soil quality monitoring in New Zealand:Practical lessons from a 6-year trial Agriculture [J]. Ecosystems& Environment,2004,104:523-534.
    232. Spellerberg I F, Sawyer J W D.Standards for biodiversity:a proposal based on biodiversity standards for fore plantations [J]. Biodiversity and Conservation,1996,5:447-459.
    233. Stuart M. The water vapor conductance of Eucalyptus litter layers [J]. Agricultural and ForestMeteorology,2005,135:73-81.
    234. Taylor A H, Jang S W,Zhao L J, et al. Regeneration patterns and tree species coexistence in old growth Abies-Picea forests in southwestern China [J].Forest Ecology and Management,2006, 223:303-317.
    235. Tian Changcheng, Jiang Xuelong,Peng Hua. Tree species diversity and structure characters in habitats of black-crested gibbons (Nomascus concolor)[J].Acta Ecologica Sinica,2007,27(10):4002-4010.
    236. Turcotte D L. Fractals and fragmentation [J]. J.Geophys.Res,1986,91 (B3):1921-1926.
    237. Tyler S W,Wheateraft S W. Fractal scaling of soil particle size distributions:Analysis and limitations [J].Soil Sci. Soc. Am. J.,1992,56:362-369.
    238. Viles H.A. The agency of organic beings:A selective review of recent work in biogeomorphology. In:Thornes, J.B (ed.), Vegetation and erosion [J]. John Wiley & Sons Ltd,1990,5-24.
    239. Warkentin B.P. The changing concept of soil quality [J].Journal of Soil and Water Conservation, 1995,50(3):226-228.
    240. William M P, Cordery I. Estimation of interception capacity of the forest floor [J]. Journal of Hydrology,1996,180:283-299.
    241. Xin Zhang, Gaofu Xu, Dongwei Shen, Yongjie GU. Maintenance and natural regeneration of Castanopsis sclerophylla populations on islands of Qiandao Lake Region, China [J]. Acta Ecologica Sinica,2007,27(2):424-430.
    242. Yoshinobu S, Kumagai Tomo'omi, Kume Atsushi, et al. Experimental analysis of moisture dynamics of litter layers:The effects of rainfall conditions and leaf shapes [J]. Hydrological Processes,2004,18(16):3007-3018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700