O_2/CO_2气氛下燃煤中硫与氮在热场中转化行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤燃烧过程中产生的SO_2、NO_X、CO_2引起的酸雨、光化学烟雾及温室效应等对环境造成了严重的危害。O_2/CO_2燃烧技术采用烟气再循环,以CO_2代替空气中的N_2参与煤燃烧,将烟气中CO_2的浓度提高到95%,使CO_2的回收极为方便,能同时实现对SO_2、CO_2、NO_X及其它污染物的控制,是一种环境友好型的新型燃烧技术。目前有关O_2/CO_2燃烧技术的研究主要集中在该技术的燃烧特性和经济性评价等方面,而有关O_2/CO_2燃烧技术下燃煤有关组分的化学转化过程的研究较少。燃煤中的污染组分如硫、氮及重金属等在O_2/CO_2燃烧方式下的转化特性的研究对于探索该方式下污染物SO_2、NO_X的综合控制机理具有重要意义。
     本文首先综述了O_2/CO_2燃烧方式的原理及燃煤中SO_2及NO_X排放特性的研究进展,然后对O_2/CO_2燃烧方式下碳酸钙作为脱硫剂的有关反应特性及反应机理、燃煤中硫与氮的转化特性进行了研究,并采用CHEMKIN软件对硫、氮的转化动力学进行了计算。
     研究了O_2/CO_2气氛下温度对脱硫剂CaCO_3与SO_2的反应特性的影响。研究结果表明当温度超过500℃时,燃烧气氛对CaCO_3与SO_2的反应产率(钙转化率)产生较大影响。1200℃以下,空气气氛下钙转化率高于O_2/CO_2气氛;1200℃以上,则相反;随温度提高,两种气氛下钙转化率差异减小,表明O_2/CO_2气氛有利于高温钙基脱硫。实验还发现提高SO_2浓度可增加钙转化率是由于SO_2对硫化反应的促进及对硫酸钙分解的抑制;表明O_2/CO_2燃烧技术所运用的烟气循环方式导致SO_2的富集是其喷钙脱硫效率优于传统空气燃烧方式的原因之一。
     O_2/CO_2气氛下CO_2浓度对CaCO_3分解反应产物CaO的微观结构有重要影响。热重分析表明CO_2浓度增加使CaCO_3起始分解温度提高,并使CaCO_3的分解速率降低,低浓度CO_2表现为催化CaO烧结,高浓度CO_2抑制CaCO_3的分解。研究结果还表明在一定温度下CaCO_3分解反应速率与硫化反应速率相当,可避免CaO烧结,改善CaSO_4对孔的堵塞,存在一最优孔隙结构,这种优化的孔隙结构是O_2/CO_2燃烧技术在高温下脱硫效率高于空气气氛的重要原因。XRD分析发现O_2/CO_2气氛下硫化产物组成随温度变化,硫化反应机理不同于空气气氛下,既有直接硫化反应机理也有先分解后硫化的间接硫化反应机理。
     研究了三种煤质特性不同的燃煤(合山煤、算盘山煤、短陂桥煤)在O_2/CO_2气氛下硫的静态转化特性。结果表明三种燃煤在该气氛下SO_2生成量均低于相应的空气气氛下,这是由于燃煤燃烧特性的变化及烟气中高浓度CO还原SO_2所致。研究还发现O_2/CO_2气氛下煤质特性对硫转化为SO_2的影响远低于空气气氛下。加入CaCO_3作为脱硫剂后,1000℃以下,空气气氛下脱硫率高于O_2/CO_2气氛;1000℃以上,反之,且在一定温度范围内脱硫率随温度升高而增加的幅度较空气气氛下大。
     采用滴管炉实验装置在800℃-1300℃温度范围研究了O_2/CO_2气氛下合山煤中的硫的动态转化特性,探讨了CO_2浓度、温度等因素对SO_2生成的影响,并通过红外光谱及元素分析等手段研究了相关机理。研究结果表明CO_2浓度是影响燃煤中硫动态转化特性的重要因素,当CO_2为80%时,烟气中SO_2浓度远小于比空气气氛下;同时,元素分析结果发现底灰中硫含量高于空气气氛下,表明硫转化为SO_2的转化率降低。红外光谱表征结果表明O_2/CO_2气氛下燃煤中硫转化产物存在多种形式如COS等,SO_2只是众多转化产物的一种。研究还发现CO_2浓度对碳酸钙的最佳固硫温度有着重要影响。当CO_2浓度为分别40%和80%时,最佳的固硫温度则相应为900℃和1000℃。CHEMKIN动力学计算结果亦表明高温时硫的转化速率快于低温情况下的速率;SO_2含量的最终平衡值受反应温度和CO_2浓度的双重影响,COS的生成量随着气氛中CO_2浓度的增加而增加,与实验结果一致。
     O_2/CO_2气氛下对不同煤质特性燃煤的氮的静态转化特性研究表明燃烧气氛对氮转化为NO_X的影响与温度有关。O_2/CO_2气氛下NO_X生成量明显降低。700℃到900℃是NO_X生成量随温度变化最敏感的温度区域,较之空气气氛,700℃时NO_X生成量降低近50%,是NO_X被CO还原所致。O_2/CO_2气氛下,CaCO_3对NO_X生成峰值的影响与温度密切相关。燃煤中氮含量仍是影响NO_X生成的重要因素,O_2/CO_2气氛更有利于降低高挥发份燃煤NO_X生成量。
     探索了CO_2对气相中NO还原特性的影响。CO_2对NO还原率的影响与燃烧气氛的氧化或还原特性有关。氧化性气氛中CO_2的存在能促进NO的还原,且NO的还原率随CO_2浓度增而增加;而还原性气氛CO_2的存在不利于NO的还原。采用CHEMKIN软件对NO转化动力学进行了计算,计算结果与实验结果吻合较好。
The pollutants from coal combustion are harmful to environment.Among them,CO_2 is responsible for greenhouse effect,SO_2 is the cause of acid rain and NOx can form optical chemical fog.O_2/CO_2 combustion technology using CO_2 instead of N_2 for coal combustion with flue gas recirculation,which enriches CO_2 concentration up to 95%for easily CO_2 capture,can also reduce the emission of SO_2 and NO_x.So it is a promising advanced coal combustion technology which can simultaneously control CO_2,SO_2 and NO_x and friendly to environment.The main researches related to this technology focused on the coal combustion behavior and the economic evaluation.However,few papers have been reported on the coal's component transfer process under this technology.The investigation on the transfer behavior of some pollutant components such as sulfur and nitrogen is very important for clarity the mechanism of SO_2 and NO_x reduction under this technology.
     In this work,the reaction characteristics and mechanism of calcium carbonate as desulphurization agent and the transfer characteristics of sulfur and nitrogen of coal in O_2/CO_2 mixtures were studied and the chemical kinetic simulation by CHEMKIN was also obtained.The main contents are as follows:
     The effect of temperature on the characteristic of the reaction of CaCO_3 and SO_2 under O_2/CO_2 atmosphere was invesitigated.It was found that the atmosphere influenced the calcium conversion ratio when temperature was above 500℃.For instance,the calcium conversion ratio in O_2/CO_2 mixture was lower than that in air at 900℃and higher than that in air at 1200℃.The difference of calcium conversion ratio between O_2/CO_2 mixtures and air decreased with the temperature increasing.It indicated that high temperature was beneficial for SO_2 capture in O_2/CO_2 mixtures.The results also suggested that the calcium conversion ratio increased with increasing of SO_2 concentration for high SO_2 concentration contributed to the equilibrium of reaction of CaCO_3 - SO_2 and prevented the decomposition of CaSO_4.The enrichment of SO_2 in combustion atmosphere by flue gas recirculation is one of the reasons for higher desulphurization ratio under O_2/CO_2 combustion technology than that under air.
     The CO_2 concentration influenced the microstructure of CaO in O_2/CO_2 atmosphere. The low CO_2 concentration catalyzed the sintering of CaO while the high concentration prevented the decomposition of CaCO_3.The kinetic and thermodynamics analysis suggested that high CO_2 concentration increased the decomposition temperature of CaCO_3 and decreased the CaCO_3 decomposition velocity.The results also indicated that CO_2 concentration had pronounced influence on the microstructure of product of sulfation reaction It has an optimum microstructure in calcium sorbent;in this case,the desulphurization ratio was the highest because the velocity of decomposition reaction and the sulfation reaction was approximately the same.The results also suggest that the conversion ratio can be increased by increasing the concentration of SO_2,which causeed the inhibition of CaSO_4 decomposition and shifting of the reaction equilibrium toward the products.XRD analysis of the product showed that the reaction mechanism was different at varied temperatures,i.e.CaCO_3 directly reacted with SO_2 at low temperatures and CaO from CaCO_3 decomposition reacted with SO_2 at higher temperatures.
     The static sulfur transfer behaviors of three different coals(heshan,suanpanshan and duanpiqiao) under O_2/CO_2 atmosphere were obtained using fixed bed apparatus.From the results,the SO_2 emission was lower than ordinary air combustion and the SO_2 emission difference between O_2/CO_2 and air varied with the temperature,the maximum difference occurred at 700℃for the CO reduction effect.The coal property such as sulfur and volatile content influenced the SO_2 emission,but this effect was weaker under O_2/CO_2 compared with in air.When using CaCO_3 as SO_2 sorbent,the desulphurization ratio under O_2/CO_2 was higher than that in.air when the temperature above 1000℃and the enhancement extent of desulphurization ratio with temperature was also higher than that under air.
     The dynamic sulfur transfer characteristics of Heshan high sulfur coal was carried out in a vertical tube electrical heating reactor at temperature range of 800℃-1300℃under O_2/CO_2.The effect of the CO_2 concentration and the temperature on the emission of SO_2 was investigated and the mechanism of the emission of SO_2 under O_2/CO_2 was revealed by FT-IR and elemental analysis.It was found that CO_2 in atmosphere decreased the emission of SO_2 and the lowest SO_2 emission occurred under 80%CO_2.The elemental analysis results showed that the sulfur in bottom ash was higher also suggested the lower transfer ratio from sulfur to SO_2 under O_2/CO_2.COS in flue gas suggested sulphur in coal could be transferred in different species under O_2/CO_2 and SO_2 is only one of them.The optimum temperature of limestone for desulphurization was affected by CO_2 concentration;it was 900℃under 40%CO_2 and 1000℃under 80%CO_2.The sulfur transfer chemical kinetics simulation which was performed with software CHEMKIN revealed that the final SO_2 concentration was affected by both temperature and the concentration of CO_2.The quantity of COS was increase with increasing the concentration of CO_2.The calculational results are consistent with the experimental data.
     The static nitrogen transfer characteristics of different coals under O_2/CO_2 atmosphere were studied in a fixed bed tube-fumace.The results showed NO_x emission was affected markedly by temperature.High CO_2 concentration significantly decreased NO_x emission during coal combustion compared with conventional air condition due to the reduction of CO in O_2/CO_2.The effect of calcium carbonate on the NO_x peak value also related to the temperature.The NO_x emission was also influenced by the coal property and Ca/S molar. O_2/CO_2 atmosphere was beneficial for the decrease of NO_x emission of the coal with high volatility.
     The effect of CO_2 on the reduction process of NO was conducted in bench-scale laminar CH_4 flames.NO reduction ratio related to the property of atmosphere.CO_2 accelerated the reduction of NO under oxidizing atmosphere,and the higher CO_2 concentration resulted in higher reduction ratio.However,reducing atmosphere is more promotional for the reduction process of NO.The chemical kinetics simulation results by CHEMKIN were consisted with that of the experiments.
引文
[1]章名耀,李大骥,蔡宁生.关于我国发展先进燃煤发电技术的建议.动力工程,1994,14(2):1-8
    [2]曾汉才.燃烧与污染.武汉:华中理工大学出版社,1992
    [3]蔡宏道.现代环境卫生学.北京:人民卫生出版社,1995
    [4]李宗恺,王体健,金龙山.中国的酸雨模拟及控制对策研究.气象科学,2000,20(3):329-335
    [5]Shimizu T.,Satoh M.,Sato K.,et al.Reduction of SO2 and N_2O Emissions without Increasing NO_x Emission from a Fluidized Bed Combustor by Using Fine Limestone Particles.Energy & Fuels,2002,16(1):161-165.
    [6]Saastamoinen J.,Shimizu T.A model of limestone attrition and SO_2 capture in a large-scale pressurized fluidized bed combustor.Chemical Engineering Science,2007,62(1-2):574-583
    [7]Zhang Li.,Sato A.,Ninomiya Y.,et al.In situ desulfurization during combustion of high-sulfur coals added with sulfur capture sorbents.Fuel,2003,82(3):255-266
    [8]Altindag H.,Gogebakan Y.,Selcuk N.Sulfur capture for fluidized-bed combustion of high-sulfur content lignites.Applied Energy,2004,79,(4):403-424
    [9]Bueno-Lopez A.,Garcia-Martinez J.,Garcia-Garcia A.,et al.Regenerable CaO sorbents for SO_2 retention:carbonaceous versus inorganic dispersants.Fuel,2002,81(18):2435-2438
    [10]Uemiya S.,Kobayashi T.,Kojima T.Desulfurization behavior of Ca-based absorbents under periodically changing condition between reducing and oxidizing atmosphere.Energy Conversion and Management,2001,42(15-17):2029-2041
    [11]Matsuoka K.,Abe A.,Tomita.A.Suppression of SO_2 Emission during Coal Oxidation with Calcium Loaded by Hydrothermal or Hydration Treatment.Energy & Fuels,2001,15(3):648-652.
    [12]管菊根.烟气循环流化床脱硫技术.电力环境保护,1999,15(4):55-58
    [13]毛本将.电子束辐照烟气脱硫脱硝工业化试验装置.环境保护,2000,(8):13-17
    [14]熊蔚立,黄伟,张国斌.火电厂氮氧化物(NOx)的危害和防治.湖南电力,2002,22(1):61-62
    [15]沈伯雄,姚强,刘德昌.流化床中煤和生物质混烧N_2O和NO_x排放规律研究.电站系统工程,2002,18(2):51-52,60
    [16]蒋文举,毕列锋,李旭东.生物法废气脱硝研究.环境科学,1999,20(3):34-37
    [17]毕列锋,李旭东.微生物法净化含NO_x废气.环境工程,1998,16(3):37-39
    [18]黄军左,顾立军,刘宝生等.脱除工业烟道气中SO_x和NO_x的技术.现代化工,2001,21(12):44-47
    [19]毕玉森,陈国辉.控制电厂锅炉NOX排放的对策与建议.中国电力,2004,37(6):37-41
    [20]Shimizu T.,Satoh M.,FujikawaT.,et al.Simultaneous Reduction of SO_2,NOx,and N_2O Emissions from a Two-Stage Bubbling Fluidized Bed Combustor.Energy &Fuels,2000,14(4):862-868
    [21]Staiger B.,Unterberger S.,Berger R.,et al.Development of an air staging technology to reduce NO_x emissions in grate fired boilers.Energy,2005,30(8):1429-1438
    [22]Heffel J.W.NOx emission reduction in a hydrogen fueled internal combustion engine at 3000 rpm using exhaust gas recirculation.International Journal of Hydrogen Energy,2003,28(11):1285-1292
    [23]许阳,毛玉如.能源洁净利用与CO_2排放控制技术.能源工程,2002,(4):11-15
    [24]阎志勇,张虹,陈温和.CO_2排放导致的地球温升问题及基本技术对策.环境科学进展.1999,7(6):175-181
    [25]刘彦丰,阎维平,丁千岭.控制和减缓电力生产过程中CO_2排放的技术.华北电力大学学报,2000,27(2):36-41.
    [26]刘振民.气候变化报告之一——京都会议及其对我国经济发展的影响.中国可持续发展研究会'98第二次战略研讨会.北京,1998.
    [27]沈迪新.控制CO_2的可行性、模式和经济性评估.环境科学进展,1994,2(2):47-56
    [28]Maldal T.,Tappel I.M.CO_2 underground storage for Sn(?)hvit gas field development. Energy, 2004, 29 (9-10): 1403-1411
    [29] Rao A. B., RubinE. S.A. Technical, economic and environmental assessment of amine-based CO_2 captures technology for power plant greenhouse gas control. Environmental Science and Technology, 2002, 36, (20): 4467- 4475
    [30] Muradov N., Smith R. Fossil hydrogen with reduced CO_2 emission: Modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles.International Journal of Hydrogen Energy, 2005,30(10):l 149-1158
    [31] Alie C, Backham L., Croiset E., et al. Simulation of CO_2 capture using MEA scrubbing: a flowsheet decomposition method. Energy Conversion and Management, 2005, 46 (3): 475-487
    [32] Bredesen R., Jordal K., Bolland O. High-temperature membranes in power generation with CO2 capture. Chemical Engineering and Processing, 2004, 43(9):1129-1158
    [33] Dijkstra J. W., Jansen D. Novel concepts for CO_2 capture. Energy, 2004, 29(9-10):1249-1257
    [34] Amorelli A., Wilkinson M. B., Bedont P., et al. An experimental investigation into the use of molten carbonate fuel cells to capture CO2 from gas turbine exhaust gases. Energy, 2004, 29(9-10): 1279-1284
    [35] Gray M. L., Soong Y., Champagne K. J., Baltrus J., Stevens R. W., Toochinda P.,CO2 capture by amine-enriched fly ash carbon sorbents. Separation and Purification Technology, 2004,35(1): 31-36
    [36] Abanades J. C. The maximum capture efficiency of CO_2 using a carbonation/calcination cycle of CaO/CaCO_3. Chemical Engineering Journal, 2002,90 (3):303-306
    [37] Wolsky A.M. A new method of CO_2 recovery. 79th Annual Meeting of the Air Pollution Control Association, Minneapolis, Minnesota, June 22-27,1986.
    [38] Nakayama S., Noguchi Y. Pulverized coal combustion in O2/CO2 mixture on a Power plant for CO_2 recovery. Energy Conversion and Management, 1992,33:379-386
    [39] Croiset E., Thambimuthu K.V. Coal combustion with gas recirculation for CO_2 recovery.Greenhouse Gas Control Technology[M].Elsevier Science B.V.,1999,581-586
    [40]Wolsky A.M.,Daniels E.J.,Jody K.S.Journal of the Air & Waste Management Association,1991,41:499-454
    [41]Nakayama S.,Noguchi Y.,Kiga T.,et al.Pulverized coal combustion in O_2/CO_2mixtures on a power plant for CO_2 recovery.Energy Conversion and Management,1992,33(5-8):379-386
    [42]Singh D.,Croiset E.,and Douglas P.L.,et al.Techno-economic study of CO_2capture from an existing coal-fired power plant:MEA scrubbing vs.O_2/CO_2 recycle combustion.Energy Conversion and Management,2003,44:3073-3091
    [43]Kimura N.,Omata K.,Kiga T.,et al.The characteristics of pulverized coal combustion in O_2/CO_2 mixtures for CO_2 recovery.Energy Conversion and Management,1995,36:805-809
    [44]Yamada T.,Kiga T.,Fujita N.et al.The dynamic plant simulation of CO_2-recovery type pulverized-coal fired power Plants Applied Oxygen/cycled Flue Gas Combustion.Greenhouse Gas Control Technology[M].Elsevier Science B.V.,1999.
    [45]毛玉如,方梦祥,王树荣等.空气分离/烟气再循环技术研究进展.锅炉技术,2002,33(3):6-9
    [46]阎维平.温室气体的排放以及烟气再循环煤粉燃烧技术的研究.中国电力,1997,30(6):59-62
    [47]郑楚光等.温室效应与其控制对策.北京:中国电力出版社.2001
    [48]Hu Y.,Naito D.,Kobayashi N.CO_2,NO_x and SO_2 emission from the combustion of coal with high oxygen concentration gased.Fuel,2000,79:1925-1932.
    [49]Yamada T.,kiga T.,Miyamae S.,et al.Experimental studied on the capture of CO_2,NO_x and SO_2 in the oxygen/recycle flue gas coal combustion system.Reaction Engineering for Pollution Prevention.2000,Elseiver Science B.V
    [50]Liu H.,Katagiri S.,Okazaki K.,et al.Drastic SO_x Removal and Influence of Various Factors in O_2/CO_2 Coal Pulverized Combustion System.Energy and Fuel,2001,15:403-412
    [51]Croiset E.,Thambimuthu K.V.NOx and SO_2 emission from O_2/CO_2 recycle coal combustion.Fuel,2001,80:2117-2121
    [52]Hu Y.Q.,Kobayashi N.,Hasatani M.The reduction of recycled-NO_x in coal combustion with O_2/recycled flue gas under low recycling ratio.Fuel,2001,80:1851-1855
    [53]Hu Y.Q.,Kobayashi N,Hasatani M.Effect of coal properties on recycled-NO_x in coal combustion with O_2/recycled flue gas.Energy Conversion and Management,2003,44:2331-2340
    [54]Liu H.Okazaki K.,Simultaneous easy CO_2 recovery and drastic reduction of SO_x and NO_x in O_2/CO_2 coal combustion with heat recirculation.Fuel,2003,82:1427-1436
    [55]于岩,阎维平,刘彦丰.O_2/CO_2气氛下O_2,CO对NO排放特性影响的实验研究.华北电力大学学报,2004,31(2):28-31
    [56]毛玉如,方梦祥,骆仲泱等.O_2/CO_2气氛下石灰石煅烧与硫化反应研究.燃料化学学报,2004,32(6):323-328,
    [57]刘彦,周俊虎,方磊等.O_2/CO_2气氛煤粉燃烧及固硫特性研究.中国电机工程学报,2004,24(8):224-228
    [58]陈传敏,赵长遂,赵毅等.利用热重分析-X射线衍射分析法研究氧/二氧化碳气氛下石灰石的硫化特性.中国电机工程学报,2006,26(13):108-112
    [59]孟德润,周俊虎,赵翔等.O_2/CO_2气氛下氮反应机理的研究.环境科学学报,2005,25(8):1011-1014
    [60]Daniels F,Alberty R.A.Physical chemistry[M].NewYork:Wiley,1975.
    [61]Snow M.J.H.,Longwell J.P.,Sarofim A.F.Direct sulfation of calcium carbonate.Industrial & Engineering Chemistry Research,1988,27:268-273
    [62]Lyngfelt A,Leckner B.Sulfur capture in fluidized bed boilers-the effect of reductive decomposition of CaSO_4.Chemical Engineering Journal,1989,40:59-69
    [63]Lyngfelt A.,Leckner B.SO_2 capture in fluidized bed boilers:emission of SO_2 due to reduction of CaSO_4.Chemical Engineering Journal,1989b,44:207-213
    [64]Dennis J.S.,Hayhurst A.N.,The effect of temperature on the kinetics and extent of SO_2 uptake by calcareous material during fluidized bed combustion of coal. Proceedings of the 20th International Symposium on Combustion.Ann ArborMichigan:The Combustion Institute,1984:1347-1355
    [65]Jonke A.A.,Vogel G.J.Cads E.J.,et al.Pollution control capabilities of fluidized bed combustion.AIChE.Symp.Ser.,1972,126(68):241-251
    [66]Dennis J.S.,Hayhurst A.N.Mechanism of the sulphation of calcined limestone particle in combustion gases.Chemical Engineering Science,1990,45:1175-1179.
    [67]Anthony E.J.,Granatstein D.L.Sulfation phenomena in fluidized bed combustion systems.Progress in energy and combustion science,2001,27:215-236.
    [68]Torres-Ordonez R.J.,Longwell J.P.,et al.Physical transformations during CaS oxidation.Energy & Fuels,1989,3:595-603
    [69]Skrifvars B.J.,Hupa M.,Hyoty P.Superheater fouling due to limestone injection in coal fired boilers.Journal of the Institute of Energy,1991,64(461):196-201
    [70]吴代赦,郑宝山,唐修义等.中国煤中氮的含量及其分布.地球与环境,2006,34(1):1-5
    [71]Lohuis J.A.O.,Tromp P.J.J.,Moulijn J.A.Parametric study of N_2O formation in coal combustion.Fuel,1992,71:9-14
    [72]冯波,林志杰,袁建伟等.流化床煤燃烧中氮氧化物的生成机理.热能动力工程,1996,11(2):91-94
    [73]Solomen P.R.,Colket M.B.Evolution of fuel nitrogen in coal devolatilization.Fuel,1978,57(12):749-755.
    [74]Johnsson J.E.Formation and reduction of nitrogen oxides in fluidized-bed combustion.Fuel,1994,73:1398-1415
    [75]Hayhurst A.N.,Lawrence A.D.Emissions of nitrous oxide from combustion sources.Progess in Energy and Combustion Science,1992,18:529-552
    [76]Zhanga L.,Satoa A.,Ninomiyaa Y.,et al.In situ desulfurization during combustion of high-sulfur coals added with sulfur capture sorbents.Fuel,2003,82:255-266
    [77]Adahnez J.,Garcm H.F.,Labiano V.,et al.Modelling for the high-temperature sulphation of calcium-based sorbents with cylindrical and plate-like pore geometries.Chemical Engineering Science,2000,55:3665-3683
    [78]Fierro V.,Adanez J.,Garcia-Labiano F.Effect of pore geometry on the sintering of Ca-based sorbents during calcination at high temperatures.Fuel,2004,83(13):1733-1742
    [79]Davini P.Properties and reactivity of reactivated calcium-based sorbents.Fuel,2002,81:763-770
    [80]Agnew J.,Hampartsoumian E.,Jones J.M.,et al.The simultaneous calcination and sintering of calcium based sorbents under a combustion atmosphere.Fuel,2000,9:1515-1523
    [81]张虎,佟会玲,董善宁等.添加剂调质下脱硫剂活性影响因素的实验研究.热能动力工程,2006,21(4):397-400
    [82]侯波,祁海鹰,由长福等.用于中温烟气脱硫的新型钙基脱硫剂.工程热物理学报,2004,25(1):159-162
    [83]缪明烽,沈湘林.钙基脱硫剂高温分解特性模拟研究.燃烧科学与技术,2001,7(4):297-302
    [84]O'Neill E.,Keairns D.,Kirtle W.A thermogravimetric study of the sulfation of limestone and dolomite the effect of calcination conditions.Thermochimica Acta,1976,14(1-2):209-220
    [85]Krishnan S.,Sotirchos S.Effective diffusivity changes during calcination,carbonation,recalcination and sulfation of limestones.Chemical Engineering Science,1994,49:1195-1208
    [86]Adanez J.,Gayan P.,Garcia-Labiano F.Comparison of mechanistic models for the sulfation reaction in a broad range of particle sizes of sorbents.Industrial Engeering Chemical Research,1996,35:2190-2197
    [87]Borgwardt R.H.,Roache N.F.,Bruce K.R.Method for variation of grain size in studies of gas-solid reactions involving CaO.Ind.Eng.Chem.Fundam.,1986,25:165-169
    [88]Garcia-Labiano F.,Abad A.,de Diego L.F.,et al.Calcination of calcium-based sorbents at pressure in a broad range of CO_2 concentrations.Chemical Engineering Science,2002,57:2381-2393
    [89]Duo W.,Laursen K.,Lim J.,et al.Crystallization and facture:formation of product layers in sulfation of calcined limestone.Powder Technolology,2000,111: 154-167.[90]Huang J.M.,Daugherty K.E.Lithium carbonate enhancement of the calcination of calcium carbonate:proposed extended-shell model.Thermochim.Acta,1987,118:135-141.
    [91]Zaki M.,Sulaiman H.,Alan W.,et al.The calcination and sulphation behaviour of sorbents in fluidized bed combustion.Fuel,1991,70(2):169-176
    [92]Chu C.Y.,Hsueh K.W.,Hwang S.J.,Sulfation and attrition of calcium sorbent in a bubbling fluidized bed.Journal of Hazardous Materials,2000,80(1-3):119-133
    [93]Ghardashkhani S,Cooper D.A.A thermogravimetric study of the reaction between sulfur dioxide and calcium oxide.Thermochimica Acta,1990,161(2):327-337
    [94]倪晓奋,刘前鑫.石灰石脱硫的热重分析研究.工程热物理学报,1995,16(2):253-256
    [95]Beruto D.,Searcy W.Characterization of the porous CaO formed by decomposition of CaCO_3 and Ca(OH)_2 in Vacuum.LAmer.Ceramic Soc.,1980,63(2):972-983
    [96]Caldwell K.M.,Gallagher P.K.,Johnson D.W.Effect of thermal transport Mechanism on the thermal decomposition of CaCO_3.Thermochimica Acta,1977,8:15-23
    [97]Salvador A.R.,Calvo E.G.,Aparicio C.B.Effect of sample weight,particle size,purge gas and crystalline structure on the observed kinetic parameters of calcium carbonate decomposition.Thermochimica Acta,1989,143:339-345
    [98]高翔,骆仲泱,陈亚非等.钙基吸收剂脱硫反应特性的研究.燃烧科学与技术,1998,4(4)369-373
    [99]Talukdar,Prabir Basu,Greenblatt H.Reduction of calcium sulfate in a coal-fired circulation fluidized bed furnace.Fuel,1996,75(9):1115-11231
    [100]高洪阁,李白英,刘泽常等.燃烧固硫反应的动力学和热力学及其影响固硫产物分解因素的研究.洁净煤技术,2002,8(1):45-47
    [101]Barker R.The reversibility of the reaction CaCO_3 CaO+CO_2,J.Appl.Chem.Biotechnol.1973,23:733-742
    [102]毛玉如,方梦祥,骆仲泱等.O_2/CO_2气氛下石灰石煅烧与硫化反应研究.燃料化学 学报.2004,32(6):323-328,
    [103]Borgwardt R.H.Sintering of nascent calcium oxide.Chemical Engineer Science,1989,44(1):53-60
    [104]Borgward R.H.Calcium oxide sintering in atmospheres containing water and carbon dioxide.Industrial & Engineering Chemistry Research,1989,28:493-500
    [105]Stanmore B.R.Gilot P.Review-calcination and carbonation of limestone.Fuel Processing Technology,2005,86:1707-1743
    [106]Anthony E.J.,GranatsteinD.L.Sulphation phenomena in fluidized bed combustion systems.Progress in Energy and Combustion Science,2001,27:215-236.
    [107]Garcia-Labiano F.,Abad A.,de Diego L.,et al.Calcination of calcium-based sorbents at pressure in a broad range of CO_2 concentrations,Chemical Engineering Science,2002,57:2381-2393
    [108]Hartman M.,Trnkao.Influence of temperature on the reactivity of limestone particle with sulfur dioxide.Chemical Engineering Science,1980,35(5):1189-1194
    [109]Borgward R.H.Effect of specific surface area on the reactivity of CaO with SO_2.AIChEJ,1986,32(2):239-246
    [110]Liu H.,Katagiri S.,Kaneko U.et al.Sulfation behavior of limestone under high CO_2 concentration in O_2/CO_2 coal combustion,Fuel,2000,79:945-953
    [111]Gullet B.K,Brucker S.Pore distribution changes of calcium-based sorbents reacting with sulfurdioxide.AIChEJ.1987,33(10):1719-1726.
    [112]陈鹏.中国煤中硫的赋存形态及脱硫.煤炭转化,1994,17(2):129-131
    [113]Furimsky E.Distribution of volatile sulphur containing products during fixed bed pyrolysis and gasification of coals.The Canadian Journal of Chemical Engineering,1991,69(4):869-873
    [114]葛运培,谢光前.煤中黄铁矿及其毗邻的有机硫.燃料化学学报,1992,20(1):90-95
    [115]Peter L.,Cleyle D.Decomposition of pyrites and trapping of sulphur in a coal matrix during pyrolysis of coal.Fuel,1984,63:1579-1582
    [116]Patrick J.W.Sulfur release from pyrites in relation to coal pyrolysis.Fuel, 1993,72:281-286
    [117]Lafferty C.L.,Mitchell S.C.,Garcia R.,et al.Investigation of organic sulphur forms in coals by high pressure temperature-programmed reduction.Fuel,1993,72:367-371
    [118]Gryglewicz G.,Jasienko S.The behavior of sulfur forms during pyrolysis.Fuel,1992,71:1225-1229
    [119]Ibarra J.V.,Bonet A.J.,Moliner R.Release of volatile sulfur compounds during low temperature pyrolysis of coal.Fuel,1994,73(6):933-939
    [120]Sgawara T.,Srawara K.,Nishitama Y.,et al.Dynamic behaviour of sulphur forms in rapid hydropyrolysis of coal.Fuel,1991,70(9):1091-1097
    [121]Schutte K.Spatial distributions of O_2,CO_2,and SO_2 in a pilot-scale fluidized bed combustor operated with different coals.Fuel,1989,68(12):1499-1502
    [122]Sinivasachar S.,Mineral behavior during coal combustion.Pyrite Transformations Progress in Energy Combustion Science,1990,16(2):281-292
    [123]Groves S.J.Decomposition of pyrite during pulverized coal combustion,Fuel,1987,66(4):461-466
    [124]刘彦,周君虎,方磊等.煤粉燃烧及固硫特性的研究.中国电机工程学报,2004,24(8):224-228
    [125]Gillet B.,Hardalupa Y.,Kavounides C.,et al.Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures(MAST-B-LIQUID).Applied Thermal Engineering,2004,24,(11-12):1633-1653
    [126]Weissinger A.,Fleckl T.,Obemberger I.In situ FT-IR spectroscopic investigations of species from biomass fuels in a laboratory-scale combustor:the release of nitrogenous species.Combustion and Flame,2004,137(4):403-417
    [127]Amand L.E.,Kassman,H.,Karlsson,et al.Measurement of the Concentration of Ammonia and Ethene in the Combustion Chamber of a Circulating Fluidized-Bed Boiler.Journal of the Institute of Energy,1997,70:25-30
    [128]Jimmy B.,S(?)nnik C.FTIR emission spectroscopy methods and procedures for real time quantitative gas analysis in industrial environments.Measurement Science and Technology,2002,3:150-156
    [129]刘彦丰,阎维平,宋之平.炭/碳粒在O_2/CO_2气氛中燃烧速率的研究.工程热物理学报,1999,20(6):769-772
    [130]陈爱平,马建新,王幸宜.稀土氧化物上COS还原SO_2脱硫反应及机理.燃料化学学报,1998,26(4):351-355
    [131]董刚,蒋勇,陈义良等.大型气相化学动力学软件包CHEMKIN及其在燃烧中的应用.火灾科学,2000,9(1):27-33
    [132]Kramlich J,LinakW.P.Nitrous oxide behavior in the atmosphere,and in combustion and industrial systems.Progress in Energy and Combustion Science,1994,20:149-152
    [133]Visona S.P.,Stanmore B.R.Modeling NO_x release from a single coal particle Ⅰ.Formation of NO from volatile nitrogen.Combustion and flame,1996,105:92-103
    [134]Solomen P.R.,Colket M.B.Evolution of fuel nitrogen in coal devolatilization.Fuel,1978,57(12):749-755.
    [135]袁钧卢,张细芳译.煤的燃烧理论与技术.上海:华东化工学院出版社.1989
    [136]李永华,李松庚,冯兆兴等.褐煤及其混煤燃烧NOx生成的试验研究.中国电机工程学报,2001,21(8):34-41
    [137]聂其红,孙绍增,吴少华等.新型水平浓淡风低NOx煤粉燃烧器在贫煤锅炉的应用研究.中国电机工程学报,2002,22(7):155-159.
    [138]刘忠,阎维平,高正阳等.细煤粉的细度对再燃还原NO的影响.中国电机工程学报,2003,23(10):204-208
    [139]向军,邱纪华,熊友辉等.锅炉氮氧化物排放特性试验研究.中国电机工程学报,2000,20(9):80-83
    [140]蔡学军,冯波,袁建伟等.石灰石脱硫对硫化床中N_2O排放的影响.工业锅炉,1995,(2):45-49
    [141]Liu H.,Gibbs B.M.,The influence of calcined limestone on NOx andN_2O emissions from char combustion in fluidized bed Combustors.Fuel,2001,80(9): 1211-1215.
    [142]于洪观,刘泽常,王力等.煤燃烧过程中各形态硫析出规律的研究.煤炭转化,1999,22(3):53-57
    [143]Cardu M.,Baica M.regarding the relation between the NOx content and O content in therrno power plants flue gases.Energy Conversion and Management,2005,46:47-59
    [144]Hayhurst A.N.,Lawrence A.D.The effect of solid CaO on the production of NOx and N_2O in fluidized bed combustors:Studies using pyridine as a prototypical nitrogenous fuel.Combustion and Flame,1996,105(4):511-527
    [145]侯祥松,李金平,张海.石灰石脱硫对循环流化床中NOx生成和排放的影响.电站系统工程,2005,21(1):13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700