高灰熔点煤燃烧细微颗粒物生成及控制实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤颗粒物是大气可吸入颗粒物的重要来源之一,危害人体健康。淮南是我国重要的能源电力基地之一,淮南煤作为高灰熔点煤的典型代表,深入研究其矿物分布特征及其在燃烧过程中的转化行为,探讨配煤、添加剂对淮南煤燃烧细微颗粒物生成的影响,对于研究高灰熔点煤燃烧细微颗粒物生成及排放控制具有重要意义。
     本文利用计算机控制扫描电镜(CCSEM)分析了高灰熔点煤(淮南煤)的矿物种类、含量、粒度分布,并对内在矿物和外在矿物进行了区分;在滴管炉中分别进行了高灰熔点煤(淮南煤)单煤燃烧、与低灰熔点煤配煤燃烧、淮南煤与添加剂的混合燃烧实验,产生的细微颗粒物用低压撞击器(LPI)进行收集,采用高分辨率透射电子显微镜(HRTEM-EDS)、CCSEM、扫描电子显微镜(SEM-EDS、X射线荧光光谱(XRF)等对收集的细微颗粒物进行分析,考查了高灰熔点煤(淮南煤)单一燃烧无机矿物向细微颗粒物的转化行为,分别探讨了低灰熔点煤配煤、添加剂对高灰熔点煤(淮南煤)燃烧细微颗粒物生成的影响;最后,利用合并-破碎模型,对高灰熔点煤(淮南煤)与添加剂混合燃烧细微颗粒物的粒度分布和化学组成进行了模拟计算。主要内容如下:
     高灰熔点煤(淮南煤)中矿物主要由高岭石、石英、蒙脱石、未知矿物(成分更为复杂的硅铝酸盐矿物)组成,粘土矿物和石英约占到矿物总量的85%以上,其灰熔融温度大于1500℃。淮南煤中内在高岭石和外在高岭石含量接近,内在石英和外在石英含量也接近;选用的配煤HT煤中高岭石、石英含量相对较少,高岭石和石英约占到矿物总量的60%,而方解石、白云石和黄铁矿含量较高,约占到矿物总量的21%,其灰熔融温度在1278℃左右。矿物颗粒的粒度对燃煤细微颗粒物的形成有重要的影响。淮南ZJ、XQ煤与低灰熔点煤HT煤中<1.0μm的外在矿物含量分别约为5.95%、2.00%、1.86%;淮南ZJ、XQ煤与HT煤中1.0μm-2.5μm的外在矿物含量分别约为15.09%、5.52%、4.44%;淮南ZJ、XQ煤与低灰熔点煤HT煤中<1.0μm的内在矿物含量分别约为3.67%、5.79%、6.20%;淮南ZJ、XQ煤与HT煤中1.0μm-2.5μm的内在矿物含量分别约为13.86%、14.52%、17.29%,矿物颗粒粒度分布的差异进一步表明了煤中不同的矿物分布特征。
     高灰熔点煤(淮南煤)单一燃烧排放的细微颗粒物有一个双峰分布,大约分别在0.05μm和2.5μm。高灰熔点煤(淮南煤)单一燃烧排放的PM1和PM2.5浓度均高于外地HT煤燃烧排放的PMl和PM2.5浓度,其中淮南ZJ煤燃烧排放的PM1和PM2.5浓度最高,这与淮南ZJ煤中<1.0μm和1.0μm-2.5μm的外在矿物颗粒含量最高有关,一部分细小外在矿物在燃烧过程中可直接转化形成细微颗粒物。高灰熔点煤(淮南煤)燃烧产生的PM1有两种典型的矿物学形态,一是大约由20nm的基本粒子分形聚合形成的粒径≤1.0μm的颗粒,富含易挥发性的元素包括S,P,碱金属元素和少量的难挥发性的元素Si,Fe,由蒸发-冷凝形成;另一种是粒径大约在0.1-0.2μm软化的含Si,A1的单颗粒,由淮南煤中<1.Oμm硅铝酸盐矿物颗粒在燃烧过程中熔融自由释放形成。同样,高灰熔点煤(淮南煤)中一部分1.0μm-2.5μm不纯净的硅铝酸盐矿物也熔融转化形成PN1-2.5\。HT煤富含Ca和Fe,灰熔点较低,在燃烧过程中矿物间的融合降低了PM1和PM2.5的生成。
     与低灰熔点煤配煤燃烧能减少高灰熔点煤(淮南煤)PM1和PM2.5的生成。S,P,Si和Al从亚微米级颗粒转化到PM1+,减少了PM1排放。Ca、Fe、Al和Si从PM1-2.5转化到PM2.5+,减少了PM1-2.5排放。由于Ca和Fe在混煤中浓度较高,在燃烧过程中产生液相量增加,挥发的S,P更容易粘附到铝硅酸盐的粘性表面,形成超微米颗粒物,减少了PM,生成;液相量的增加,矿物颗粒在燃烧过程中碰撞熔融合并的几率增大,亚微米或微米颗粒的熔融合并生成粗颗粒的钙铝硅酸盐、铁铝硅酸盐和钙铁铝硅酸盐,这样Ca、Fe、Al和Si元素从PM2.5转化到PM2.5+,相应PM1和PM1-2.5排放减少。
     添加Ca基,Mg基,Fe基添加剂均能有效减少高灰熔点煤(淮南煤)煤PM1和PM2.5的生成。高灰熔点煤(淮南煤)与添加剂混合燃烧,导致矿物高温下熔融产生的液相量增加。在燃烧过程中,高灰熔点煤(淮南煤)中细小的Al-Si颗粒分别与添加的Ca基,Mg基,Fe基添加剂发生了反应,熔融形成相应的钙铝硅酸盐、镁铝硅酸盐和铁铝硅酸盐粗颗粒;同时,熔融的钙铝硅酸盐、镁铝硅酸盐和铁铝硅酸盐的颗粒,能捕获蒸发和冷凝形成的亚微米颗粒物,控制和减少了PM1和PM1-2.5的生成。高灰熔点煤(淮南煤)与添加剂混合燃烧显著影响了细微颗粒物的粒度分布。SiO2和Al2O3有一个单峰分布,可能由煤中难挥发性元素直接转化形成,固体-颗粒的模式控制着它们的转化。CaO在PM1中含量很低,表明Ca的蒸发很少,CaO主要与硅铝酸盐反应熔融进入PMl+;而MgO和Fe2O3呈现多峰分布,说明Fe元素的蒸发同Ca元素相比更高。Fe2O3的转化由两个模式控制,一部分与铝硅酸盐反应熔融进入PM1+,一部分经过蒸发、冷凝进入PM1。对于Mg元素,其存在PM1的原因可能是其蒸气吸附在亚微米颗粒上。
     基于高灰熔点煤(淮南煤)原煤、高灰熔点煤与添加剂混合样、以及燃烧产生细微颗粒物的CCSEM分析数据,利用合并-破碎模型,对高灰熔点煤(淮南煤)与添加剂混合燃烧细微颗粒物的粒度分布和化学组成进行了模拟计算。预测的结果与实验结果的一致性表明:由于添加剂与高灰熔点煤(淮南煤)混合燃烧,导致矿物高温下熔融产生的液相量增加,内在矿物的平均合并率也呈增加的趋势,从而有效减少高灰熔点煤燃烧细微颗粒物的生成。
Particulate matter (PM) having an aerodynamic diameter of smaller than2.5μm and coming from the coal combustion is generally considered to contribute to air pollution and a threat to human health. Huainan city is one of the important energy power base in China. Huainan coal is a typical representative of the high ash fusion temperature coal, it is essential and significantly important to know the mineralogical properties in raw coal. To reduce the PM2.5emissions from coal combustion, a good understanding of the transformation of minerals in the combustion process is required. The mineral composition, size and their association with organic materials in the raw coal samples were analyzed by Computer-controlled scanning electron microscope (CCSEM). Singel Coal、coal blending and coal with additives was burnt in a laboratory-scale drop tube furnace(DTF) respectively. The particulate matter were collected by a Low Pressure Impactor (LPI). PM were analyzed by High-resolution transmission electron microscopy (HRTEM)、CCSEM、Scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) and X-ray florescence (XRF). Properties of fine particulate matter generated from single coal were investigated, firstly. Then, effect of coal blending and additives on fine PM emissions were studied. The particle size distributions and chemical composition of PM2.5were also compared to that predicted by an advanced coalescence and fragmentation model, finally. The main conclusions are shown as below.
     Huainan coal is rich in kaolinite, quartz, montmorillonite and unknown (a complicated compound containing Si, Al, Ca/Fe, P, and O together). The mineral matter was dominated by clay minerals with quartz(more than85%of the total mineral), The ash fusion temperature(AFT) of Huainan coal ash samples is higher than1500℃, while in the HT coal, only about60%of clay minerals with quartz is found, and there are about21%of calcite, dolomite and pyrite in HT coal,which are beneficial to ash melting (FT=1278℃). The contents of excluded kaolinite are comparable with that of included kaolinite in the Huainan coal, so is quartz. The size distribution of minerals in coal is one of the most important factors in determining ash size during combustion. The content of excluded minerals (<1.0μm) in Huainan ZJ、 XQ coal and HT Coal is approximately5.95%、2.00%、1.86%, respectively, and the content of excluded minerals (1.0μm-2.5μm) in Huainan ZJ、XQ coal and HT Coal is approximately15.09%,5.52%,4.44%, respectively. The content of included minerals (<1.0μm) in Huainan ZJ, XQ coal and HT Coal is approximately3.67%,5.79%,6.20%, respectively, and the content of included minerals (1.0μm-2.5μm) in Huainan ZJ, XQ coal and HT Coal is approximately13.86%,14.52%,17.29%, respectively.It further indicates the different distributions of the minerals in three coals.
     A bimodal distribution was obtained for the emission of PM10from the combustion of the Huainan coals and HT coal. The large mode is around2.5um and the small one around0.05μm.The amount of PM1and PM2.5produced from Huainan coal is much higher than that from coal HT. The amount of PM1and PM25generated from Huainan ZJ coal combustion is highest among three coals, which is due to the Huainan ZJ coal is riched in fine excluded minerals (<1.0μm and1.0μm-2.5μm) And a small amount of fine excluded minerals might contribute to the formation of fine PM. With regard to the morphology of PM1, it is composed of two typical structures. A portion of particulates, having a diameter<0.1μm, is formed as fractal aggregates consisting of a primary particle around20nm. EDS analysis proves the abundance of volatile metals including S, P, and alkali elements and a small amount of Fe as well. They should be caused by the vaporization-condensation pathway. Moreover, the molten single particles around0.1-0.2μm were also observed, which mainly consist of refractory elements such as Si,Al, and Fe as detected by EDS. Clearly, liberation of the fine minerals and their liquid droplets contributes to the formation of this kind of particles in PM1. PM1.2.5is also the case, liberation of the fine Al-Si minerals(1.0μm-2.5μm) and their liquid droplets contributes to the formation of this kind of particles in PM1.2.5. during the combusting of Huainan coal. For the HT coal, the coalescence among mineral particles reduce the emission of PM1and PM2.5, due to its low ash melting point.
     HT coal with low ash melting point is mixed with Huaian coal to investigate effect of coal blending on reduction of PM emissions during Huainan coal combustion. The results indicate that emissions of PM1and PM25are reduced compared to their calculated linear results during combustion. The transformation of S, P, Si, and Al from submicron particles to PM1+reduces PM1emissions. The transformation of Ca, Fe, Al, and Si from PM2.5to PM2.5+reduce PM1-2.5emissions. The high concentration of Ca and Fe in coal blends enhances the liquid phase percentage produced during combustion, and as a result, improves both the adhesion of volatilized S, P on the sticky surface of large particles to be transformed to PM1+, and the probability of collision and coalescence of particles to form larger particles of Ca-Fe-Al-Si, Ca-Al-Si, or Fe-Al-Si. Thus, as Ca, Fe, Al, and Si are transformed into PM2.5+.PM1and PM1-2.5emissions are reduced accordingly. PM1and PM25are reduced by two pathways:vapors adhesion to the larger liquid particles and the coalescence among submicrometer mineral particles.
     The addition of the Ca-or Mg-or Fe-based additives can affect the mineral transformation process, and thus, control the emissions of PM1and PM2.5during combustion. Because the additive is able to reduce the ash melting point via the formation of low-melting eutectic compounds. Several fine Al-Si particles adhering to large Ca Al-Si particles or Fe Al-Si particles or Mg Al-Si particles. These particles derive from the liquid or partial liquid phase according to the shape-related structure. Therefore, the collision of primary particles and their subsequent coalescence is a reasonable agglomeration route for particle growth. The addition of the Ca-or Mg-or Fe-based additive increased the coarse ash fraction and substantially reduced the amount of ash particles smaller than2.5μm (PM2.5). The additive has a pronounced impact on particle size distribution of PM. CaO, SiO2, Al2O3have a single mode distribution, which is prevalent in PM1+, and its low content in PM1implies negligible vaporization of calcium. The transformation of CaO, SiO2,Al2O3was likely caused by the direct transformation of inherent refractory metals within the mixtures. A solid-to-particles pathway governs their transformation. MgO and Fe2O3have a bimodal distribution. The transformation of Fe2O3should be governed by two pathways. A portion of it undergo direct transformation whereas the remaining portion vaporizes and condenses into ultrafine particles. For the MgO, its presence in PM1is likely caused by adsorption of its vapors on the submicrometer particles.
     The particle size distributions and chemical composition of PM10were also compared to that predicted by an advanced coalescence and fragmentation model during the combustion Huainan coal added with additives. The comparisons indicate that the model can satisfactorily predict ash formation and properties, taking into account both coalescence of included minerals and fragmentation of excluded minerals at high temperature. With the liquidus amount increasing, the average coalescence number of minerals in raw coal and coal mixed with additives increases.
引文
[1]BP世界能源统计年鉴.BP.2012
    [2]中国统计年鉴.中国国家统计局.2012
    [3]2012年全国电力工业统计数据.中国国家能源局.2013
    [3]Soud H.WU Z.East Asia-air pollutant control and coal-fired power generation[R].London:IEA Coal Research,1998
    [4]Biswas P, Wu C Y. Nanoparticles and the environment. J Air Waste Manage,2005,55(6): 708-746
    [5]Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology:An emerging discipline evolving from studies of ultrafine particles.Environ Health Perspect,2005,113:823-839
    [6]Wendt J.O.L. Health Effects Engineering for Combustion Processes. ⅩⅧ International Symposium on Combustion Processed. September,2003, Ustron,Poland
    [7]WendtJ.O.L.,Lee,S.J.High-temperature sorbents for Hg,Cd,Pb and other trace metals:Mechanisms and applications.Fuel.2010,89(4):894-903
    [8]Fernandez A., Wendt J.O.L. Wolski N., et al. Inhalation Health Effects of Fine Particles from the Co-combustion of Coal and Refuse Derived Fuel. Chemosphere,2003,51:1129-1137
    [9]Wilson M R, Lightbody J H, Donaldson K, et al. Interactions between ultrafine particles and transition metals in vivo and in vitro.Toxicol Appl Pharmacol,2002,184(3):172-179
    [10]Li N, Sioutas C, Cho A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect,2003,111:455-460
    [11]Prahalad A K, Inmon J, Dailey L A, et al. Air pollution particles mediated oxidative DNA base damage in a cell free system and in human airway epithelial cells in relation to particulate metal content and bioreactivity. Chem Res Toxicol,2001,14(7):879-887
    [12]Risom L, M?ller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res,2005,592(1-2):119-137
    [13]Pope C A, Dockery D W. Epidemiology of particle effects. In:Holgate S T, Samet J M, Koren H S, et al, eds. Air Pollution and Health. London:Academic Press,1999.673-705
    [14]Galbreath KC, Zygarlicke CJ. Formation and chemical speciation of arsenic-, chromium-, and nickel-bearing coal combustion PM2.5. Fuel Processing Technology 2004,85,701-726.
    [15]Lopez Ch., Unterberger S., Maier J., Hein K. R. G. Overview of actrual methods for characterization of ash deposition. Heating Exchanger Fouling and Cleaning:Fundamentals and Applications 2003, RP1:Article 38,279-288.
    [16]Hansen L. A., Frandsen F. J., Dam-Jonansen K. Characterization of ashes and deposits from high-temperature coal-straw co-firing. Energy & Fuels 1999,13,803-816.
    [17]Laskin A., Iedema M. J., Cowin J. P. Time-resolved aerosol collector for CCSEM/EDX single-particle analysis. Aerosol Science and Technology 2003,37,246-260.
    [18]Matsuoka K., Suzuki Y., Eylands K. E., Benson S. A., Tomita A. CCSEM study of ash forming reactions during lignite gasification. Fuel 2006,85,2371-2376.
    [19]Yu D, Xu M., Zhang L., Yao H., Wang Q., Ninomiya Y., Computer-controlled scanning electron microscopy(CCSEM) investigation on the heterogeneous nature of mineral matter in six typical Chinese coals. Energy & Fuels 2007,21,468-476.
    [20]Shah A. D., Huffman G. P., Huggins F. E. et al. Reactions of calcium and sodium during combustion of lignite. International Ash Utilization Symposium,1999, Center for Applied Energy Research, University of Kentucky, paper 69.
    [21]Mamane Y., Willis R., Conner T. Evaluation of Computer-Controlled Scanning Electron Microscopy applied to an ambient urban aerosol sample. Aerosol Science and Technology 2001, 34,97-107.
    [22]Casuccio G. S., Schlaele S. F., Lersch T. L., Huffman G. P., Chen Y., Shah N. Measurement of fine particulate matter using electron microscopy techniques. Fuel Processing Technology 2004, 85,763-779.
    [23]Chen Y., Shah N., Braun A., Huggins F. E., Huffman G. P. Electron microscopy investigation of carbonaceous particulate matter generated by combustion of fossil fuels. Energy Fuels 2005,19, 1644-1651.
    [24]Chen Y., Shah N., Huggins F. E., Huffman G. P., Linak W. P., Miller C. A. Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy. Fuel Processing Technology 2004,85,743-761.
    [25]Tian K., Thomson K. A., Liu F., Snelling D. R., Smallwood G. J., Wang D. Determination of the morphology of soot aggregates using the relative optical density method for the analysis of TEM images. Combustion and Flame 2006,144,782-791.
    [26]Chen Y., Shah N., Huggins F. E., Huffman G. P. Transmission electron microscopy investigation of ultrafine coal fly ash particles. Environmental Science of Technology 2005,39, 1144-1151.
    [27]Chen Y., Shah N., Huggins F. E., Huffman G. P. Microanalysis of ambient particles from Lexington, KY, by electron microscopy. Atmospheric Environmental 2006,40,651-663.
    [28]Jensen R. R., Benson S. A., Laumb J. D. Advanced power systems analysis tools. Final Report Prepared by Energy & Environmental Research Center, University of North Dakota, USA, DE-FC26-98FT40320, September 2001.
    [29]Galbreath K.C., Toman D.L., Zygarlicke C.J., Pavlish J.H. Trace element prtitioning and transformations during combustion of bituminous and subbituminous U.S. coals in a 7-kW combustion system. Energy & Fuels,2000,14,1265-1279.
    [30]Yoshihiko Ninomiya, Zhang Lian, Sato Atsshi. Dong Zhongbing.Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion. Fuel Process. Technology.2004,85,1065-1088.
    [31]Liu Xiaowei, Xu Minghou, Yao Hong, et al. Effect of Combustion Parameters on the Emission and Chemical Composition of Particulate Matter during Coal Combustion. Energy & Fuels,2007,21:157-162.
    [32]Qunying Wang, Lian Zhang, Atsushi Sato, etal. Interactions among Inherent Minerals during Coal Combustion and Their Impacts on the Emission of PM10.1. Emission of Micrometer-Sized Particles. Energy & Fuels 2007,21,756-765
    [33]Lian Zhang,Qunying Wang, Atsushi Sato, etal.Interactions among Inherent Minerals during Coal Combustion and Their Impacts on the Emission of PM10.2. Emission of Submicrometer-Sized Particles. Energy & Fuels 2007,21,766-777
    [34]Qunyihg Wang, Lian Zhang, Atsushi Sato, etal.Effects of coal blending on the reduction of PM10 during high-temperature combustion 1. Mineral transformations. Fuel,2008 (87):756-365
    [35]Zhang Lian, Yoshihiko Ninomiya, Toru Yamashita. Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature[J]. Fuel,2006,85, 1446-1457.
    [36]Zhang Lian, Yoshihiko Ninomiya. Emission of Suspended PM10 from laboratory-scale coal combustion and its correlation with coal mineral properties. Fuel,2006,85,194-203.
    [37]Yan L. CCSEM analysis of minerals in pulverized coal and ash formation modeling, PHD thesis, [D]. Newcastle:The University of Newcastle,2000.
    [38]徐明厚,郑楚光,冯荣等.煤燃烧过程中痕量元素的排放现状[J].中国电机工程学报,2001,21(10):33-38.
    [39]Larry S. Monroe, An experimental and modeling study of residual fly ash formation in combustion of a bituminous coal, PHD, [D]. MIT:Department of Chemical Engineering,1989.
    [40]姜秀民,杨海平,刘辉,等.粉煤颗粒粒度对燃烧特性影响热分析[J].中国电机工程学报,2002,22(12):142-145.
    [41]刘建忠,范海燕,周俊虎,等.煤粉炉PM10/PM2.5排放规律的试验研究[J].中国电机工程学报.2003,23(1):145-149
    [42]岳勇,陈雷,姚强等.燃煤锅炉颗粒物粒径分布和痕量元素富集特性实验研究.中国电机工程学报.2005,25(18):74-79
    [43]岳勇,姚强,宋蔷等.不同煤燃烧源排放的PM10形态及重金属分布的对比研究.中国电机工程学报.2007,27(35):33-38
    [44]郭欣,陈丹,郑楚光等.燃煤锅炉可吸入颗粒物排放规律研究.环境科学.2008,29(3):587-592
    [45]周科.燃煤细微颗粒物生成特性与炉内控制的研究.[博士学位论文].华中科技大学,2011
    [46]吕建燚,李定凯.不同条件对煤粉燃烧燃烧后PM10、PM2.s和PM1排放影响的实验研究[J].中国电机工程学报.2006,26(20):103-107·
    [47]Stanislav V. Vassilev, Christina G. Vassileva. Occurrence,abundance and origin of minerals in coals and coal ashes[J].Fuel Processing Technology,1996,48:106.
    [48]Steven A. Benson, Everett A. Sondreal, John P. Hurley.Status of coal ash behavior research [J]. Fuel Processing Technology,1995, (44):1-12.
    [49]Liu Y., Gupta R., Wall T. Ash formation from excluded minerals including consideration of mineral-mineral association. Energy & Fuels 2007,21,461-467.
    [50]Liu Y., Gupta R., Sharma A., Wall T., Butcher A., Miller G., Gottlieb P., French D. Mineral matter-organic matter association characterization by QEMSCAN and applications in coal utilization. International symposium on utilization of coal and biomass; Newcastle, Austrilia Aug 2003.
    [51]Qunying Wang. Coal mineral transformations in pulverized coal combustion and their impact on PM10 emissions. PHD thesis. [D]. Japan:The University of Chubu.2008.
    [52]Quann R. J., Sarofim A. F. Vaporization and refractory oxides during pulverized coal combustion.Proceedings of the 19th Symposium (International) on Combustion.1982: 1429-1440.
    [53]Senior C L, Flagan R C. Ash vaporization and condensation during combustion of a suspended coal particle [J]. Aerosol Science and Technology,1982,1:371-383.
    [54]Helble J J. Mechanisms of Ash Particle Formation and Growth During Pulverized Coal Combustion [D]. Massachusetts Institute of Technology,1987.
    [55]Nebile M., Quann R., Haynes B., et al. Vaporization and Condensation of Mineral Matter during Pulverized Coal Combustion. Eighteenth Symposium on Combustion,1981,1267-1274.
    [56]Jiancai Sui,MinghouXu,Yungui Du,etal.Emission characteristics and elemental partitioning of submicron particulate matter during combustion of a pulverized bituminous coal[J] Journal of the Energy Institute.2007,80(1):22-28-
    [57]Wall T., Liu G, Wu H., et al. The Effects of Pressure on Coal Reactions during PCC and Gasification. Progress in Energy and Combustion Science,2002,28:405-433.
    [58]Bryers R. Fireside Slagging, Fouling and High Temperature Corrosion of Heat-Transfer Surface Due to Impurities in Steam-Raising Fuels. Progress in Energy and Combustion Science, 1996,22:29-120.
    [59]Wayne S Seames. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion [J]. Fuel Processing Technology,2003,81 (2):109-125
    [60]Lockwood F C, Yousif S. A model for t he particulate matter enrichment wit h toxic metal s in solid fuel flames [J]. Fuel Processing Technology,2000,65/66 (1):439-457
    [61]Bool L. E. Ⅲ, Helble J. J. A laboratory study of the partitioning of trace elements during pulverized coal combustion. Energy & Fuels 1995,9,880-997.
    [62]Senior C. L., Panagiotou T., Sarofim A. F., Hellble J. J. Formation of ulta-fine particulate matter from pulverized coal combustion. Preprints of Symposia, Division of Fuel Chemistry, American Chemistry Society, Mar 2000.
    [63]Quann R. J., Neville M., Janghorbani M,,Mims C. A., Sarofim A. F. Mineral matter and trace-element vaporization in laboratory-pulverized coal combustion system. Environmental Science & Technology 1982,16,776-781.
    [64]Seames W. S., Fernandez A., Wendt J. O. L. A study of fine particulate emissions from combustion of treated pulverized municipal sewage sludge. Environ. Sci. Technol.2002,36, 2772-2776.
    [65]Zhang L., Masui M., Mizukoshi H., Ninomiya Y., Kanaoka C. Formation of submicron particulates (PM1) from the oxygen-rich combustion of dried sewage sludge and their properties. Energy & Fuels 2007,21,88-98.
    [66]McLennan A. R., Bryant G. W., Stanmore B. R., Wall T. F. Ash formation mechanisms during pfcombustion in reducing conditions. Energy & Fuels 2000,14,150-159.
    [67]Miller B., Dugwell D., Kandiyoti R. The fate of trace elements during the co-combustion of wood-bark with waste. Energy & Fuels 2006,20,520-531.
    [68]Wu H., Wall T., Liu G., Bryant G. Ash liberation from included minerals during combustion of pulverized coal:the relationship with char structure and burnout. Energy & fuels 1999,13, 1197-1202.
    [69]Yan L., Gupta R., Wall T. Fragmentation behavior of pyrite and calcite during high-temperature processing and mathematical simulation. Energy & Fuels 2001,15,389-394.
    [70]Wigley F., Williamson J. Coal mineral transformations-effects on boiler ash behavior; Report No. Coal R278 DTI/Pub URN 05/659, Mar 2005.
    [71]Wigley F., Williamson J. Modeling fly ash generation for pulverized coal combustion. Progress in Energy and Combustion Science 1998,24,337-343.
    [72]Yan L., Gupta R. P., Wall T. F. A mathematical model of ash formation during pulverized coal combustion. Fuel 2002,81,337-344.
    [73]Pandey K. D.; Wheeler D.; Ostro B.; Deichmann U.; and Hamilton K.; Bolt K. Ambient particulate matter concentrations in residential and pollution hotspot areas of world cities:new estimates based on the Global Model of Ambient Particulates (GMAPS); The World Bank Development Economics Research Group and the Environment Department Working Paper (forthcoming 2006), The World Bank, Washington DC,2006.
    [74]Helble J., Sarofim A. Influence on Char Fragmentation on Ash Particle Size Distributions. Combustion and Flame,1989,76:183-196.
    [75]Wilemski G., Srinivasachar S. Prediction of Ash Formation in Pulverized Coal Combustion with Mineral Distribution and Char Fragmentation Models.Proceedings of the Engineering Foundation Conference, Solihull, UK,1993,151-164.
    [76]于敦喜,徐明厚,刘小伟等.煤焦膨胀特性与残灰颗粒物的形成.华中科技大学学报(自然科学版).2006,34(2):102-105
    [77]于敦喜,徐明厚,黄建辉等.煤焦破碎成灰模型研究.工程热物理学报.2005,26(6):1041-1044
    [78]吕建燚,李定凯.不同粒径煤粉燃烧后一次颗粒物的特性研究.热能动力工程.2005,20(5):513-516
    [79]吕建燚,李定凯.燃烧时间对煤粉生成一次颗粒物的特性影响.燃烧科学与技术.2008,14(1):55-60
    [80]吕建燚,李定凯.不同煤粉燃烧对一次颗粒物的排放特性影响.燃烧科学与技术.2006,12(6):514-518
    [81]吕建燚,李定凯.煤粉细度对一次颗粒物特性的影响研究.环境科学.2007,28(9): 1944-1948
    [82]刘小伟,徐明厚,于敦喜等.煤粉粒径对燃烧过程中可吸入颗粒物排放特性的影响.动力工程.2005,25(4)593-598
    [83]刘小伟,姚洪,蔡攸敏等.煤粉密度对燃煤过程中颗粒物形成特性的影响.化工学报.2007,58(10):2567-2572
    [84]McElroy M W, Carr R C, Ensor D S, et al. Size Distribution of Fine Particles from Coal Combustion[J]. Science,1982,215:13-19
    [85]Linak W P, Peterson T W. Mechanisms Governing the Composition and Size Distribution of Ash Aero sol in a Laboratory Pulverized Coal Combustor[M]. Twenty2first Symposium (International) on Combustion. Pittsburgh:The Combustion Institute,1986,399
    [86]高翔鹏,徐明厚,姚洪等.煤燃烧过程中矿物质蒸发与亚微米颗粒物形成的研究.动力工程.2007,27(2):292-296
    [87]隋建才,徐明厚,杜云贵等.燃煤过程中亚微米颗粒生成及影响因素的研究.热能动力工程.2008,23(3):269-273
    [88]张军营,魏凤,赵永椿等.PM10和PM2.5排放的一维炉煤燃烧实验.工程热物理学报.2005,26(6):257-260
    [89]Krishnamoorthy,G,Veranth,J.M.Computational modeling of CO/CO2 ratio inside single char particles during pulverized coal combustion[J]. Energy and Fuels,2003,17:1367-1371.
    [90]Suriyawong A, Gamble M, Lee M, et al. Submicrometer Particulate Formation and Mercury Speciation Under 02-C02 coal Combustion. Energy & Fuels,2006,20(6):2357-2363
    [91]李意,盛昌栋,刘小伟等.O2/CO2煤粉燃烧时细灰颗粒中痕量元素分布特性的实验研究.工程热物理学报.2008,29(7):1236-1238
    [92]Buhre B., Hinkley J., Gupta R., et al. Submicron Ash Formation from Coal Combustion. Fuel,2005,84:1206-1214.
    [93]刘小伟,徐明厚,于敦喜等.燃煤过程中氧含量对可吸入颗粒物形成及排放特性影响的研究.中国电机工程学报.2006,26(15):46-50
    [94]World Bank. Pollution Prevention and Abatement:Coal Mining. Draft Technical Background Document. Environment Department, Washington, D.C.,1996.
    [95]World Bank. Coal mining and production. Pollution Prevention and Abatement Handbook, Environment Department, Washington, D.C., July 1998.
    [96]Nalbanian H. Air pollution control technologies and their interactions; IEA Coal Research: London, United Kingdom, Nov 2004.
    [97]Blankinship S., Hybrid filter technology weds ESPs with bag filters. Power Engineering,2002, 106,9.
    [98]Smith D. J. New technologies aim to control multiple pollutants. Power Engineering.2002, 106,53-57.
    [99]Harrison W., Truce R. Reducing fine particulate emissions at Watons:the Indigo Agglomerator. The 12th international conference on coal science, Cain, Austrilia,2-6 Nov 2003, CD-ROM.
    [100]U.S. EPA. Wet Electrostatic Precipitator (ESP)-Wire-Pipe Type; EPA-CICA Fact Sheet,1999. Available online at:http://www.p2pays.org/ref/10/09890.pdf
    [101]Altman R., Offen G., Buckley W., Ray I. Wet electrostatic precipitation demonstrating promise for fine particulate control-part I. Power Engineering 2001,37-39.
    [102]Zhuang Y., Kim Y. J., Lee T. G., Biswas P. Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators. J. Electrostatics,2000,48,245-260.
    [103]Sippula O., Hokkinen J., et al. Fine particle emissions from biomass and heavy fuel oil combustion without effective filtration (BIOPOR), VTT working papers 72, VTT Technical Research Centre of Finland,2007.
    [104]Fernando R. Fuels for biomass cofiring; IEA Coal Research:London, United Kingdom, Oct 2005.
    [105]Fernando R. Cofiring of coal with waste fuels; IEA Coal Research:London, United Kingdom, Set 2007.
    [106]Haas J., Tamura M., Weber R. Characterisation of coal blends for pulverized fuel combustion. Fuel 2001,80,1317-1323.
    [107]Henderson C. Towards zero emission coal-fired power plants; IEA Coal Research:London, United Kingdom, Sep 2005.
    [108]SEPA. Report on Environment in China 2006. Available online at: http://www.vecc-sepa.org.cn/eng/
    [109]肖键,周永刚,赵虹.混煤燃烧过程中飞灰颗粒排放特性试验.煤炭学报.2007,31(6):794-798
    [110]王泉斌,徐明厚,夏永俊等.生物质与煤的混烧特性及其对可吸入颗粒物排放的影响.中国电机工程学报.2007,27(5):7-12
    [111]夏永俊,徐明厚,姚洪等.生物质与煤混烧时PM10中痕量元素分布的研究.煤炭转化.2006,29(2):32-38
    [112]Jyh-ChemgChen, Ming-yen Wey.The Adsorption of heavy metals by different sorbens under Various incineration conditions.ChemosPhere.1998.37(13):2617-2626
    [113]Jyh-ChemgChen, Ming-yen Wey. Capture of heavy metals by sorbents inineineration flue gas.The Scienee of Total Environment.1999,228:67-77
    [114]Querol X,Fernandez,Turiel J L,Lopez,Soler. A Trace elementsin coal and their behaviour during combustion in a large power stationJFuel,1995,74(3):331-343.
    [115]Seotto M V, Uberoi M. Metal capture by sorbents in combustion Proeesses. Fuel Processing Teehnology.1994,39:357-372
    [116]Mahuli S, Agnihotri R, Chauk S, Ghosh-Dastidar A, Fan L S. Mechanism of Arsenie Sorption by Hydrated Lime.Environ.Sei.Technol.1997,32:3226-3231
    [117]姚多喜,支霞臣,郑宝山,等.煤添加高岭土燃烧控制有害微量元素的排放[J].中国环境科学,2003,23(6):622-626
    [118]程俊峰,韩军,曾汉才,徐明厚.分级燃烧中固体吸附剂对痕量金属排放的影响.环境科学.2001,22(6):34-38
    [119]刘晶,郑楚光,曾汉才等.固体吸附剂控制燃煤重金属排放的实验研究.环境科学.2003,24(5):24-28
    [120]吕建燚,李定凯.添加CaO对煤粉燃烧后一次颗粒物特性影响的研究.热能动力工程.2006,21(4):343-347
    [121]Minchener A. J. Coal in China; IEA Coal Research:London, United Kingdom, July 2004.
    [122]Mills S. J. Prospects for coal and clean coal technologies in Poland; IEA Coal Research: London, United Kingdom, Jan 2007.
    [123]Fernando R. Current design and construction of coal-fired power plant; IEA Coal Research: London, United Kingdom, Oct 2004.
    [124]Yamashita T., Tominaga H., Orimoto M., Asahiro N. Modeling of ash formation behavior during pulverized coal combustion. IFRF Combustion Journal 2000, Article Number 200008.
    [125]Barta L. E., Horvath F., Beer J. M., Sarofim A. F. Variation of mineral matter distribution in individual pulverized coal particles:application of the "URN" model. Twenty-Third Symposiums (International) on Combustion,1990,1289-1298.
    [126]Benson S. A., Hurley J. P., Zygarlicke C. J. Predicting ash behavior in utility boiler. Energy & Fuels 1993,7,746-754.
    [127]Barta L.E., Toqan M.A., Beer J.M., Sarofim A.F. Prediction of fly ash size and chemical composition distributions:the random coalescence model. Twenty-Fourth Symposiums (International) on Combustion,1999,1135-1144.
    [128]Wilemski,G., Srinivasachar,S. and Sarofim, A. F.. Modeling of mineral matter redistribution and ash formation in pulverized coal combustion, in Inorganic Transformation and Ash Deposition During Combustion [M], ed. S. A. Benson, Engineering Foundation Press, ASME, New York,1992.545-564.
    [129]Wang H., Harb J. N. Modeling of ash deposition in large-scale combustion facilities burning pulverized coal. Progress in Energy & Combustion Science 1997,23,267-282.
    [130]Wang Qunying,Zhang Lian,Sato Atsshi,Yoshihiko Ninomiya.Toru Yamashita. Effects of coal blending on the reduction of PM10 during high-temperature combustion 2. A coalescence-fragmentation model[J]. Fuel.2008,87:2997-3005.
    [131]Zygarlicke C., Steadman E. Advanced SEM Techniques to Characterize Coal Minerals. Scanning Electron Microscopy,1990,4:579-590.
    [132]Smith K., Fletcher T. Coal Characteristics, Structure and Reaction Rates. In Fundamentals of Coal Combustion for Clean and Efficient Use,1993.
    [133]Mclennan A., Bryant G., Stanmore B., et al. Ash Formation Mechanism during of Combustion in Reducing Condition. Energy & Fuels,1999,14:150-159.
    [134]Hinds W C, Aerosol technology, Properties, behaviors and measurement of airborne particles (second edition), John Wiley & Sons, Inc.,1999, p:128-134.
    [135]Baron P A, and Willeke K, Aerosol measurement, principles, techniques, and applications (second edition), John Wiley & Sons, Inc.,2001, p:398-408.
    [136]Gray, V.R.Prediction of ash fusion temperature from ash composition for some New Zealand coals.Fuel,1987,66:1230-1239
    [137]Kucukbayrak,S, Ersoy, M.A., Haykiri, A.H, Guner, H., Urkan, K. Investigation of the relation between chemical composition and ash fusion temperatures for some Turkish lignites.Fuel Sci. Technol. Internat,1993,11:1231-1249
    [138]Llyod, W.G, Riley, J.T, Zhon, S., Risen, M.A.Ash fusion temperatures under oxidizing conditions. Energy & Fuels,1995,7:490-494
    [139]Seggiani, M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes.Fuel,1999,78:1121-1125
    [140]Yin, C., Luo, Z., Ni, M., Cen, K.Predicting coal ash fusion temperature with a back-propagation neural network model.Fuel,1998,77:1777-1782
    [141]Huggins, F.E., Kosmack, D.A., Huffman, G.P. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams. Fuel,1981,60:577-584
    [142]Huffman, G.P., Huggins, F.E., Dunmyre, G.R.Investigation of the high temperature behavior of coal ash in reducing and oxidizing atmospheres.Fuel,1981,60:585-597
    [143]Goni, C., Helle, S., Garcia, X., Gordon, A., Parra, R., Kelm, U., Jimenez, R., Alfaro, G.Coal blend combustion:Fusibility ranking from mineral matter composition.Fuel,2003,82:2087-2095
    [144]Yan L., Gupta R., Wall T. The Implication of Mineral Coalescence Behavior on Ash Formation and Ash Deposition during Pulverized Coal Combustion. Fuel,2001,80:1333-1340.
    [145]Yin, C.G., Luo, Z.Y., Ni, M.J., Cen, K.F. Predicting coal ash fusion temperature with a back propagation neural network model.Fuel,1998,77:1777-1782
    [146]Rhinehart, R.R., Attar, A A. Ash fusion temperature:A thermodynamically-based model. Am. Soc. Mech. Eng., Petroleum Division,1987,8:97-101
    [147]Kondratiev, A., Jak, E.Predicting coal ash slag flow characteristics. Fuel,2001, 80:1989-2000
    [148]Qiu, J.R., Li, F., Zheng, C.G. Mineral transformation during combustion of coal blends.Int. J. Energy Res,1999,23:453-463
    [149]Jak, E., Degterov, S., Zhao, B., Pelton, A. Hayes, P. Coupled experimental and thermodynamic modelling studies for metallurgical smelting and coal combustion systems. Metal. Trans,2000,31B:621-630
    [150]Bale, C.W., Chartrand, P., Degterov, S.A. FactSage thermochemical software and databases.Calphad,2002,26:189-228
    [151]Li Hanxu,Yoshihiko Ninomiya,Dong Zhongbin.Application of the FactSage to Predict the Ash Melting Behavior in Reducing Conditions. Chinese J. Chem. Eng.,2006,14(6):784-789
    [152]Li Hanxu,Yoshihiko Ninomiya,Dong Zhongbin.The Mineral transformation of Huainan coal Ashes in Reducing Atmospheres. J. China Univ. of Mining & Tech.Eng., 2006,16(2):162-166
    [153]于敦喜,徐明厚,姚洪等.煤燃烧中无机矿物向颗粒物的转化规律.工程热物理学报.2008,29(3):507-510
    [154]于敦喜,徐明厚,姚洪等.利用CCSEM对煤中矿物特性及其燃烧转化行为的研究.工程热物理学报.2007,28(5):875-878

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700