煤燃烧过程中有害元素和亚微米颗粒物排放与控制的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对煤燃烧过程中氮氧化物的前驱体、有害痕量元素及亚微米颗粒物的排放与控制进行了系统的研究。计算了非纯凝聚相复杂体系有害痕量元素的热力学平衡分布,得出了痕量元素的迁移转化规律。采用滴管炉研究了燃煤有害痕量元素砷的排放与控制,结果表明As在飞灰和底灰中的集散行为与煤种和炉膛温度有较大关系,TiO_2、CaCO_3和Ca(OH)_2等3种吸附剂对As均有抑制作用,As吸附效率可达73%。实验研究了燃煤中亚微米颗粒物的形成机理及排放控制,结果表明随炉膛温度的升高和煤含硫量的增加,亚微米颗粒物的排放量增大;TiO_2,CaCO_3和Ca(OH)_2均能抑制亚微米颗粒物的排放,抑制效果随炉膛温度的升高呈增大趋势,在1100℃~1250℃时达最大值。研制出针对亚微米粉尘的环流循环除尘系统,除尘效率可达97%以上。应用密度泛函理论,通过B3LYP/6-311++G~(**)木水平上的计算,研究了煤中有机氮的热解反应机理,建立了煤中吡啶型氮及吡咯型氮的热解模型。在管式炉氩气气氛中进行了煤热解实验,结果表明燃料氮在煤中以复杂结构存在,而不是简单的吡咯和吡啶结构;煤热解半焦中氮的形态与含量以及产物中的HCN和NH_3的释放量均与热解温度和煤中氮的赋存形态有关。
A systematic study on emissions and control of nitrogen oxide, toxic trace elements and submicrometer particles during coal combustion was conducted. The thermodynamic equilibrium distributions of trace elements during coal combustion was examined. The transformation and concentration of arsenic were conducted on an electrically heated drop tube furnace. Results show that the low of concentration and dispersion of As in different coals is very different, which is related to coal types and furnace temperature. Studies were carried out to examine the effectiveness of sorbents (TiO2, CaCO3 and Ca(OH)2) on As emission control during coal combustion. The results indicate that all three sorbents tested are capable of effectively capturing arsenic, whereas different sorbent has a different capture capacity and the capture mechanisms are different. A systematic study on submicrometer particles generation, evolution and capture in combustion processes was conducted. To better understand the capture characteristics of
     the submicrometer particles, experiments were carried out using TiO2 CaCO3 and Ca(OH)2 as sorbents. A circumfluent cyclone system was developed to capture submicrometer particles. The experimental study was carried out on the collection efficiency, pressure drop of the system which used air and molecule sieve as test material system. A reliable density functional theory (DFT) method at B3LYP/6-311++G** level was employed to investigate the reaction mechanism of organic nitrogen during coal pyrolysis. Experiments were carried out in a tubular quartz reactor at 400癈~1000癈. With different coal ranks, the concentrations and nitrogen types are different. The formation of HCN and NH3 during coal pyrolysis was studied to discussed in terms of some factors that affect the nitrogen distribution, including temperature, coal rank and petrographic composition of coal. It indicates that the concentrations of HCN and NH3 are increasing with increasing temperature. Coal rank and petrographic composition are important fa
    ctors influencing the formation of HCN and NH3 during pyrolysis.
引文
1 毛健雄,毛健全,赵树民.煤的清洁燃烧.北京:科学出版社,1998,1-5
    2 濮洪九.推进洁净煤技术产业化是适合国情的能源结构优化措施.杭州:中国煤炭学会第二次洁净煤技术研讨会,2001
    3 岑可法.洁净煤燃烧发电技术报告.杭州:中国煤炭学会第二次洁净煤技术研讨会,2001
    4 章名耀,李大骥,蔡宁生等.关于我国发展先进燃煤发电技术的建议.动力工程.1994,14(2):
    
    1-8
    5 郑楚光.洁净煤技术.武汉:华中理工大学出版社,1996,83-84
    6 张文丽,崔九思.空气细颗粒物(PM2.5)理化特性和生物效应监测.中国环境卫生.2002,5(1):159-164
    7 Victor H B, Margarita C, Drane R G etal. Mortality and Ambient Fine Particles in Southwest Mexico City. Environmental Health Perspect, 1998, 106(12): 849-854
    8 Hornberg C, Maciuleviciute L, Seemayer N H etal. Induction of Sister Chromatid Exchanges in Human Tracheal Epithelial Cells by the Fraction PM_(10) and PM_(2.5) of Airbone Particulate. Toxicol-lett. 1998, 96-97:215-220
    9 Dockery D W, Pope C, Xu X etal. An Association Between Air Pollution and Mortality in Six US City. N J Med. 1993, 329:1753-1759
    10 Pope C A, Thum M J, Namboodri M M etal. Particulate Air Pollution as a Predictor of Mortality in a Prospective Study of US Adults. Am J Respire Crit Care Med. 1995, 151 : 669-674
    11 Sloss L L, Smith I M. PM_(10) and PM_(2.5): an International Perspective. Fuel Processing Technology. 2000, 65-66: 127-141
    12 Pekkanen J, Timonen K L, Ruuskanen J etal. Effects of Ultrafine and Fine Particles in Urban Air on Peak Respiratory Flow Among Children with Asthmatic Symptoms. Environmental Research. 1997, 74:24-33
    13 Committee of the Medical Effects of Air Pollution. UK.Quantification of the Effects of Air Pollution on Health in the United Kingdom. London, UK: HMSO, UK Department of Health, 1998, 78
    14 Valkovic V. Trace Elements In Coal. Crc Press, 1983, 1-2
    15 Home R A. The Chemistry Of Our Environment. New York: John Wiley & Sons, 1978
    16 黄文辉,杨起.燃煤过程中有害元素转化机理研究进展.地质科技情报.1999,1:71-74
    17 周一工.燃煤电站有害金属元素、细微颗粒及温室气体排放问题.环境科学动态.2000,2:23-27
    18 Ikavalko E, Laitinen T, Revitzer H. Optimised method of coal digestion for trace metal determination by atomic absorption spectroscopy. Fresenius J.Anal.Chem. 1999, 363:314
    19 Querol X, Klika Z, Weiss Z, Finkelman R B, Alastuey A, Juan R, Lopez-Soler A, Plana F, Kolker A, Chenery S R N. Determination of element affinities by density fractionation of bulk coal samples. Fuel. 2001, 80 (1) : 83
    20 Swaine D.J. Trace Elements in Coal Butterworths. London: 1990
    21 Conrad V B, Krofcheck D S. ICP-MS determination of trace elements in coal and other geological materials. In: Vour- vopoulos , G.(Ed.) , Elemental Analysis of Coal and Its
    
    By-Products. Singapore: World Scientific Press, 1992, 97
    22 Hickmott D D, Baldridge W S. Trace element and S iso-topic microanalysis of coal a combined PIXE and SIMS approach. Proc.8th Ann.Int. Univ.Pittsburgh: Pittsburgh Coal Conf, 1991, 148
    23 Evans J R, Sellars G A, Johnson R G. Analysis of eight Argonne premium coal samples by X-ray fluorescence spectrometry. Energy Fuel. 1990, 4, 440
    24 Pianetta P, Baur K, Singh A, Brennan S, Kemer J, Wherho J, Wang J. Application of synchrotron radiation to TXFR analysis of metal contamination on silicon wafer surfaces. Thin Solid Films. 2000, 373, 222
    25 Senior C L, Zeng T, Che J, Ames M R, Sarofim A F, Olmez I, Huggins F E, Shah N, Huffman G P, Kolker A, Mroczkowski S, Palmer C A, Finkelman R. Distribution of trace elements in selected pulverized coals as a function of particle size and density. Fuel Process Technol. 2000, 63, 216
    26 Blanchard L J, Robertson J D. Determination of mercury in coal using radiochemical neutron activation analysis. Analyst. 1997, 122, 145
    27 Huggins F E, Shah N, Huffman G P, Robertson J D. XAFS spectroscopic characterization of elements in combustion ash and fine particulate matter. Fuel Process Technol. 2000, 65, 203
    28 Doughten M W, Gillison J R. Determination of selected elements in whole coal and in coal ash from the eight Argonne premium coal samples by atomic absorption spectroscopy, atomic emission spectroscopy and ion-selective electrode. Energy Fuel. 1990, 78:426
    29 Cox J A, Przyjazny A, Schlyter C, Saari R. Application of ion chromatography to the analysis of coal. In: Vourvopoulos, G.(Ed.), Elemental Analysis of Coal and Its By Products. Singapore: World Scientific Press, 1992, 33
    30 Palmer C A, Klizas S A. Compilation of multitechnique determinations of 51 elements in 8 Argonne premium coal samples. In: Palmer C A.(Ed.), The Chemical Analysis of Argonne Premium Coal Samples. Washington D C: Bulletin, vol.2144.U S.Geol.Survey, 1997, 61
    31 Frandsen F, Johansen K D, Rasmussen P. Trace elements from combustion and gasification of coal- an equilibrium approach. Prog.Energy Combust.Sci. 1994, 20(1): 115-138
    32 Helble J J, Mojlahed W, Lyyranen J etal. Trace element partitioning during coal gasification. Fuel. 1996, 7(8): 931-939
    33 Leena A A, Flemming J F, Erkkik K H. Trace metal emissions from the Estonian oil shale fired power plant. Fuel Processing Technology. 1998, 57(1): 1-24
    34 刘迎晖,郑楚光,游小清,郭欣.燃煤过程中易挥发有毒痕量元素的相互作用.燃烧科学与技术.2001,7(4):243-247
    35 Yan R. Partitioning of trace elements in the flue gas from coal combustion. Doctoral
    
    Dissertation. 1999, 72
    36 Furimsky E. Characterization of trace element emissions from coal combustion by equilibrium calculations. Fuel Processing Technology. 2000, 63(1): 29-44
    37 Raask E. Mineral impurities in coal combustion. Berlin: Springer, 1985
    38 Thompson D, Argent B B. Thermodynamic equilibrium study of trace element mobilization under pulverized fuel combustion conditions. Fuel. 2002, 81(3): 345-361
    39 Argent B B, Thompson D. Thermodynamic equilibrium study of trace element mobilization under air blown gasification conditions. Fuel. 2002, 81(1): 75-89
    40 郑楚光,徐明厚,张军营,刘晶.燃煤痕量元素的排放与控制.湖北科学技术出版社,2002,217
    41 陆晓华,刘晶,曾汉才等.煤灰中部分重金属元素含量与燃烧工况的关系模型.环境化学.1998,17(4):345-348
    42 朱珍锦,薛来,谈仪等.不同负荷改变对煤及其燃烧产物中汞的分布特征影响研究.中国电机工程学报.2001,7:87-90
    43 Jyh-Chemg Chen, Ming-Yen Wey. The adsorption of heavy metals by different sorbens under various incineration conditions. Chemosphere. 1998, 37(13): 2617-2626
    44 Jyh-Cherng Chen, Ming-Yen Wey. Capture of heavy metals by sorbents in incineration flue gas. The Science of Total Environment. 1999, 228:67-77
    45 Owens T, Wu C Y, Biswas P. An Equilibrium Analysis for Reactions of Metal Compounds with Sorbents. Chemical Engineering Communications. 1995, 133: 31-52
    46 Scotto M V, Uberoi M. Metal capture by sorbents in combustion processes. Fuel Processing Technology. 1994, 39:357-372
    47 Mahuli S, Agnihotri R, Chauk S, Ghosh-Dastidar A, Fan L S. Mechanism of Arsenic Sorption by Hydrated Lime. Environ.Sci.Technoi. 1997, 32: 3226-3231
    48 Uberoi M, Shadman F. High-Temperature Removal of Cadmium Compounds Using Solid Sorbents. Environ.Sci.Technol. 1991, 25(7): 1285-1289
    49 Gullett B K, Raghunathan K. Reduction of Coal-Based Metal Emissions by Furnace Sorbent Injection. Energy& Fuels. 1994, 8:1068-1076
    50 HOT C, Lee H T. Metal capture by sorbents during fluidized bed combustion. Fuel Processing Technology. 1994, 39:373-388
    51 Agnihotri R , Chauk S Selenium removal using ca-based sorbents : reaction kinetics. Envior.Sci.Technol. 1999, 32: 1841-1846
    52 程俊峰,韩军,曾汉才,徐明厚.分级燃烧中固体吸附剂对痕量金属排放的影响.环境科学.2001,22(6):34-38
    
    
    53 Cheng J F, Zeng H C, Zhang Z H, Xu M H. The effect of solid sorbents on emission of trace element, SO_2, NOx during coal combustion. Int J of Energy Res. 2001, 24:1043-1052
    54 徐明厚,郑楚光,冯荣,乔瑜,晏蓉。煤燃烧过程中痕量元素排放的研究现状.中国电机工程学报.2001,21(10):33-38
    55 Scnior C L, Panagiotou T, Joseph H. Formation of Ultra-fine Particulate Matter from Pulverized Coal Combustion. American Chemical Society. 2000, 45(1): 149-153
    56 Ye Z, Pratim B. Submicrometer Particle Formation and Control in a Bench-scale Pulverized Coal Combustor. Energy&Fuels. 2001, 15:510-516
    57 Wayne S. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion. Fuel Processing Technology. 2003, 81:109-125
    58 Clarke L, Sloss L. Trace elements-emissions from coal combustion and gasification, IEA Coal Research. 1992, 111
    59 Shibaoka M, Ohtsuka Y, Wornat M J, Thomas C G. Investigation of brown coal gasification residues using light microscopy. Fuel. 1996, 75(6): 775-779
    60 Braun A , Shah N , Huggins F E etal . A study of diesel PM with X-ray microspectroscopy. Fuel. 2004, 83(7-8): 997-1000
    61 Erickson T A, Allan S E, McCollor D P etal. Modelling of fouling and slagging in coal-fired utility boilers. Fuel ProcessingTechnology. 1995, 44(1-3): 155-171
    62 Harry M, Brink T, Eenkhoorn S, Hamburg G. A mechanistic study of the formation of slags from iron-richcoals. Fuel. 1996, 75(8): 952-958
    63 Wigley F, Williamson J. Modelling fly ash generation for pulverised coal combustion. Progress in Energy and Combustion Science. 1998, 24(4): 337-343
    64 Hurt R, Davis K. Percolative fragmentation and spontaneous agglomeration. Combustion and Flame. 1999, 116(4): 662-670
    65 Yan L, Gupta R P, Wall T F. A mathematical model of ash formation during pulverized coal combustion. Fuel. 2002, 81(3): 337-344
    66 Smith R D. The trace element chemistry of coal during combustion and the emissions from coal-fired plants. Prog.Energy Combust.Sci. 1980, 6:53-119
    67 陈绍明.除尘技术的基本理论与应用.北京:中国建筑工业出版社,1979
    68 嵇敬文.除尘器.北京:中国建筑出版社,1981
    69 Biffin M, Syred N. Performance of a respirable multi-inlet cyclone sample. Chem Eng Res Des. 1984, 62: 261
    70 金有海,时铭显.旋风除尘器相似放大试验研究.石油大学学报.1990,14(5):46-54
    71 Browne J M, Strauss W. Particle separation by linoya's type gas cyclone. Atmospheric
    
    Environment. 1978, 12:1213
    72 Schulz S, Schmidit P. Gust factors and surface-to-gradient wind-speed ratios in tropical cyclones. Chem Eng Tech. 1986, 58(6): 502
    73 Dirgo J, Leith D. The cyclone separators performances under high temperature in PFBC unit. Aerosal Sci &Tech. 1985, 4(4): 401
    74 姜安玺,王绍文,戚鹏生,马承恩.新型旋风除尘器的研究.哈尔滨建筑工程学院学报.1992,25(3):43-47
    75 李建隆,王伟文.环流式旋风除尘器.中国专利,实用新型(01368506).2001,1-10.
    76 Ronald Wysk S, Smolensky Leo A, Andrew Murison. A novel cyclone-core separator. Filtration & Separation. 1993, 29-31
    77 Ye Z, Pratim B. Submicrometer Particle Formation and Control in a Bench-scale Pulverized Coal Combustor. Energy & Fuels. 2001, 15:510-516
    78 Solomon P R, Collket M B. Evolution of Fuel Nitrogen in Coal devolatilization. Fuel. 1978, 57: 749-755
    79 Nelson P F, Li Chumhu, Ladesma E B. Formation of HCNO from the Repid Pyrolysis of Coals. Energy & Fuel. 1996, 10: 264-265
    80 Kambara S, Takarada T, Yamampto Y etal. Relation Between Functional Forms of Coal Nitrogen and Formation of NOx Precursors During Rapid Pyrolysis. Energy & Fuel. 1996, 10: 1022-1027
    81 高晋生,沈本贤等.煤燃烧中N0x的来源和抑制其生成的有效措施.煤炭转化.1994,17(3):53-57
    82 栋岐,于德亭,祝捷等.煤燃烧中氮释放特性实验研究.电站系统工程.1997,13:45-50
    83 毛健雄,毛健全等.煤的清洁燃烧.北京:科学出版社,1998
    84 尤先锋,刘美蓉,刘生玉等.煤热解过程中NOX前驱物气体脱除的探讨.宁夏大学学报(自然科学版).2001,22:185-187
    85 刘艳华,车得福,李荫堂等.X射线光电子能谱确定铜川煤及其焦中氮的形态.西安交通大学学报.2001,37:661-665
    86 姚明宇,刘艳华,车得福.宜宾煤中氮的形态及其变迁规律研究.西安交通大学学报.2003,37:759-763
    87 冯杰,李文英,谢克昌等.煤及煤焦气化过程中NOx前驱体释放规律研究.燃料化学学报.2003,31(1):35-38
    88 赵炜,常丽萍,谢克昌等.煤热解过程中生成氮化物的研究.燃料化学学报.2002,30(5):408-412
    89 王庆,冯杰,李文英.煤中氮在热解过程中释放规律的数学模拟.煤炭转化.2003,26:31-36
    90 赵宗彬,陈皓侃.煤燃烧过程中NOx的生成和还原.煤炭转化.1999,72:10-15
    
    
    91 赵宗彬,李文,李保庆等.钠、钙、铁对模型化合物热解及燃烧过程中氮逸出规律的影响.燃料化学学报.2002,30:294-299
    92 赵宗彬,王旭珍,李保庆.煤燃烧过程中氮氧化合物的生成及排放控制.烟台师范学院学报(自然科学版).2000,16:212-216
    93 Thomas K M. The Release of Nitrogen Oxides during Char combustion. Fuel. 1997, 76:457-473
    94 Laughlin M K, Gavin D G, Reed G P. Coal and Char Nitrogen Chemistry During Pressurized Fluidized Bed Combustion. Fuel. 1994, 73:1027-1033
    95 Wjtwicz M A, Pels J A, Moulijin J A. The Fate of Nitrogen Functionalities in Coal During Pyrolysis and Combustion. Fuel. 1995, 74(4): 507-516
    96 Unsworth J F, Barratt D J, Roberts P T. In Coal Quality and CombustionPerformance. Coal Science and Technology. 1991, 19:579-590
    97 Boardman R, Smoot L D. In Fundamentals of Coal Combustion for Clean and Efficient Use. Coal Science and Technology. 1991, 20:433-509
    98 Marek A, Jan R, Jacob A. The Fate of Nitrogen Functionalities in Coal during Pyrolysis and Combustion. Fuel. 1995, 74:507-516
    99 Axworthy A E, Dayan V H, Martin G B. Reactions of Fuel-nitrogen Compounds under Conditions of Inert Pyrolysis. Fuel. 1978, 57:29-35
    100 Mackie J C, Colket M B, Nelson P F. Shock Tube Pyrolysis ofPyridine. J.Phys.Chem. 1990, 94:4099-4106
    101 Lifshitz A, Tamburu C, Suslensky A. Isomerization and decompsition of Pyrrole at Elevated Temperatures. J.Phys.Chem. 1989, 93:5802-5808
    102 Wojtowicz M A, Ohtsuka Y, Nelson P F. The 2001 symposium on nitrogen chemistry in coal utilization. Fuel. 2002, 81(18): 2305-2306
    103 Li C Z, Buckley A N, Nelson PF. Effects of temperature and molecular mass on the nitrogen functionality of tars produced under high heating rate conditions. Fuel. 1998, 77(3): 157-164
    104 Nelson J A, Wagner M J. High surface Area MO_2C and WC Prepared by Alkalide Reduction. Chem. Mater. 2002, 14(5): 2427
    105 王宝俊,张玉贵,秦育红等.量子化学计算方法在煤反应性研究中的应用.煤炭转化.2003,26:1-7
    106 Yoshihiko N, Dong Z B, Yoshizo S, Jugo K. Theoretical study on the thermal decomposition of pyridine. Fuel. 2000, 79(5):449-457

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700