加压滴管炉研制与实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滴管炉是研究煤等含碳固体燃料反应过程的重要动力学实验装置。研发加压滴管炉进行高温、高压、高升温速率的气化反应动力学研究,已成为滴管炉发展的趋势。本文在分析现有国内外滴管炉的基础上,研究并建成了加压滴管炉,进行了单一操作参数对典型煤种热反应特性的影响规律实验。主要研究内容和结果包括:
     (1)研制了常压微量给料器和加压微量给料器。给料器采用了无轴螺旋输送方式,加压条件下给料速率在0.4-1.0g/min范围时的给料精度为士7.2%,稳定性较好。给料速率仅与搅拌螺旋转速、输送螺旋转速有关,而与料位、载气流量以及操作压力无关。给料量与给料时间、给料速率与输送螺旋转速之间均具有良好的线性关系。
     (2)研制了加压滴管炉及其预热器。炉顶入口处的刚玉支撑件上设计有孔道,解决了反应管内外压力平衡问题;纤维衬里的孔隙率和耐压强度测试验证了该材料在高压操作时的可行性和可靠性;硅碳棒的“井”字型水平布置和多区控温方式,改善了反应区温度的均匀性;设计的四氟套组件解决了硅碳棒在加压时的密封问题;进样枪长度可调节的方案经济方便地实现了加压时的连续取样;加压预热器结合了加压滴管炉与填充床的结构设计方案。此外,计算得出了硅碳棒、进样枪、取样枪以及预热器的具体设计参数。
     (3)完成加压滴管炉的集成及调试;提出了可控制颗粒反应行为的给料速率的操作准则;获得了反应区温度的实际分布和控制精度;计算了颗粒的温度和升温速率;研发了平台数据监控系统,并分析了实验误差。
     (4)进行了典型煤种在高升温速率条件下的热解和气化试验,在热解实验中采用了灰示踪法,实现了对煤粉颗粒的温度(升温速率)和停留时间的单独控制和调节;在气化实验中采用了氮示踪法和色谱分析,实现了对煤粉颗粒的温度(升温速率)、停留时间、氧煤比和压力的单独控制和调节,得到了两种煤转化率随上述单一操作参数变化的反应特性。实验结果符合反应的基本规律和已有的滴管炉实验结果,验证了本文研制的加压滴管炉可靠性。
The drop tube furnace (DTF) is one of the important experiment devices used in coal reaction process research, and the development of pressurized drop tube furnace (PDTF) used for coal dynamics research at high temperature, high pressure, and high heating rate conditions is the trend of DTF. In this paper, on the basis of analysis of the DTF home and abroad, the PDTF had been investigated and established, and then thermal reaction characteristics of typical coal under independent operation parameter were investigated with PDTF.
     The main research contents and results are summarized as follows:
     (1) Two microfeeders working in atmospheric and pressurized conditions were established individually. The microfeeder adopted shaftless screw mode and showed good stability with precision is±7.2%when feeding rate is0.4-1.0g/min at pressurized conditions. The feeding rate of microfeeder depends on the speed of agitating screw and conveying screw, and is independent of flow rate of carrier gas, stack height of paticles and operating pressure.
     (2) The pressurized drop tube furnace was investigated and established. The pressure keeps balance between inside and outside the reaction tube by pipe design of corundum fixed components on the furnace top. The feasibility and reliability of fiber lining under pressurized conditions were proved by porosity and compressive strength tests. Horizontal staggered arrangement and multiple zone tempreture control of SiC heaters improved temperature uniformity of the reaction zone. Designed ePTFE components seal SiC heaters under pressurized conditions. A series of length-adjustable injection probes realize economically and conveniently continuous sampling under pressurized conditions. The structure design of pressurized preheater has characteristics of both PDTF and packed beds. In addition, the specific design parameters of SiC heaters, injection probe, collection probe and preheater were calculated.
     (3) The Integration and commissioning of PDTF system were performed. The feeding rate operation criterion of controlled particle reaction behavior was proposed. According to actual temperature distribution of reaction zone, the control accuracy was obtained. Moreover, temperature and heating rate of particles under different conditions was calculated. Data monitoring system was developed and experiment error was analyzed.
     (4) The pyrolysis and gasification experiment of typical coals with high heating rate were studied. Ash tracer method has been developed in pyrolysis experiment, and the reaction conditions of pulverized coal was controlled and adjusted individually with temperature (heating rate) and residence time. Nitrogen tracer method and chromatographic analysis has been developed in gasification experiment, and the reaction conditions of pulverized coal was controlled and adjusted individually with temperature (heating rate), residence time, O2/Coal and pressure. The results of experiment showed conversion of typical coals changed with individual operation parameters and were accord with reaction basic rules and existing experimental results of DTF and verified reliability of PDFT established in this paper.
引文
[1]郑楚光.洁净煤技术[M].武汉:华中理工大学出版社,1996:230-281.
    [2]周庆凡,郭金瑞.我国一次能源开发利用现状[J].资源与产业.2009(1):27-33.
    [3]中国能源统计年鉴2005[M].中国统计出版社:2006.
    [4]中国能源可持续发展战略专题研究[M].科学出版社,2005.
    [5]吴宗鑫,吕应运.以煤为主多元化的清洁能源源战略[J].清华大学学报(哲学社会科学版).2000,15(6):72-75.
    [6]周新.中国能源消费和改善大气环境质量的战略分析[J].环境保护.2003(7):47-51.
    [7]焦树建.论21世界初发电行业发展所面临的几个技术热点问题[J].燃气轮机技术.2000,13(1):23-25.
    [8]胡予红,孙欣,张文波,等.煤炭对环境的影响研究[J].中国能源.2004,26(1):32-35.
    [9]周小谦.加快电力发展提高能源效率[J].能源政策研究.2006,2(5-13).
    [10]马重芳.能源消费的环境效应评述[Z].
    [11]Change C. The Physical Science Basis-Summary for Policy-makers[Z],
    [12]乌晓江.高灰熔点煤高温、加压气流床气化实验研究与数值模拟[D].上海理工大学,2007.
    [13]Simbeck D R, Johnson H E. Gasificatron Database and World Market Gasification Technologies Conference[Z].1999.
    [14]Simbeck D R, Dickenson R L. Gasification Trends Process & Refinery Session of Energy Wddk Conference[Z].1997.
    [15]Kajitani S, Hara S, Matsuda H. Gasification Rate Analysis of Coal Char with a Pressurized Drop Tube Furnace[J]. Fuel.2002,81:539-546.
    [16]Minchener A J. Coal gasification for advanced power generation [J]. Fuel.2005, 84(17):2222-2235.
    [17]Cheng R K, Littlejohn D, Nazeer W A. Laboratory studies of the how field characteristics of low-swirl injectors for adaptation to fuel-flexible turbines[J]. Journal of Engineering for Gas Turbines and Power.2008,13(2):21501-21511.
    [18]焦树建.燃气轮机与燃气-蒸汽联合循环装置[M].北京:中国电力出版社,2007.
    [19]Ishida M, Jin H. A new advanced power generation system using chemical looping combustion[J]. Energy-the International Journal.1994(4):415-422.
    [20]刘圣华,姚明宇,张宝剑.洁净燃烧技术[M].北京:化学工业出版社,2006,294-295.
    [21]沙兴中,杨南星.煤的气化和应用[M].华东理工大学出版社,1995,33-34.
    [22]朱开宏,袁渭康.化学反应工程分析[M].北京:高等教育出版社,2002,42.
    [23]Carpenter A, Skorupska N. Coal Combustion—Analysis and Testing[R]. IEA, 1993.
    [24]文芳.热重法研究煤焦H20气化反应动力学[J].煤炭学报.2004,20(1):350-353.
    [25]魏兴海,沈平.煤的热解动力学研究[J].燃料化学学报.1992,20(1):102-106.
    [26]Liu X, Li B, Miura K. Analysis of pyrolysis and gasification reactions of hydrothermally and supercritically upgraded low rank coal by using a new distributed activation energy model[J]. Fuel Processing Technology.2001,69(1): 1-12.
    [27]胡文斌.高温煤气化动力学及两段式气化炉的模型研究[D].清华大学,2005.
    [28]Damartzis T, Ioannidis G, Zabaniotou A. Simulating the behavior of a wire mesh reactor for olive kernel fast pyrolysis[J]. Chemical Engineering Journal. 2008(136):320-330.
    [29]许世森,张东亮,任永强编著.大规模煤气化技术[M].北京:化学工业出版社,2005,46-47.
    [30]颜涌捷,王杰.两种褐煤快速脱挥发分行为[J].华东化工学院学报.1992,18(1):21-25.
    [31]H. E B, Quah, F. J, et al. Interinfluence between Reactions on the Catalyst Surface and Reactions in the Gas Phase during the Catalytic Oxidation of Methane with Air[J]. Journal of Catalysis.2001(197):315-323.
    [32]Hindmarsh C J, Thomas K M, Wang W X, et al. A comparison of the pyrolysis of coal in wire-mesh and entrained-flow reactors[J]. Fuel.1995,74(8): 1185-1190.
    [33]Flaxman R J. Flow and heat transfer in a drop tube furnace[D]. University of Ottawa,1986.
    [34]H. Y, Khraisha. Flash pyrolysis of oil shales in a fluidized bed reactor[J]. Energy Conversion & Management.2000(41):1729-1739.
    [35]章永浩,董锦泉.煤焦与水蒸气及二氧化碳的气化反应动力学[J].高校化学工程学报.1991,5(4):313-319.
    [36]周静,周志杰,龚欣,等.煤焦二氧化碳气化动力学研究(Ⅰ)等温热重法[J].煤炭转化.2002,25(4):66-67.
    [37]崔洪,徐秀峰,顾永达.煤焦C02气化的热重分析研究:(Ⅰ)等温热重研究[J].煤炭转化.1996,19(2):75-78.
    [38]周静,龚欣,于遵宏.煤焦二氧化碳气化动力学研究(Ⅱ)非等温热重法[J].煤炭转化.2003,26(1):78-81.
    [39]崔洪,徐秀峰,顾永达.煤焦C02气化的热重分析研究: (Ⅱ)程序升温热重研究[J].19.1996,3(82-85).
    [40]杨小风,周静,龚欣,等.煤焦水蒸气气化特性及动力学研究[J].煤炭转化.2003,26(4):46-50.
    [41]Badzioch S, Hawksley P G W. Kinetics of Thermal Decomposition of Pulverized Coal Particles[J]. Industrial and Engineering Chemistry.1970,9(4):521-530.
    [42]Fletcher T H, Hardesty D R. Compilation of Sandia coal devolatilization data: Milestone report[R]. Sandia National Labs, Livermore, CA (United States), 1992.
    [43]Flaxman R J, W. L. H. Hallett. Flow and Particle Heating in an Entrained Flow Reactor[J]. Fuel.1987,66:607-611.
    [44]Kobayashi H. Devolatilization of Pulverized Coal at High Temperatures[D]. Massachusetts Institute of Technology,1976.
    [45]Serio M A, Hamblen D G, Markham J R, et al. Kinetics of volatile product evolution in coal pyrolysis:experiment and theory[J]. Energy and Fuels.1987, 1(2):138-152.
    [46]Yan L, Gupta R, Wall T. Fragmentation Behavior of Pyrite and Calcite during High-temperature Processing and Mathematical Simulation[J]. Energy and Fuels. 2001,15(2):389-394.
    [47]Lee C W, Scaroni A W, Jenkins R G. Effect of Pressure on the Devolatilization and Swelling Behaviour of a Softening Coal During Rapid Heating[J]. Fuel. 1991,70(8):957-965.
    [48]Monson C R, Germane G J. A High Pressure Drop-tube Facility for Coal Combustion Studies[J]. Energy & Fuels.1993,7:928-936.
    [49]Ouyang S, Yeasmin H, Mathews J. A Pressurized Drop-tube Furnace for Coal Reactivity Studies[J]. Review of Scientific Instruments.1998,69(8):3036-3041.
    [50]盛昌栋,徐明厚,袁建伟,等.高浓度煤粉着火阶段燃烧特性的试验研究[J].华中理工大学学报.1995(07):64-68.
    [51]刘晶,郑楚光,曾汉才,等.固体吸附剂控制燃煤重金属排放的实验研究[J].环境科学.2003(05):23-37.
    [52]刘辉,吴少华,孙锐,等.快速热解褐煤焦的比表面积及孔隙结构[J].中国电机工程学报.2005(12):86-90.
    [53]周英彪,王春梅,张军营,等.煤燃烧超细颗粒物控制的实验研究[J].热能动力工程.2004(05):474-477.
    [54]李戈,池作和,斯东坡,等.生物质废弃物再燃降低NOx排放的试验研究[J].热力发电.2004(02):41-44.
    [55]Chen W. A Simplified Model of Predicting Coal Reaction in a Partial Oxidation Environment[J]. International Communications in Heat and Mass Transfer.2007, 34:623-629.
    [56]Cope R F, Monson C R, Germane G J, et al. Improved Diameter, Velocity, and Temperature Measurements for Char Particles in Drop-Tube Reactors[J]. Energy and Fuels.1994,8(4):925-931.
    [57]Kajitani S, Hara S, Matsuda H. Gasification Rate Analysis of Coal Char with a Pressurized Drop Tube Furnace[J]. Fuel.2002,81(5Sp. Iss. SI):539-546.
    [58]Card J, Jones A R. A Drop Tube Furnace Study of Coal Combustion and Unburned Carbon Content Using Optical Techniques[J]. Combustion and Flame. 1995,101(4):539-547.
    [59]Stanmore B R, Choi Y C, Gadiou R, et al. Pulverised Coal Combustion under Transient Cloud Conditions in a Drop Tube Furnace[J]. Combustion Science and Technology.2000,159:237-253.
    [60]Luyben W L. Effect of Design and Kinetic Parameters on the Control of Cooled Tubular Reactor Systems[J]. Industrial and Engineering Chemistry Research. 2001,40(16):3623-3633.
    [61]Gray J A, Donatelli P J, Yavorsky P M. Hydrogasification Knetics of Bituminous Coal and Coal Char[J]. Division of Fuel Chemistry Gasification.1975,20(4): 103-154.
    [62]张小可,陈彩霞,孙学信.层流曳带流反应器内流动和温度特性的数值模拟[J].华中理工大学学报.1994,22(3):30-35.
    [63]Baum M M, Street P J. Predicting the Combustion Behaviour of Coal Particles[J]. Combustion Science and Technology.1971,3(5):231-243.
    [64]Campbell W D, Slattery J C. Flow in the Entrance of a Tube[J]. Journal of Basic Engineeing.1963, March:41-46.
    [65]Flaxman R J, Hallett W L H. Flow and Particle Heating in an Entrained Flow Reactor[J]. Fuel.1987,66:607-611.
    [66]张少鸿.管式沉降炉中煤粉颗粒的运动[D].清华大学,1989.
    [67]Rizeq G, West J, Subia R, et al. Advanced-Gasification Combustion:Bench-Scale System Design and Experimental Results[Z]. The 27th International Technical Conferencoen Coal Utilization& Fuel Systems (Clearwater Conference).Florida, USA:2002.
    [68]Fletcher T H. Time-resolved Particle Temperature and Mass Loss Measurements of a Bituminous Coal during Devolatilization[J]. Combustion and Flame.1989, 78(2):223-236.
    [69]Gale T K, Bartholomew C H, Fletcher T H. Effect of Pyrolysis Effects of Pyrolysis Heating Rate on Intrinsic Reactivities of Coal Chars[J]. Energy and Fuels.1996(10):766-775.
    [70]刘忠,赵莉,胡满银,等.超细煤粉颗粒的升温速率及其对再燃还原NO的影响[J].华北电力大学学报.2005,32(03):95-98.
    [71]Krantz M, Zhang H, Zhu J. Characterization of Powder Flow[J]. Static and Dynamic Testing.2009(194):239-245.
    [72]Alavi S, Caussat B. Experimental Study on Fluidization of Micronic Powders[J]. Powder Technology.2005,157(1-3):114-120.
    [73]李启厚,黄异龄,王红军,等.粒径≤2μm的超细粉体颗粒分散方式探讨[J].粉末冶金材料科学与工程.2007,12(5):284-289.
    [75]Seville J P K, Willet C D, Knight P C. Interparticle Forces in Fluidisation:a Review[J]. Powder Technology.2000(113):261-268.
    [76]陈俊,张军营,魏凤,等.燃煤超细颗粒物喷雾团聚的模型[J].煤炭学报.2005(05).
    [77]Li Q, Rudolph V, Weigl B, et al. Interparticle Van Der Waals Force in Powder Flowability and Compactibility[J]. International Journal of Pharmaceutics.2004, 280(1-2):77-93.
    [78]Li Q, Rudolph V, Peukert W. London-van Der Waals Adhesiveness of Rough Particles[J]. Powder Technology.2006,161(3):248-255.
    [79]Wan S, Chen W, Gowan G. Improvements on a Gravity-driven Low-rate Particle Feeder[J]. Review of Scientific Instruments.2009,80(7):73904-73905.
    [80]陶珍东,郑少华.粉体工程与设备[M].北京:化学工业出版社,2008.
    [81]Feng J Q, Hays D A. Relative Importance of Electrostatic Forces on Powder Particles[J]. Powder Technology.2003,135(Sp. Iss. SI):65-75.
    [82]柯扬船.超微颗粒在固体中的分散技术的研究进展[J].化工进展.2003(8):833-836.
    [83]Fatah N. Study and Comparison of Micronic and Nanometric Powders:Analysis of Physical, Flow and Interparticle Properties of Powders[J]. Powder Technology.2009,190:41-47.
    [84]付国民,王佐民,刘伟军.微量给粉装置的设计与实验[J].哈尔滨理工大学学报.2004(03):8-10.
    [85]Tang L, Chen W. Improvements on a Particle Feeder for Experiments Requiring Low Feed Rates[J]. Review of Scientific Instruments.1999,70(7):3143-3144.
    [86]Matsuoka K, Ma Z, Akiho H, et al. High-Pressure Coal Pyrolysis in a Drop Tube Furnace[J]. Energy and Fuels.2003(17):984-990.
    [87]Gupta S, Sahajwalla V, Wood J. Simultaneous Combustion of Waste Plastics with Coal for Pulverized Coal Injection Application[J]. Energy and Fuels.2006, 20(6):2557-2563.
    [88]#12
    [89]Zhang Y, Kajitani S, Ashizawa M, et al. Peculiarities of Rapid Pyrolysis of Biomass Covering Medium and High-Temperature Ranges[J]. Energy and Fuels. 2006(20):2705-2712.
    [90]德国标准化学会.Continuous Mechanical Handling Equipment; Screw Conveyors for Loose Bulk Materials; Design Principles[S].
    [91]Uchida K, Okamoto K. Measurement Technique on the Diffusion Coefficient of Powder Flow in a Screw Feeder by X-ray Visualization[J]. Powder Technology. 2008,187(2):138-145.
    [92]Owen P J, Cleary P W. Prediction of Screw Conveyor Performance using the Discrete Element Method (DEM)[J]. Powder Technology.2009,193(3Sp. Iss. SI):274-288.
    [93]刘辉,李可夫,葛健,等.微量给粉装置的调试及标定[J].锅炉技术.2005(05):51-54.
    [94]侯栋岐,王乃文,夏南.微量粉体给料器开发[J].电站系统工程.1991(03):45-47.
    [95]Chen W, Gowan G, Shi G, et al. A Gravity-Driven Low-Rate Particle Feeder[J]. Review of Scientific Instruments.2008,79(8):83904-83905.
    [96]张杰,高铁瑜,渠亚东,等.微细微量螺旋加料器的试验研究[J].热能动力工程.2004(03):278-291.
    [97]Krause F, Minkin A. Theoretical and experimental study of horizontal_Part 1 Theoretical study of horizontal and lightly inclined shaftless screw con-veyors[J]. Bulk Solids Handling.2005,25(3):172-178.
    [98]张宇,刘家祥.颗粒分散[J].材料导报.2003,17:158-161.
    [99]国营北京建中机器厂主编.电阻炉设计[M].新时代出版社,1982,82-84.
    [100]施林德尔E.U.换热器设计手册第五卷[M].联邦德国:1988,P158.
    [101]皮茨D.,西索姆L.,葛新石等译.传热学(原第二版)[M].美国:科学出版社,2002,432-435.
    [102]施林德尔E.U.换热器设计手册第五卷[M].联邦德国:1988,P158.
    [103]童景山.流体的热物理性质[M].中国石化出版社,1996,232.
    [104]Yagi S, Kunii D, Wakao N. Studies on axial effective thermal conductivities in packed beds[J]. AIChE Journal.2004,6(4):543-546.
    [105]Ishikawa K. Kinetics study of reductionsulfidation of ZnO and zinc titanate powders in a drop-tube furnace[D]. Massachusetts Institute of Technology Publishers,1995.
    [106]Visona S P, Stanmore B R. Modeling NOx release from a single coal particle Ⅱ. Formation of NO from char-nitrogen [J]. Combustion and Flame.1996,106(3): 207-218.
    [107]Annamalai K, Ramalingam S C. Group Combustion of Char Carbon Particles[J]. Combustion and Flame.1987,70(3):307-332.
    [108]刘林华,许万里.煤粉粒子的发射率[J].热能动力工程.1997,12(4):261-266.
    [109]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [110]范晓雷,周志杰,王辅臣,等.热解条件对煤焦气化活性影响的研究进展[J].煤炭转化.2005,28(3):74-79.
    [111]王明敏,张建胜,张守玉,等.热解条件对煤焦结构及气化反应活性的影响[J].煤炭转化.2007,30(3):21-24.
    [112]Hayashi J, Takahashi H, Doi S, et al. Reactions in Brown Coal Pyrolysis Responsible for Heating Rate Effect on Tar Yield[J]. Energy and Fuels.2000, 14(2):400-408.
    [113]Kajitani S, Matsuda H, Suzuki N, et al. Influence of High-temperature and High-pressure Pyrolysis Conditions on Gasification Reactivity of Coal Chars with Carbon Dioxide[J]. Kagaku Kogaku Ronbunshu.2004,30(1):29-35.
    [114]王明敏,张建胜,张守玉,等.热解条件对煤焦比表面积及孔隙分布的影响[J].煤炭学报.2008,33(1):76-79.
    [115]范晓雷,杨帆,张薇,等.热解过程中煤焦微晶结构变化及其对煤焦气化反应活性的影响[J].燃料化学学报.2006,34(4):395-398.
    [116]吴诗勇.不同煤焦的理化性质及高温气化反应特性研究[D].华东理工大学,2007.
    [117]煤中全水分的测定方法GB/T211-1996.[S].1996.
    [118]张军,汉春利等.煤显微组分富集物燃烧特性滴管炉试验研究[J].燃烧科学与技术.2002,8(5):403406.
    [119]Meesri C, Moghtaderi B. Experimental and Numerical Analysis of Sawdust Char Combustion Reactivity in a Drop Tube Reactor [J]. Combustion Science and Technology.2003,175(4):793-823.
    [120]Yan R, Zeng H, Yu Q. The Fate of Trace Elements during Several Coal Pretreatment Processes[J]. Energy and Fuels.2002,16(5):1160-1166.
    [121]煤的工业分析方法.GB/T212-2001 [S].
    [122]刘铁峰,房倚天,王洋.煤高温快速热解规律研究[J].燃料化学学报.2009,37(1):20-25.
    [123]傅维标.煤燃烧理论及其宏观通用规律[M].清华大学出版社,2003.
    [124]祝庆瑞,郭庆华,廖胡,等.温度及氧碳比对气化炉内颗粒物性质的影响[J].中国电机工程学报.2011,31(5):58-62.
    [125]代正华,龚欣,王辅臣,等.气流床粉煤气化的Gibbs自由能最小化模拟[J].燃料化学学报.2005(2):129-133.
    [126]许建良,代正华,李巧红,等.气流床气化炉内颗粒停留时间分布[J].化工学报.2008,59(1):53-57.
    [127]刘升,郝英立.Texaco气流床煤气化炉内气固两相流动的数值模拟[J].东南大学学报(自然科学版).2009(04):803-807.
    [128]吴学成,王勤辉,骆仲泱,等.气化参数影响气流床煤气化的模型研究(Ⅱ)—模型预测及分析[J].浙江大学学报:工学版.2004,38(11):1483-1489.
    [129]于海龙,赵翔,周志军,等.氧煤比对水煤浆气化影响的数值模拟[J].煤炭学报.2004,29(5):606-610.
    [130]Shin Y, Choi S, Ahn D. Pressurized Drop Tube Furnace Tests of Global Coal Gasification Characteristics[J]. International Journal of Energy Research.2000, 24(9):749-758.
    [131]陶明春,杜敏,郝英立.氧煤比对气流床煤气化过程的影响[J].热科学与技术.2010,9(2):177-182.
    [132]汪洋,于广锁,于遵宏.运用Gibbs自由能最小化方法模拟气流床煤气化炉 [J].煤炭转化.2004,27(4):27-33.
    [133]肖睿,金保升,周宏仓,等.高温气化剂加压喷动流化床煤气化试验研究[J].中国电机工程学报.2005,25(23):100-105.
    [134]杨海平,陈汉平,鞠付栋,等.典型煤种加压热解与气化实验研究[J].中国电机工程学报.2007,27(26):18-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700