白腐真菌Pycnoporus sp. SYBC-L3产漆酶及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漆酶(Laccase,EC1.10.3.2)是一种铜蓝氧化酶,能催化一大类酚类及非酚类化合物的聚合、分解及转化,期间伴随单电子的转移将分子氧还原成水。由于漆酶具有广泛的底物催化范围,因此在众多领域如食品、染织、有机合成、生物修复、传感器等方面都有应用的潜力。漆酶来源广泛,如植物、动物、细菌及真菌等,真菌是自然界中漆酶的主要生产者,相较其它来源的漆酶,真菌漆酶具有较高的氧化能力。目前,由于真菌漆酶产量低、不易放大生产等因素,制约了漆酶在工农业生产及环保等领域中的应用。筛选到优良的产漆酶菌株、实现高效生产、获得性能稳定的漆酶及开发漆酶的应用具有一定的理论意义和实践价值。本论文从中国亚热带地区筛选到一株白腐密孔菌属真菌,对其进行了分类学鉴定,然后针对该菌株发酵产漆酶的能力、酶学性质及其在预处理生物质促进糖化、对染织废水脱色及缓解土壤斥水性等方面进行了研究。论文的主要研究结果如下:
     从中国亚热带地区广东省筛选到一株产漆酶的白腐真菌,对该真菌进行了形态学观察及分子生物学鉴定,基于rRNA基因序列的聚类分析构建了进化树,将该菌命名为Pycnoporus sp. SYBC-L3。考察了不同营养元素及培养条件对该菌产漆酶的影响,得出了优化后的培养基为:麦芽糖14g/L,豆粕6g/L, KH_2HPO_41g/L, MgSO_4·7H_2O0.5g/L,Na_2HPO_4·12H_2O0.2g/L, Cu~(2+)1.5mmol/L,香兰素1mmol/L, Mn~(2+)0.2mmol/L;较优的培养条件为:起始pH值5.0、种龄3天、接种量10%、摇床转速200r/min。在该培养基和培养条件下,在摇瓶中胞外漆酶的最高活力出现在第8天,为45U/mL,为优化前的57倍;生物量也较优化前提高了21倍(培养时间提前了约3天),约为3.5g/L。
     以摇瓶优化的培养基和培养条件为基础对Pycnoporus sp. SYBC-L3在不同规模发酵罐上的产酶水平进行了研究,在所测试的几个发酵罐水平上均取得了较好的酶活产量,其中在50L搅拌式发酵罐中取得了最高的酶产量,为110U/mL。对发酵罐中所产的粗酶进行了部分性质研究,发现粗酶在0-100℃的范围内均有较高的催化能力,最适温度为55℃,最适pH值为3.5,粗酶具有良好的热稳定性,在不同温度下的半衰期分别为4h (70℃)、6.5h (60℃)和10h (50℃),室温下粗酶以液体的形式储存一年后依然有80%的活力。对粗酶中包括漆酶在内的主要蛋白质成分进行了分析,发现发酵液中有至少存在13种不同的胞外蛋白质,其中主要组分是三中漆酶同工酶。采用喷雾干燥法将液体粗酶制成了粉剂漆酶,酶活的回收率达到80%左右。
     对漆酶进行了分离纯化及性质研究。通过硫酸铵沉淀、凝胶除盐及离子交换层析三步纯化,获得了漆酶纯酶lac-L,回收率为28%,比活提高了4.67倍。Lac-L的分子量约为58kDa,N端15个氨基酸序列为AIGPVADLTLTNAAV,lac-L活力的最适pH及最适温度有底物依赖性,pH在酸性范围内,温度在50-70℃之间具有较高的催化效率。Lac-L的最适底物为ABTS,其次为DMP、愈创木酚及丁香醛连氮。Lac-L具有较好的温度及pH稳定性,在70℃和60℃时的半衰期分别为3h和5h,在pH6-9的范围内于室温下保温24h后有80%以上的活力,lac-L对大部分金属离子具有一定的耐受性,但受到Ag~+、Fe~(2+)及Fe~(3+)的抑制。用圆二色谱技术对lac-L进行了二级结构预测,发现lac-L含有2%的α-螺旋、51%的β-折叠及47%的无规则卷曲,三种抑制漆酶活性的金属离子(Ag~+、Fe~(2+)及Fe~(3+))在高浓度时均导致了漆酶二级结构的改变。
     能源作物switchgrass(柳枝稷)是生产燃料乙醇的重要原料之一,糖化过程是整个燃料乙醇生产中的限速步骤。用真菌Pycnoporus sp. SYBC-L3对switchgrass进行了预处理研究,旨在提高后续的糖化效率并同步实现产漆酶。真菌处理switchgrass后导致其化学组成发生了变化,其中真菌培养36天时发现选择性降解木质素的力度最大,相对残留的纤维素及半纤维素较高,对促进糖化最有利,但副产品漆酶的最高活力出现在第54天。预处理36天后的switchgrass比未处理的switchgrass在糖化效率方面提高了50%。糖化效率随纤维素酶用量的增加而增加,最高糖化效率为90%(葡聚糖)和40%(木聚糖)。在为期5天的糖化过程中,最高的单糖释放率出现在初始的12h内。FTIR光谱分析表明,真菌预处理导致生物质结构及化学组成上的变化,连接木质素与纤维素及半纤维素直接的化学键发生断裂。电镜观察证实了真菌的处理在switchgrass表面形成了不同程度的孔洞,破坏了生物质的致密性与坚韧度。
     对废弃物的处理及重新利用越来越受重视,染织废水的综合处理是当前的难题之一。尝试了用含有蒽醌类染料的染织废水作为液体培养基对真菌Pycnoporus sp.SYBC-L3进行了培养,达到了去除颜色及同步产漆酶的效果。在80%的染织废水中真菌能产出相对较高的酶活力,添加了木质纤维类废弃物芦苇后,产酶能力得到增强,在添加10g/L芦苇的条件下,最大漆酶活力为5.6U/mL,颜色的去除率为70%。研究结果可为废水处理及污染物的控制提供参考方法。
     高尔夫球场使用大量的沙质化土壤,土壤斥水现象的发生不可避免,由此引发草皮的大量死亡。将真菌Pycnoporus sp. SYBC-L3预处理switchgrass时产生的副产品(漆酶粗酶制剂)进行了缓解高尔夫球场土壤斥水性的应用研究。对不同球场采集的土壤样品分析发现,几乎所有的土壤都表现出了中度甚至严重斥水现象。在实验室水平上,该粗酶能缓解高尔夫球场表层土壤的斥水性,效果非常明显;酶活力越高,处理后的土壤亲水性越强。酶处理时间在第1天就可以基本消除土壤斥水现象。用酶处理土壤后,将废弃的酶液抽提出来,经活力测定发现,残余活力依然有一半以上,表明该漆酶在自然环境中具有较好的稳定性。因此,该漆酶有望用于高尔夫球场的草坪管理中,缓解由于土壤斥水引起的草皮死亡。
Laccase (EC1.10.3.2) is a blue copper-containing oxidoreductase, capable ofpolymerizing, degrading and transforming a large variety of phenolic and non-phenoliccompounds. During one-electron transfer among copper atoms within active center, molecularoxygen is concomitantly reduced to water. In view of its wide spectrum of catalytic substrates,laccase is being increasingly found its applications in numerous fields such as food industry,textile dying and decolorization, biosynthesis and bioremediation as well as biosensor.Laccase is mostly produced by fungi in nature and fungal laccases represent the relativelyhigh catalytic capability among various lassase sources. Overview of published literaturereveals that in-depth applications of laccase can be restricted by low laccase yields with highproduction input. Screening potential wild-type fungus from nature with hyper-ability oflaccase excretion can hereof significantly contribute to full applications of this enzyme inindustrial and environmental aspects. The following research conducted a series of studiesbeginning with isolation of a white-rot fungus and ending with application of laccase by thisfungus, within which optimizing laccase production in flask level, conducting fermentationprocesses in various bioreactors, characterizing laccase properties and involving the fungusinto lignocellulosic biomass pretreatment and textile discharge treatment were also included.Below are the main findings from our research.
     1) A laccase-screting wild-type fungus isolated from a rotten wood was characterizedbased on its moyphological characteristics and molecular identification techniques anddesignated as Pycnoporus sp. SYBC-L3. Laccase production by this fungus was thenenhanced by optimizing some major medium components coupled with fermentationparameters and the favorable culture conditions are: initial pH value of5.0, seed age of3d,inoculum of10%and rotation rate of200rpm; the optimized medium consists of: maltose14g/L, soybean meal6g/L, KH_2HPO_41g/L, MgSO_4·7H_2O0.5g/L, Na_2HPO_4·7H_2O0.2g/L, Cu~(2+)1.5mmol/L, vanilla1mmol/L, Mn~(2+)0.2mmol/L which finally yielded the highest laccaseactivity up to45U/mL,57-fold higher than the un-optimized one.
     2) Laccase excretion abilities of Pycnoporus sp. SYBC-L3were further tested invarious bioreactors in light of the flask-obtained investigation. The highest laccase activity,110U/mL, was obtianed in a50L stirred bioreactor. The crude laccase exhibited promisingproperties in terms of high catalytic activity under broad temperatures ranging from0-100oCwith optimum T of55oC within acidic pH spectra. It displayed inconceivable relative activityof as high as40%and80%at0oC and100oC, respectively. Long half-lives were obtained forlaccase under all varying temperatures assayed, especially at room temperature. Enzymecocktail of the culture broth was then subjected to nano-LC-MS/MS for predominantextracellular protein identification, which suggested that at least13differetn proteins existedin the fungal culture broth with three iso-laccases as the major ones. Crude laccase powderwas successfully prepared using spray-dryer with activity recovery of approximatedly80%.
     3) Pure laccase (designated as lac-L) was harvested by a three-step purification process,resulting in a purification fold of4.67and activity recovery of28%. Lac-L has an estimated molecular weight of58kDa and pI of4.7. N-terminal amino sequence of lac-L wasdetermined as AIGPVADLTLTNAAV. Optimal T and pH of lac-L were substrate-dependentbut generally in the range of T50-70oC and pH3-5. ABTS was proved to be the best substrate,followed by DMP, guaiacol and SGZ. Lac-L was tolerant to most metal ions but dramticallydepressed by Ag~+, Fe~(2+)and Fe~(3+)at even low concentrations. Sr~(2+)imparted weak stimuluseffect on lac-L activity. Stamina profiles of lac-L on elevated temperatures suggested thatlac-L was as excellent as or higher than other thermostable fungal laccases. The stabilities oflac-L towards high temperature and pH as well as deactivation by some metal ions wereelucidated using CD specturm technique.
     4) Energy crop switchgrass is one of the most promising lignocellulosic feedstocks forbioethanol production, in which cellulose conversion is a rate-limiting step. Fungalpretreatment by Pycnoporus sp. SYBC-L3was performed herein to enhance subsequentsaccharification and simultaneously produce useful enzymes as a co-product. The funguscaused dramatic changes in chemical composition in pretreated switchgrass over time. Thehighest lignin removal and saccharification efficiency was attained for cultivation time36dwhile the peak enzyme activity occurred at54d. SEM associated with FTIR techniquesdemonstrated that fungal pretreatmetn formed numorous pores or pits on the biomass surfaceand altered the chemical compositions of switchgrass, thereafter the recalcitrance coupledwith intensity of this biomass significantly reduced.
     5) Treatment and re-utilization of wastes have been foci worldwide in recent years.Fungal cultivation of Pycnoporus sp. SYBC-L3in textile effluent was for the first timeattempted to achieve both color removal and laccase production. The favorable concentrationof textile for maximum fungal growth and laccase activity was shown to be80%. Amendmentof80%textile effluent with12g/L lignocellulosic biomass Phragmites australis enhancedlaccase production, under which the peak activity reached5.6U/mL and70%color removaloccurred in this culture sytem. This novel scheme provides an alternative of management oftexteile effluent as well as other environmental pollutants control.
     6) Soil water repellency (SWR) is a re-occurring phenomenon on sandy soil on golfcourt and thus induce serious turfgrass death. The crude enzyme extract (CEE), derived fromthe fungal pretreatment of switchgrass as above mentioned, was firstly employed to mitigateSWR seveity of sampled soils from variously located golf courts. All collected soils presentedwater repellency to varying extents and returned to hydrophilic status following with the CEEtreatment. Effective alleviation of hydrophobicity were achieved in1-d treatment with nofurther significant changes observed in the following4-d treatment. High residual enzymeactivities, around50%or higher, remained in the filtrate of enzymatic soil treatment for5days. The possible mechanisms for alleviation of SWR with enzymatic treatment were thusdiscussed. Potentially, laccase enzyme liquid might serve as a biological agent for preventionand amelioration of turfgrass soils in golf court management.
引文
[1] Eggert C. Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity ofPycnoporus cinnabarinus [J]. Microbiol Res,1997,152(3):315-318.
    [2] Couto SR, Toca-Herrera JL. Laccase production at reactor scale by filamentous fungi [J]. BiotechnolAdv,2007,25(6):558-569.
    [3] Floudas D, Binder M, Riley R, et al. The paleozoic origin of enzymatic lignin decompositionreconstructed from31fungal genomes [J]. Science,2012,336(6089):1715-1719.
    [4] Tuor U, Winterhalter K, Fiechter A. Enzymes of white-rot fungi involved in lignin degradation andecological determinants for wood decay [J]. J Biotechnol,1995,41(1):1-17.
    [5] Rodríguez Couto S, Rodríguez A, Paterson RRM, et al. Laccase activity from the fungus Trameteshirsuta using an air-lift bioreactor [J]. Lett Appl Microbial,2006,42(6):612-616.
    [6] Baldrian P. Fungal laccases–occurrence and properties [J]. FEMS Microbiol Rev,2006,30(2):215-242.
    [7] Blackwood CB, Waldrop MP, Zak DR, et al. Molecular analysis of fungal communities and laccasegenes in decomposing litter reveals differences among forest types but no impact of nitrogendeposition [J]. Environ Microbiol,2007,9(5):1306-1316.
    [8] Arora DS, Chander M, Gill PK. Involvement of lignin peroxidase, manganese peroxidase and laccase indegradation and selective ligninolysis of wheat straw [J]. Int Biodeter Biodegr,2002,50(2):115-120.
    [9] Martínez áT, Ruiz-Due as FJ, Martínez MJ, et al. Enzymatic delignification of plant cell wall: fromnature to mill [J]. Curr Opin Biotech,2009,20(3):348-357.
    [10] Vivekanand V, Dwivedi P, Sharma A, et al. Enhanced delignification of mixed wood pulp byAspergillus fumigatus laccase mediator system [J]. World J Microbiol Biotechnol,2008,24(12):2799-2804.
    [11] Balan DSL, Monteiro RTR. Decolorization of textile indigo dye by ligninolytic fungi [J]. J Biotechnol,2001,89(2-3):141-145.
    [12] Casas N, Parella T, Vicent T, et al. Metabolites from the biodegradation of triphenylmethane dyes byTrametes versicolor or laccase [J]. Chemosphere,2009,75(10):1344-1349.
    [13] Balan V, da Costa Sousa L, Chundawat S, et al. Mushroom spent straw: a potential substrate for anethanol-based biorefinery [J]. J Ind Microbiol Biotech,2008,35(5):293-301.
    [14] Blánquez P, Guieysse B. Continuous biodegradation of17β-estradiol and17α-ethynylestradiol byTrametes versicolor [J]. J Hazard Mater,2008,150(2):459-462.
    [15] Bumpus JA, Tien M, Wright D, et al. Oxidation of persistent environmental pollutants by a white rotfungus [J]. Science,1985,228(4706):1434-1436.
    [16] Cambria MT, Minniti Z, Librando V, et al. Degradation of polycyclic aromatic hydrocarbons byRigidoporus lignosus and its laccase in the presence of redox mediators [J]. Appl Biochem Biotechnol,2008,149(1):1-8.
    [17] Cheong S, Yeo S, Song H-G, et al. Determination of laccase gene expression during degradation of2,4,6-trinitrotoluene and its catabolic intermediates in Trametes versicolor [J]. Microbiol Res,2006,161(4):316-320.
    [18] Blánquez P, SarràM, Vicent T. Development of a continuous process to adapt the textile wastewatertreatment by fungi to industrial conditions [J]. Proc Biochem,2008,43(1):1-7.
    [19] Zadra il F. Conversion of different plant waste into feed by basidiomycetes [J]. Appl MicrobiolBiotechnol,1980,9(3):243-248.
    [20] Arora DS, Gill PK. Laccase production by some white rot fungi under different nutritional conditions[J]. Bioresource Technol,2000,73(3):283-285.
    [21] Bermek H, Li K, Eriksson KE-L. Laccase-less mutants of the white-rot fungus Pycnoporuscinnabarinus cannot delignify kraft pulp [J]. J Biotechnol,1998,66(2-3):117-124.
    [22] Eggert C, Temp U, Eriksson KE. Laccase is essential for lignin degradation by the white-rot fungusPycnoporus cinnabarinus [J]. FEBS Lett,1997,407(1):89-92.
    [23] Fenice M, Giovannozzi Sermanni G, Federici F, et al. Submerged and solid-state production of laccaseand Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media [J]. J Biotechnol,2003,100(1):77-85.
    [24] Arora DS, Gill PK. Effects of various media and supplements on laccase production by some white rotfungi [J]. Bioresour Technol,2001,77(1):89-91.
    [25] Hsu C-A, Wen T-N, Su Y-C, et al. Biological degradation of anthroquinone and azo dyes by a novellaccase from Lentinus sp [J]. Environ Sci Technol,2012,46(9):5109-5117.
    [26] Rodgers CJ, Blanford CF, Giddens SR, et al. Designer laccases: a vogue for high-potential fungalenzymes?[J]. Trends Biotechnol,2009,28(2):63-72.
    [27] Briving C, Gandvik EK, Nyman PO. Structural studies around cysteine and cystine residues in the"blue" oxidase fungal laccase B. Similarity in amino acid sequence with ceruloplasmin [J]. BiochemBioph Res Co,1980,93(2):454-461.
    [28] Hoegger PJ, Kilaru S, James TY, et al. Phylogenetic comparison and classification of laccase andrelated multicopper oxidase protein sequences [J]. FEBS J,2006,273(10):2308-2326.
    [29] Laufer Z, Beckett RP, Minibayeva FV. Co-occurrence of the multicopper oxidases tyrosinase andlaccase in lichens in sub-order Peltigerineae [J]. Ann Bot,2006,98(5):1035-1042.
    [30] Abdel-Raheem AM. Laccase activity of lignicolous aquatic hyphomycetes isolated from the RiverNile in Egypt [J]. Mycopathologia,1997,139(3):145-150.
    [31] Lu L, Zhao M, Zhang BB, et al. Purification and characterization of laccase from Pycnoporussanguineus and decolorization of an anthraquinone dye by the enzyme [J]. Appl Microbiol Biotechnol,2007,74(6):1232-1239.
    [32] Sigoillot J-C, Herpoel I, Frasse P, et al. Laccase production by a monokaryotic strain of Pycnoporuscinnabarinus derived from a dikaryotic strain [J]. World J Microbiol Biotechnol,1999,15(4):481-484.
    [33] Holwerda RA, Gray HB. Kinetics of the reduction of Rhus vernicifera laccase by ferrocyanide ion [J].J Am Chem Soc,1975,97(21):6036-6041.
    [34] Hoopes JT, Dean JF. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendrontulipifera [J]. Plant Physiol Bioch,2004,42(1):27-33.
    [35] McCaig BC, Meagher RB, Dean JFD. Gene structure and molecular analysis of the laccase-likemulticopper oxidase (LMCO) gene family in Arabidopsis thaliana [J]. Planta,2005,221(5):619-636.
    [36] Wang J, Wang C, Zhu M, et al. Generation and characterization of transgenic poplar plantsoverexpressing a cotton laccase gene [J]. Plant Cell Tiss Org,2008,93(3):303-310.
    [37] Kiefer-Meyer MC, Gomord V, O'Connell A, et al. Cloning and sequence analysis of laccase-encodingcDNA clones from tobacco [J]. Gene,1996,178(1-2):205-207.
    [38] Claus H. Laccases and their occurrence in prokaryotes [J]. Arch Microbiol,2003,179(3):145-150.
    [39] Alexandre G, Bally R, Taylor BL, et al. Loss of cytochrome c oxidase activity and acquisition ofresistance to quinone analogs in a laccase-positive variant of Azospirillum lipoferum [J]. J Bacteriol,1999,181(21):6730-6738.
    [40] Arias ME, Arenas M, Rodriguez J, et al. Kraft pulp biobleaching and mediated oxidation of anonphenolic substrate by laccase from Streptomyces cyaneus CECT3335[J]. Appl Environ Microbiol,2003,69(4):1953-1958.
    [41] Brissos V, Pereira L, Munteanu F-D, et al. Expression system of CotA-laccase for directed evolutionand high-throughput screenings for the oxidation of high-redox potential dyes.[see comment][J].Biotechnol J,2009,4(4):558-563.
    [42] Enguita FJ, Matias PM, Martins LO, et al. Spore-coat laccase CotA from Bacillus subtilis:crystallization and preliminary X-ray characterization by the MAD method [J]. Acta Crystallogr D,2002,58(Pt9):1490-1493.
    [43] Cardenas W, Dankert JR. Cresolase, catecholase and laccase activities in haemocytes of the redswamp crayfish [J]. Fish Shellfish Immun,2000,10(1):33-46.
    [44] Arakane Y, Muthukrishnan S, Beeman RW, et al. Laccase2is the phenoloxidase gene required forbeetle cuticle tanning [J]. P Natl Acad Sci,2005,102(32):11337-11342.
    [45] Otto B, Schlosser D, Reisser W. First description of a laccase-like enzyme in soil algae [J]. ArchMicrobiol,2010,192(9):759-768.
    [46] Bao W, O'Malley DM, Whetten R, et al. A laccase associated with lignification in Loblolly PineXylem [J]. Science,1993,260(5108):672-674.
    [47] Cai X, Davis EJ, Ballif J, et al. Mutant identification and characterization of the laccase gene family inArabidopsis [J]. J Exp Bot,2006,57(11):2563-2569.
    [48] Bertrand T, Jolivalt C, Briozzo P, et al. Crystal structure of a four-copper laccase complexed with anarylamine: insights into substrate recognition and correlation with kinetics [J]. Biochemistry,2002,41(23):7325-7333.
    [49] Ahmadi N, Mibus H, Serek M. Characterization of ethylene-induced organ abscission in F1breedinglines of miniature roses (Rosa hybrida L.)[J]. Postharvest Biol Tec,2009,52(3):260-266.
    [50] Enguita FJ, Martins LO, Henriques AO, et al. Crystal structure of a bacterial endospore coatcomponent. A laccase with enhanced thermostability properties [J]. J Biol Chem,2003,278(21):19416-19425.
    [51] Rodríguez Couto S, Sanromán MA. Application of solid-state fermentation to ligninolytic enzymeproduction [J]. Biochem Eng J,2005,22(3):211-219.
    [52] Pandey A, Soccol CR, Mitchell D. New developments in solid state fermentation: I-bioprocesses andproducts [J]. Proc Biochem,2000,35(10):1153-1169.
    [53] Quaratino D, Ciaffi M, Federici E, et al. Response surface methodology study of laccase production inPanus tigrinus liquid cultures [J]. Biochem Eng J,2008,39236-245.
    [54] Cambria M, Ragusa S, Calabrese V, et al. Enhanced laccase production in white-rot fungusRigidoporus lignosus by the addition of selected phenolic and aromatic compounds [J]. Appl BiochemBiotechnol,2010,1-8.
    [55] Chefetz B, Chen Y, Hadar Y. Purification and characterization of laccase from Chaetomiumthermophilium and its role in humification [J]. Appl Environ Microbiol,1998,64(9):3175-3179.
    [56] Bose S, Mazumder S, Mukherjee M. Laccase production by the white-rot fungus Termitomycesclypeatus [J]. J Basic Microb,2007,47(2):127-131.
    [57] Liu L, Lin Z, Zheng T, et al. Fermentation optimization and characterization of the laccase fromPleurotus ostreatus strain10969[J]. Enzyme Microb Technol,2009,44(6–7):426-433.
    [58] Eggert C, Temp U, Dean JF, et al. A fungal metabolite mediates degradation of non-phenolic ligninstructures and synthetic lignin by laccase [J]. FEBS Lett,1996,391(1-2):144-148.
    [59] Kahraman S, Yesilada O. Industrial and agricultural wastes as substrates for laccase production bywhite-rot fungi [J]. Folia Microbiol,2001,46(2):133-136.
    [60] D’Souza-Ticlo D, Sharma D, Raghukumar C. A thermostable metal-tolerant laccase withbioremediation potential from a marine-derived fungus [J]. Mar Biotechnol,2009,11(6):725-737.
    [61] Monteiro MC, De Carvalho ME. Pulp bleaching using laccase from trametes versicolor under hightemperature and alkaline conditions [J]. Appl Biochem Biotechnol,1998,70-72983-993.
    [62] Thurston CF. The structure and function of fungal laccases [J]. Microbiology,1994,140(1):19-26.
    [63] Pointing SB, Jones EBG, Vrijmoed LLP. Optimization of laccase production by Pycnoporussanguineus in submerged liquid culture [J]. Mycologia,2000,92(1):139-144.
    [64] Bains J, Capalash N, Sharma P. Laccase from a non-melanogenic, alkalotolerant
    [gamma]-proteobacterium JB isolated from industrial wastewater drained soil [J]. Biotechnol Lett,2003,25(14):1155-1159.
    [65] Baldrian P, Gabriel J. Copper and cadmium increase laccase activity in Pleurotus ostreatus [J]. FEMSMicrobiol Lett,2002,206(1):69-74.
    [66] Dhawan S, Lal R, Hanspal M, et al. Effect of antibiotics on growth and laccase production fromCyathus bulleri and Pycnoporus cinnabarinus [J]. Bioresource Technol,2005,96(12):1415-1418.
    [67] Meza JC, Auria R, Lomascolo A, et al. Role of ethanol on growth, laccase production and proteaseactivity in Pycnoporus cinnabarinus ss3[J]. Enzyme Microb Technol,2007,41(1-2):162-168.
    [68] Lomascolo A, Record E, Herpoel-Gimbert I, et al. Overproduction of laccase by a monokaryotic strainof Pycnoporus cinnabarinus using ethanol as inducer [J]. J Appl Microbiol,2003,94(4):618-624.
    [69] Mougin C, Kollmann A, Jolivalt C. Enhanced production of laccase in the fungus Trametes versicolorby the addition of xenobiotics [J]. Biotechnol Lett,2002,24(2):139-142.
    [70] Ranca o G, Lorenzo M, Molares N, et al. Production of laccase by Trametes versicolor in an airliftfermentor [J]. Proc Biochem,2003,39(4):467-473.
    [71] Carbajo JM, Junca H, Terron MC, et al. Tannic acid induces transcription of laccase gene cglcc1in thewhite-rot fungus Coriolopsis gallica [J]. Can J Microbiol,2002,48(12):1041-1047.
    [72] Baldrian P. Increase of laccase activity during interspecific interactions of white-rot fungi [J]. FEMSMicrobiol Ecol,2004,50(3):245-253.
    [73] Revankar MS, Lele SS. Enhanced production of laccase using a new isolate of white rot fungus WR-1[J]. Proc Biochem,2006,41(3):581-588.
    [74] Jamroz T, Sencio B, Ledakowicz S. Efficiency of laccase biosynthesis in various types of fermenters[J]. J Biotechnol,2007,131S S161.
    [75] Galhaup C, Haltrich D. Enhanced formation of laccase activity by the white-rot fungus Trametespubescens in the presence of copper [J]. Appl Microbiol Biotechnol,2001,56(1-2):225-232.
    [76] Galhaup C, Wagner H, Hinterstoisser B, et al. Increased production of laccase by the wood-degradingbasidiomycete Trametes pubescens [J]. Enzyme Microb Technol,2002,30529-536.
    [77] Cantarella G, d'Acunzo F, Galli C. Determination of laccase activity in mixed solvents: comparisonbetween two chromogens in a spectrophotometric assay [J]. Biotech Bioeng,2003,82(4):395-398.
    [78] Carunchio F, Crescenzi C, Girelli AM, et al. Oxidation of ferulic acid by laccase: identification of theproducts and inhibitory effects of some dipeptides [J]. Talanta,2001,55(1):189-200.
    [79] Brinch DS, Pedersen PB. Toxicological studies on laccase from Myceliophthora thermophilaexpressed in Aspergillus oryzae [J]. Regul Toxicol Pharm,2002,35(3):296-307.
    [80] Galai S, Limam F, Marzouki M. A new Stenotrophomonas maltophilia strain producing laccase. Usein decolorization of synthetics dyes [J]. Appl Biochem Biotechnol,2009,158(2):416-431.
    [81] Ander P, Messner K. Oxidation of1-hydroxybenzotriazole by laccase and lignin peroxidase [J].Biotechnology Techniques,1998,12(3):191-195.
    [82] Badiani M, Felici M, Luna M, et al. Laccase assay by means of high-performance liquidchromatography [J]. Anal Biochem,1983,133(2):275-276.
    [83] Elisashvili V, Kachlishvili E. Physiological regulation of laccase and manganese peroxidaseproduction by white-rot Basidiomycetes [J]. J Biotechnol,2009,144(1):37-42.
    [84] Wang HX, Ng TB. Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii[J]. Appl Microbiol Biotechnol,2006,69(5):521-525.
    [85] Marbach I, Harel E, Mayer AM. Molecular properties of extracellular Botrytis cinerea laccase [J].Phytochemistry,1984,23(12):2713-2717.
    [86] Ben Younes S, Mechichi T, Sayadi S. Purification and characterization of the laccase secreted by thewhite rot fungus Perenniporia tephropora and its role in the decolourization of synthetic dyes [J]. JAppl Microbiol,2007,102(4):1033-1042.
    [87] de la Rubia T, Ruiz E, Perez J, et al. Properties of a laccase produced by Phanerochaete flavido-albainduced by vanillin [J]. Arch Microbiol,2002,179(1):70-73.
    [88] Hatakka A. Lignin-modifying enzymes from selected white-rot fungi: production and role from inlignin degradation [J]. FEMS Microbiol Rev,1994,13(2-3):125-135.
    [89] Kurtz MB, Champe SP. Purification and characterization of the conidial laccase of Aspergillusnidulans [J]. J Bacteriol,1982,151(3):1338-1345.
    [90] Klonowska A, Gaudin C, Fournel A, et al. Characterization of a low redox potential laccase from thebasidiomycete C30[J]. Eur J Biochem,2002,269(24):6119-6125.
    [91] Kiiskinen LL, Viikari L, Kruus K. Purification and characterisation of a novel laccase from theascomycete Melanocarpus albomyces [J]. Appl Microbiol Biotechnol,2002,59(2-3):198-204.
    [92] Haibo Z, Yinglong Z, Feng H, et al. Purification and characterization of a thermostable laccase withunique oxidative characteristics from Trametes hirsuta [J]. Biotechnol Lett,2009,31(6):837-843.
    [93] Perez J, Martinez J, de la Rubia T. Purification and partial characterization of a laccase from the whiterot fungus Phanerochaete flavido-alba [J]. Appl Environ Microbiol,1996,62(11):4263-4267.
    [94] Kim Y, Yeo S, Kim MK, et al. Removal of estrogenic activity from endocrine-disrupting chemicals bypurified laccase of Phlebia tremellosa [J]. FEMS Microbiol Lett,2008,284(2):172-175.
    [95] Eggert C, Temp U, Eriksson K. The ligninolytic system of the white rot fungus Pycnoporuscinnabarinus: purification and characterization of the laccase [J]. Appl Environ Microbiol,1996,62(4):1151-1158.
    [96] Abadulla E, Tzanov T, Costa S, et al. Decolorization and detoxification of textile dyes with a laccasefrom Trametes hirsuta [J]. Appl Environ Microbiol,2000,66(8):3357-3362.
    [97] Chernykh A, Myasoedova N, Kolomytseva M, et al. Laccase isoforms with unusual properties fromthe basidiomycete Steccherinum ochraceum strain1833[J]. J Appl Microbiol,2008,105(6):2065-2075.
    [98] Yano A, Kikuchi S, Nakagawa Y, et al. Secretory expression of the non-secretory-type Lentinulaedodes laccase by Aspergillus oryzae [J]. Microbiol Res,2009,164(6):642-649.
    [99] Kurniawati S, Nicell JA. Characterization of Trametes versicolor laccase for the transformation ofaqueous phenol [J]. Bioresource Technol,2008,99(16):7825-7834.
    [100] Couto SR, Sanromán Má. The effect of violuric acid on the decolourization of recalcitrant dyes bylaccase from Trametes hirsuta [J]. Dyes Pigments,2007,74(1):123-126.
    [101] Aktas N, Cicek H, Unal AT, et al. Reaction kinetics for laccase-catalyzed polymerization of1-naphthol [J]. Bioresource Technol,2001,80(1):29-36.
    [102] Aktas N, Sahiner N, Kantoglu O, et al. Biosynthesis and characterization of laccase catalyzedpoly(catechol)[J]. J Polym Environ,2003,11(3):123-128.
    [103] Alcantara T, Gomez J, Pazos M, et al. Enhanced production of laccase in Coriolopsis rigida grownon barley bran in flask or expanded-bed bioreactor [J]. World J Microbiol Biotechnol,2007,23(8):1189-1194.
    [104] Call HP, Mücke I. History, overview and applications of mediated lignolytic systems, especiallylaccase-mediator-systems (Lignozym-process)[J]. J Biotechnol,1997,53(2-3):163-202.
    [105] Brogioni B, Biglino D, Sinicropi A, et al. Characterization of radical intermediates inlaccase-mediator systems. A multifrequency EPR, ENDOR and DFT/PCM investigation [J]. PhysicalChemistry Chemical Physics,2008,10(48):7284-7292.
    [106] Claus H, Faber G, K nig H. Redox-mediated decolorization of synthetic dyes by fungal laccases [J].Appl Microbiol Biotechnol,2002,59(6):672-678.
    [107] Chen S, Ge W, Buswell JA. Biochemical and molecular characterization of a laccase from the ediblestraw mushroom, Volvariella volvacea [J]. Eur J Biochem,2004,271(2):318-328.
    [108] Madzak C, Otterbein L, Chamkha M, et al. Heterologous production of a laccase from thebasidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica [J]. FEMS YeastRes,2005,5(6-7):635-646.
    [109] Hong Y-z, Zhou H-m, Tu X-m, et al. Cloning of a laccase gene from a novel basidiomycete Trametessp.420and its heterologous expression in Pichia pastoris [J]. Curr Microbiol,2007,54(4):260-265.
    [110] Selinheimo E, Kruus K, Buchert J, et al. Effects of laccase, xylanase and their combination on therheological properties of wheat doughs [J]. J Cereal Sci,2006,43(2):152-159.
    [111] Alper N, Acar J. Removal of phenolic compounds in pomegranate juices using ultrafiltration andlaccase-ultrafiltration combinations [J]. Nahrung,2004,48(3):184-187.
    [112] Alberts JF, Gelderblom WCA, Botha A, et al. Degradation of aflatoxin B1by fungal laccaseenzymes [J]. Int J Food Microbiol,2009,135(1):47-52.
    [113] Ahn M-Y, Dec J, Kim J-E, et al. Treatment of2,4-dichlorophenol polluted soil with free andimmobilized laccase [J]. J Environ Qual,2002,31(5):1509-1515.
    [114] Amitai G, Adani R, Sod-Moriah G, et al. Oxidative biodegradation of phosphorothiolates by fungallaccase [J]. FEBS Lett,1998,438(3):195-200.
    [115] Auriol M, Filali-Meknassi Y, Adams CD, et al. Removal of estrogenic activity of natural andsynthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccasefrom Trametes versicolor [J]. Chemosphere,2008,70(3):445-452.
    [116] Auriol M, Filali-Meknassi Y, Tyagi RD, et al. Laccase-catalyzed conversion of natural and synthetichormones from a municipal wastewater [J]. Water Res,2007,41(15):3281-3288.
    [117] Canas AI, Alcalde M, Plou F, et al. Transformation of polycyclic aromatic hydrocarbons by laccaseis strongly enhanced by phenolic compounds present in soil [J]. Environ Sci Technol,2007,41(8):2964-2971.
    [118] Canfora L, Iamarino G, Rao MA, et al. Oxidative transformation of natural and synthetic phenolicmixtures by Trametes versicolor laccase [J]. J Agric Food Chem,2008,56(4):1398-1407.
    [119] Bollag JM, Liu SY, Minard RD. Asymmetric diphenol formation by a fungal laccase [J]. ApplEnviron Microbiol,1979,38(1):90-92.
    [120] Polak J, Jarosz-Wilkolazka A. Whole-cell fungal transformation of precursors into dyes [J]. MicrobCell Fact,2010,9(1):51.
    [121] Kunamneni A, Camarero S, Garcia-Burgos C, et al. Engineering and applications of fungal laccasesfor organic synthesis [J]. Microb Cell Fact,2008,7(1):32.
    [122] Zhang G-Q, Wang Y-F, Zhang X-Q, et al. Purification and characterization of a novel laccase fromthe edible mushroom Clitocybe maxima [J]. Proc Biochem,2010,45(5):627-633.
    [123] Wang HX, Ng TB. A new laccase from dried fruiting bodies of the monkey head mushroomHericium erinaceum [J]. Biochem Bioph Res Co,2004,322(1):17-21.
    [124] Wang HX, Ng TB. A laccase from the medicinal mushroom Ganoderma lucidum [J]. Appl MicrobiolBiotechnol,2006,72(3):508-513.
    [125] Service RF. Biofuel Cells [J]. Science,2002,296(5571):1223.
    [126] Alves AM, Record E, Lomascolo A, et al. Highly efficient production of laccase by thebasidiomycete Pycnoporus cinnabarinus.[J]. Appl Environ Microbiol,2004,70(11):6379-6384.
    [127] Li X, Wei Z, Zhang M, et al. Crystal structures of E. coli laccase CueO at different copperconcentrations [J]. Biochem Bioph Res Co,2007,354(1):21-26.
    [128] Vanhulle S, Radman R, Parra R, et al. Effect of mannan oligosaccharide elicitor and ferulic acid onenhancement of laccases production in liquid cultures of basidiomycetes [J]. Enzyme Microb Technol,2007,40(7):1712-1718.
    [129] Teerapatsakul C, Parra R, Bucke C, et al. Improvement of laccase production from Ganoderma sp.KU-Alk4by medium engineering [J]. World J Microbiol Biotechnol,2007,23(11):1519-1527.
    [130] Wang Z, Cai Y, Liao X, et al. Production and characterization of a novel laccase with cold adaptationand high thermal stability from an isolated fungus [J]. Appl Biochem Biotechnol,2010,162(1):280-294.
    [131] Saparrat MCN, Cabello MN, Arambarri AM. Extracellular laccase activity in Tetraploa aristata [J].Biotechnol Lett,2002,24(16):1375-1377.
    [132] Jiménez-Tobon GA, Penninckx MJ, Lejeune R. The relationship between pellet size and productionof Mn(II) peroxidase by Phanerochaete chrysosporium in submerged culture [J]. Enzyme MicrobTechnol,1997,21(7):537-542.
    [133] Temp U, Eggert C. Novel interaction between laccase and cellobiose dehydrogenase during pigmentsynthesis in the white rot fungus Pycnoporus cinnabarinus [J]. Appl Environ Microbiol,1999,65(2):389-395.
    [134] Janusz G, Rogalski J, Szczodrak J. Increased production of laccase by Cerrena unicolor insubmerged liquid cultures [J]. World J Microbiol Biotechnol,2007,23(10):1459-1464.
    [135] Fonseca MI, Shimizu E, Zapata PD, et al. Copper inducing effect on laccase production of white rotfungi native from Misiones (Argentina)[J]. Enzyme Microb Technol,2010,46(6):534-539.
    [136] Arora DS, Sandhu DK. Laccase production and wood degradation by a white-rot fungus Daedaleaflavida [J]. Enzyme Microb Technol,1985,7(8):405-408.
    [137] Alcalde M, Ferrer M, Plou FJ, et al. Environmental biocatalysis: from remediation with enzymes tonovel green processes [J]. Trends Biotechnol,2006,24(6):281-287.
    [138] Ul-Haq N, Nasir H. Cleaner production technologies in desizing of cotton fabric [J]. J Text I,2012,103(3):304-310.
    [139] Mayer AM, Staples RC. Laccase: new functions for an old enzyme [J]. Phytochemistry,2002,60(6):551-565.
    [140] Lu J, Huang Q, Mao L. Removal of acetaminophen using enzyme-mediated oxidative couplingprocesses: I. Reaction rates and pathways [J]. Environ Sci Technol,2009,43(18):7062-7067.
    [141] Rodríguez Couto S, Toca Herrera JL. Industrial and biotechnological applications of laccases: Areview [J]. Biotechnol Adv,2006,24(5):500-513.
    [142] Quaratino D, D'Annibale A, Federici F, et al. Enzyme and fungal treatments and a combinationthereof reduce olive mill wastewater phytotoxicity on Zea mays L. seeds [J]. Chemosphere,2007,661627-1633.
    [143] Arockiasamy S, Krishnan IP, Anandakrishnan N, et al. Enhanced production of laccase fromCoriolus versicolor NCIM996by nutrient optimization using response surface methodology [J]. ApplBiochem Biotechnol,2008,151(2-3):371-379.
    [144] Jin B, Yin P, Lant P. Hydrodynamics and mass transfer coefficient in three-phase air-lift reactorscontaining activated sludge [J]. Chem Eng Process,2006,45(7):608-617.
    [145] Junker B, Moore J, Sturr M, et al. Pilot-scale production of intracellular and extracellular enzymes [J].Bioproc Biosyst Eng,2001,24(1):39-49.
    [146] Chervet JP, Mitulovic G, Varesio E, et al. Comprehensive2-D capillary/nano LC/MS for complexproteomics [J]. Pathol Res Pract,2004,200(4):281-282.
    [147] Moldes D, Gallego PP, Rodriguez couto S, et al. Grape seeds: the best lignocellulosic waste toproduce laccase by solid state cultures of Trametes hirsuta [J]. Biotechnol Lett,2003,25(6):491-495.
    [148] Colao M, Lupino S, Garzillo A, et al. Heterologous expression of lcc1gene from Trametes trogii inPichia pastoris and characterization of the recombinant enzyme [J]. Microb Cell Fact,2006,5(1):31.
    [149] Garcia T, Santiago M, Ulhoa C. Properties of Laccases Produced by Pycnoporus sanguineus inducedby2,5-xylidine.[J]. Biotechnol Lett,2006,28(9):633-636.
    [150] Dantan-Gonzalez E, Vite-Vallejo O, Martinez-Anaya C, et al. Production of two novel laccaseisoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropicalhabitat [J]. Int Microbiol,2008,11(3):163-169.
    [151] Singh Arora D, Kumar Sharma R. Ligninolytic fungal laccases and their biotechnologicalapplications [J]. Appl Biochem Biotechnol,2010,160(6):1760-1788.
    [152] Litthauer D, van Vuuren MJ, van Tonder A, et al. Purification and kinetics of a thermostable laccasefrom Pycnoporus sanguineus (SCC108)[J]. Enzyme Microb Technol,2007,40(4):563-568.
    [153] Birhanli E, Yesilada O. Enhanced production of laccase in repeated-batch cultures of Funalia trogiiand Trametes versicolor [J]. Biochem Eng J,2010,52(1):33-37.
    [154] Fernaud JR, Marina A, Gonzalez K, et al. Production, partial characterization and mass spectrometricstudies of the extracellular laccase activity from Fusarium proliferatum [J]. Appl MicrobiolBiotechnol,2006,70(2):212-221.
    [155] Hu DD, Zhang RY, Zhang GQ, et al. A laccase with antiproliferative activity against tumor cellsfrom an edible mushroom, white common Agrocybe cylindracea [J]. Phytomedicine,2011,18(5):374-379.
    [156] Wang Z-X, Cai Y-J, Liao X-R, et al. Purification and characterization of two thermostable laccaseswith high cold adapted characteristics from Pycnoporus sp. SYBC-L1[J]. Proc Biochem,2010,45(10):1720-1729.
    [157] Ko EM, Leem YE, Choi HT. Purification and characterization of laccase isozymes from the white-rotbasidiomycete Ganoderma lucidum [J]. Appl Microbiol Biotechnol,2001,57(1-2):98-102.
    [158] Osma JF, Toca-Herrera JL, Rodríguez-Couto S. Cost analysis in laccase production [J]. J EnvironManage,2011,92(11):2907-2912.
    [159] Miyazaki K. A hyperthermophilic laccase from Thermus thermophilus HB27[J]. Extremophiles,2005,9(6):415-425.
    [160] Kittl R, Mueangtoom K, Gonaus C, et al. A chloride tolerant laccase from the plant pathogenascomycete Botrytis aclada expressed at high levels in Pichia pastoris [J]. J Biotechnol,2012,157(2):304-314.
    [161] Salony, Garg N, Baranwal R, et al. Laccase of Cyathus bulleri: structural, catalytic characterizationand expression in Escherichia coli [J]. Biochimica et Biophysica Acta,2008,1784(2):259-268.
    [162] Garzillo AMV, Colao MC, Caruso C, et al. Laccase from the white-rot fungus Trametes trogii [J].Appl Microbiol Biotechnol,1998,49(5):545-551.
    [163] Nagai M, Sato T, Watanabe H, et al. Purification and characterization of an extracellular laccasefrom the edible mushroom Lentinula edodes, and decolorization of chemically different dyes [J]. ApplMicrobiol Biotechnol,2002,60(3):327-335.
    [164] Autore F, Del Vecchio C, Fraternali F, et al. Molecular determinants of peculiar properties of aPleurotus ostreatus laccase: Analysis by site-directed mutagenesis [J]. Enzyme Microb Technol,2009,45(6-7):507-513.
    [165] Agostinelli E, Cervoni L, Giartosio A, et al. Stability of Japanese-lacquer-tree (Rhus vernicifera)laccase to thermal and chemical denaturation: comparison with ascorbate oxidase [J]. Biochem J,1995,306(Pt3):697-702.
    [166] Guo L-Q, Lin S-X, Zheng X-B, et al. Production, purification and characterization of a thermostablelaccase from a tropical white-rot fungus [J]. World J Microbiol Biotechnol,2010,1-5.
    [167] Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: Current perspectives,potential issues and future prospects [J]. Prog Energ Combust,2012,38(4):449-467.
    [168] Li AD, Khraisheh M. Bioenergy II: Bio-ethanol from municipal solid waste (MSW): The role ofbiomass properties and structures during the ethanol conversion process [J]. Int J Chem React Eng,2010,8A85.
    [169] Liu J, Wang M, Tonnis B, et al. Fungal pretreatment of switchgrass for improved saccharificationand simultaneous enzyme production [J]. Bioresource Technol,2012,doi.org/10.1016/j.biortech.2012.10.095.
    [170] Samuel R, Pu Y, Foston M, et al. Solid-state NMR characterization of switchgrass cellulose afterdilute acid pretreatment [J]. Biofuels,2010,1(1):85-90.
    [171] McLaughlin SB, Walsh ME. Evaluating environmental consequences of producing herbaceous cropsfor bioenergy [J]. Biomass Bioenerg,1998,14(4):317-324.
    [172] Matsushika A, Inoue H, Murakami K, et al. Bioethanol production performance of five recombinantstrains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae [J]. BioresourceTechnol,2009,100(8):2392-2398.
    [173] Pallapolu VR, Lee YY, Garlock RJ, et al. Effects of enzyme loading and β-glucosidasesupplementation on enzymatic hydrolysis of switchgrass processed by leading pretreatmenttechnologies [J]. Bioresource Technol,2011,102(24):11115-11120.
    [174] Pessani NK, Atiyeh HK, Wilkins MR, et al. Simultaneous saccharification and fermentation ofKanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: The effect of enzymeloading, temperature and higher solid loadings [J]. Bioresource Technol,2011,102(22):10618-10624.
    [175] Taniguchi M, Suzuki H, Watanabe D, et al. Evaluation of pretreatment with Pleurotus ostreatus forenzymatic hydrolysis of rice straw [J]. J Biosci Bioeng,2005,100(6):637-643.
    [176] Bak JS, Kim MD, Choi I-G, et al. Biological pretreatment of rice straw by fermenting withDichomitus squalens [J]. New Biotechnol,2012,27(4):424-434.
    [177] Shi J, Sharma-Shivappa RR, Chinn MS. Microbial pretreatment of cotton stalks by submergedcultivation of Phanerochaete chrysosporium [J]. Bioresource Technol,2009,100(19):4388-4395.
    [178] Sun F-h, Li J, Yuan Y-x, et al. Effect of biological pretreatment with Trametes hirsuta yj9onenzymatic hydrolysis of corn stover [J]. Int Biodeter Biodegr,2011,65(7):931-938.
    [179] Wan C, Li Y. Microbial delignification of corn stover by Ceriporiopsis subvermispora for improvingcellulose digestibility [J]. Enzyme Microb Technol,2010,47(1–2):31-36.
    [180] Hatakka AI. Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose[J]. Appl Microbiol Biotechnol,1983,18(6):350-357.
    [181] Tien M, Kirk T-K. Lignin peroxidase of Phanerochaete chrysosporium [J]. Method Enzymol,1988,161238-249.
    [182] Boer CG, Obici L, Souza CGMd, et al. Decolorization of synthetic dyes by solid state cultures ofLentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme [J].Bioresource Technol,2004,94(2):107-112.
    [183] Turner BL, Hopkins DW, Haygarth PM, et al. β-Glucosidase activity in pasture soils [J]. Appl SoilEcol,2002,20(2):157-162.
    [184] Bals B, Rogers C, Jin M, et al. Evaluation of ammonia fibre expansion (AFEX) pretreatment forenzymatic hydrolysis of switchgrass harvested in different seasons and locations [J]. BiotechnolBiofuels,2010,3(1):1-11.
    [185] Esposito E, Innocentini-Mei LH, Ferraz A, et al. Phenoloxidases and hydrolases from Pycnoporussanguineus (UEC-2050strain): applications [J]. J Biotechnol,1993,29(3):219-228.
    [186] Liu J, Cai Y, Liao X, et al. Efficiency of laccase production in a65-liter air-lift reactor for potentialgreen industrial and environmental application [J]. J Clean Prod,2013,39(0):154-160.
    [187] De Almeida Siqueira EM, Mizuta K, Giglio JR. Pycnoporus sanguineus: a novel source of α-amylase[J]. Mycol Res,1997,101(2):188-190.
    [188] Yang H, Wu H, Wang X, et al. Selection and characteristics of a switchgrass-colonizing microbialcommunity to produce extracellular cellulases and xylanases [J]. Bioresource Technol,2011,102(3):3546-3550.
    [189] Cardona CA, Sánchez óJ. Fuel ethanol production: Process design trends and integrationopportunities [J]. Bioresource Technol,2007,98(12):2415-2457.
    [190] Du W, Yu H, Song L, et al. The promoting effect of byproduct from Irpex lacteus on subsequentenzymatic hydrolysis of bio-pretreated cornstalks [J]. Biotechnol Biofuels,2011,4(38):1-8.
    [191] Eggert C, Temp U, Dean JF, et al. Laccase-mediated formation of the phenoxazinone derivative,cinnabarinic acid [J]. FEBS Lett,1995,376(3):202-206.
    [192] Fu C, Mielenz JR, Xiao X, et al. Genetic manipulation of lignin reduces recalcitrance and improvesethanol production from switchgrass [J]. P Natl Acad Sci,2011,108(9):3803-3808.
    [193] Alvira P, Tomás-PejóE, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanolproduction process based on enzymatic hydrolysis: A review [J]. Bioresource Technol,2010,101(13):4851-4861.
    [194] Dien BS, Ximenes EA, O’Bryan PJ, et al. Enzyme characterization for hydrolysis of AFEX andliquid hot-water pretreated distillers’ grains and their conversion to ethanol [J]. Bioresource Technol,2008,99(12):5216-5225.
    [195] Li A, Antizar-Ladislao B, Khraisheh M. Bioconversion of municipal solid waste to glucose forbio-ethanol production [J]. Bioproc Biosyst Eng,2007,30(3):189-196.
    [196] Shi J, Ebrik MA, Wyman CE. Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatmentsand subsequent enzymatic hydrolysis of switchgrass [J]. Bioresource Technol,2011,102(19):8930-8938.
    [197] Zeng YL, Yang XW, Yu HB, et al. Comparative studies on thermochemical characterization of cornstover pretreated by White-Rot and Brown-Rot Fungi [J]. J Agric Food Chem,2011,59(18):9965-9971.
    [198] Choudhary R, Umagiliyage AL, Liang Y, et al. Microwave pretreatment for enzymaticsaccharification of sweet sorghum bagasse [J]. Biomass Bioenerg,2012,39(0):218-226.
    [199] Wang H, Srinivasan R, Yu F, et al. Effect of acid, alkali, and steam explosion pretreatments oncharacteristics of bio-oil produced from pinewood [J]. Energ Fuel,2011,25(8):3758-3764.
    [200] Li C, Knierim B, Manisseri C, et al. Comparison of dilute acid and ionic liquid pretreatment ofswitchgrass: Biomass recalcitrance, delignification and enzymatic saccharification [J]. BioresourceTechnol,2010,101(13):4900-4906.
    [201] Banat IM, Nigam P, Singh D, et al. Microbial decolorization of textile-dyecontaining effluents: Areview [J]. Bioresource Technol,1996,58(3):217-227.
    [202] Colosi LM, Burlingame DJ, Huang Q, et al. Peroxidase-mediated removal of a polychlorinatedbiphenyl using natural organic matter as the sole cosubstrate [J]. Environ Sci Technol,2006,41(3):891-896.
    [203] Mishra A, Kumar S. Kinetic studies of laccase enzyme of Coriolus versicolor MTCC138in aninexpensive culture medium [J]. Biochem Eng J,2009,46(3):252-256.
    [204] Couto SR. Decolouration of industrial azo dyes by crude laccase from Trametes hirsuta [J]. J HazardMater,2007,148(3):768-770.
    [205] D'Souza DT, Tiwari R, Sah AK, et al. Enhanced production of laccase by a marine fungus duringtreatment of colored effluents and synthetic dyes [J]. Enzyme Microb Technol,2006,38(3-4):504-511.
    [206] Enayatzamir K, Alikhani HA, Rodríguez Couto S. Simultaneous production of laccase anddecolouration of the diazo dye Reactive Black5in a fixed-bed bioreactor [J]. J Hazard Mater,2009,164(1):296-300.
    [207] Lorenzo M, Moldes D, Rodriguez Couto S, et al. Improving laccase production by employingdifferent lignocellulosic wastes in submerged cultures of Trametes versicolor [J]. Bioresource Technol,2002,82(2):109-113.
    [208] Moldes D, Lorenzo M, Sanroman MA. Different proportions of laccase isoenzymes produced bysubmerged cultures of Trametes versicolor grown on lignocellulosic wastes [J]. Biotechnol Lett,2004,26(4):327-330.
    [209] Halaburgi VM, Sharma S, Sinha M, et al. Purification and characterization of a thermostable laccasefrom the ascomycetes Cladosporium cladosporioides and its applications [J]. Proc Biochem,2011,46(5):1146-1152.
    [210] Singh A, Bajar S, Bishnoi NR, et al. Laccase production by Aspergillus heteromorphus usingdistillery spent wash and lignocellulosic biomass [J]. J Hazard Mater,2010,176(1-3):1079-1082.
    [211] Wu M, Xia L, Wu M, et al. Decolorization of dyestuff and dying waste water by laccase solutionwith self-flocculent mycelial pellets of Coriolus versicolor [J]. Acta Microbiol Sin,2002,42(3):364-369.
    [212] Li L, Dai W, Yu P, et al. Decolorisation of synthetic dyes by crude laccase from Rigidoporuslignosus W1[J]. J Chem Technol Biot,2009,84(3):399-404.
    [213] Pant D, Adholeya A. Enhanced production of ligninolytic enzymes and decolorization of molassesdistillery wastewater by fungi under solid state fermentation [J]. Biodegradation,2007,18(5):647-659.
    [214] Müller K, Deurer M. Review of the remediation strategies for soil water repellency [J]. Agr EcosystEnviron,2011,144(1):208-221.
    [215] Dekker LW, Oostindie K, Ritsema CJ. Exponential increase of publications related to soil waterrepellency [J]. Soil Res,2005,43(3):403-441.
    [216] Blanco-Canqui H. Does no-till farming induce water repellency to soils?[J]. Soil Use Manage,2011,27(1):2-9.
    [217] Roper MM. Managing soils to enhance the potential for bioremediation of water repellency [J]. SoilRes,2005,43(7):803-810.
    [218] Doerr SH, Shakesby RA, Walsh RPD. Soil water repellency: its causes, characteristics andhydro-geomorphological significance [J]. Earth-Sci Rev,2000,51(1–4):33-65.
    [219] Fidanza MA, Cisar JL, Kostka SJ, et al. Preliminary investigation of soil chemical and physicalproperties associated with type-I fairy ring symptoms in turfgrass [J]. Hydrol Process,2007,21(17):2285-2290.
    [220] Barton L, Colmer TD. Ameliorating water repellency under turfgrass of contrasting soil organicmatter content: Effect of wetting agent formulation and application frequency [J]. Agr Water Manage,2011,99(1):1-7.
    [221] Atanassova IDS. Organic compounds of different extractability in total solvent extracts from soils ofcontrasting water repellency [J]. Eur J Soil Sci,2010,61(2):298-313.
    [222] Moore D, Kostka SJ, Boerth TJ, et al. The effect of soil surfactants on soil hydrological behavior, theplant growth environment, irrigation efficiency and water conservation [J]. J Hydrol Hydromech,2010,58(3):142-148.
    [223] Roper M. Potential for remediation of water repellent soils by inoculation with wax-degradingbacteria in south-western Australia [J]. Biologia,2006,61(0): S358-S362.
    [224] Doerr SH. On standardizing the ‘Water Drop Penetration Time’ and the ‘Molarity of an EthanolDroplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils [J].Earth Surf Proc Land,1998,23(7):663-668.
    [225] Sidhu S, Huang Q, Carrow R, et al. Use of fungal laccases to facilitate biodethatching: a newapproach [J]. HortScience,2012,47(10):1-7.
    [226] Carrow RN. Can we maintain turf to customers’ satisfaction with less water?[J]. Agr Water Manage,2006,80(1–3):117-131.
    [227] Sinsabaugh RL. Phenol oxidase, peroxidase and organic matter dynamics of soil [J]. Soil BiolBiochem,2010,42391-404.
    [228] Roper MM. The isolation and characterisation of bacteria with the potential to degrade waxes thatcause water repellency in sandy soils [J]. Aust J Soil Res,2004,42(4):427-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700