生物燃料电池中酶和蛋白质的直接电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着21世纪经济的飞速发展,环境污染和能源危机已经成为世界各国面临的两大问题。传统能源的日渐枯竭已满足不了国民经济持续发展对能源的需求,因此,寻找新能源已经成为十分紧迫的课题。
     生物燃料电池是近年来开发出来的一种新型绿色环保能源。它作为小功率电源在一些特殊领域的应用十分具有吸引力,然而输出功率密度低是限制生物燃料电池发展的主要问题。解决这一问题的有效途径就是探索合适的催化剂(酶或氧化还原蛋白质)的固定载体和固定方法,使催化剂与电极实现直接快速的电子转移。本论文主要探索能实现酶或氧化还原蛋白质与电极之间直接电化学的新型载体材料以及合适的固定方法,制备酶生物燃料电池中的阳极催化剂和阴极催化剂。论文主要研究工作包括以下几个方面:
     1.炭黑(CB)因具有良好的导电性、大的比表面、价格低廉等特点近年来被广泛应用于各个领域。本论文用CB做葡萄糖氧化酶(GOx)、血红蛋白(Hb)的固定载体,用吸附法将GOx、Hb固定到炭黑表面,以Nafion加固,制备了相应的修饰电极,研究了电极的直接电化学性质并考察了对β-D(+)葡萄糖及H_2O_2的电催化性能。此外,还对电极的稳定性作了研究。红外光谱和交流阻抗图谱表明用简单的吸附方法可将葡萄糖氧化酶GOx吸附在CB表面,循环伏安结果表明固定后的GOx可与电极表面可进行有效的直接电子转移,其式量电位E~(0')为-0.436 V,在40-150 mV·s~(-1)范围内,不随扫描速率而变化。电化学反应速率常数ks为0.800s~(-1),比文献报道的大30多倍。这可能归因于炭黑表面的羧基、羟基等含氧功能团,为酶的固定提供了合适的取向和适宜的微环境。固定在CB上的GOx能保持其对β-D(+)葡萄糖氧化的生物电催化活性。即使电极在保存两周后,其电催化活性仅下降5%,说明电极有很好的稳定性。红外、紫外、XPS光谱结果表明用简单的吸附法可将血红蛋白(Hb)吸附在CB表面。吸附在CB表面的Hb能进行准可逆的直接电化学反应,其速率常数是1.02 s~(-1),而且固定化的Hb保持了对H_2O_2的良好的电催化活性,表明CB能促进Hb直接电化学反应。以上结果表明炭黑作为酶的固定载体有望在生物燃料领域有广泛的应用前景,而且电极制备方法简单、有效,可以用来制备生物燃料电池的其他催化剂。
     2.为了实现催化剂(酶和蛋白质)与电极之间有效的直接电子转移,制备了具有发散结构的胡须状碳复合物(MCWC)。用吸附的方法将Hb固定在MCWC表面。光谱实验表明固定后的Hb保持了原来二级结构的构象。循环伏安结果表明Hb在电极表面实现了直接电子转移并且表现出良好的电催化活性和稳定性,其电子转移速率常数为2.07 s~(-1),大于文献报道的其他的一些载体;其吸附量为4.56×10~(-13)mol/cm~2,大于在单位比表面的炭黑上的吸附量1.32×10~(-13)mol/cm~2。这可能归功于碳复合物特殊的碳刺结构可以增大Hb吸附的比表面,而且碳刺所形成大量的V-型孔有利于物质在电化学反应时迅速扩散;其次,在碳复合物表面有大量的羧基、羟基等含氧功能团,也为酶的固定提供了适宜的微环境。用同样的方法,我们研究了漆酶(Lac)在MCWC上的直接电化学,也得到了比较好的结果。Lac的电子转移速率常数为0.77 s~(-1),在电极表面吸附量为2.73×10~(-12)mol/cm~2。上述结果表明这种发散的胡须状碳复合物作为一种新型载体有望在生物燃料电池电极制备中得到广泛的应用。
     3.生物燃料电池中酶和蛋白质直接电化学除了使用碳材料作载体外,还可以使用硅基介孔分子筛作为载体。三维笼状二氧化硅介孔分子筛(FDU-12)具有大的笼径、与辣根过氧化物酶(HRP)分子大小相匹配的窗口以及良好的生物相溶性,可以作为HRP的固定载体。光谱实验表明用简单的吸附的方法可将HRP固定在FDU-12中,固定后的HRP保持了原有构象。循环伏安结果表明固定化的HRP实现了直接电化学,表现出良好的催化活性和稳定性,其式量电位E~(0')为-0.325 V,电子转移速率常数为1.20 s~(-1),显示了较快的电子传递速率。其吸附量为5.44×10~(-11)mol/cm~2,这个值比HRP在电极表面的最大理论单层覆盖浓度(2×10~(-11)mol/cm~2)高出2倍多。这可能归因于笼状介孔分子筛FDU-12具有良好的生物相容性,特殊的笼状结构为HRP构筑了良好的微环境,使HRP在电极上获得了合适的取向,从而促进了HRP在电极表面的直接电子转移,而且FDU-12所具有的三维介观孔道也有利于物质的传输和扩散。此外HRP-FDU-12/GC电极的稳定性较好。大孔笼状二氧化硅介孔分子筛FDU-12有望为进一步研究氧化还原蛋白质的直接电化学和研制开发新型生物燃料电池、生物传感器酶电极提供新的思路。
As the fast growth of economy in the 21st century,environment pollution and energy crisis have been the two problems all the world must face.The exhausting conventional energy could not meet the need of continuous country economy growth. So,exploring new energy has been a particularly urgent task.
     Biofuel cell is a really new green environmental-protecting power source developed in the recent years.As a small power source,the application of biofue cell in some fields has been particularly attractive.However,the low output power density is the main problem which confines the further development of biofuel cell.One of the effective method to solve this problem is to explore appropriate carrier materials and immobilization methods of biocatalyst and realize the direct fast electron -transfer between the biocatalyst and the electrodes.In this thesis,the anodic catalyst and the cathodic catalyst in the biofuel cells have been fabricated on the basis of exploring the new carrier materials and enzyme immobilization methods.The main results and conclusions obtained are summarized as follows:
     1.Carbon black(CB) was widely used in many fields due to its good conductivity, large surface area and low cost etc.Spectrometric technique indicated that the oxygen-contained groups for example C=O and C-OH were present on the surface of CB powders.These groups can supply the favorable microenvironment for the immobilization and favor the electron-transfer of enzyme.In this work,CB was used as the carrier of glucose oxidase(GOx)、hemoglobin(Hb).The adsorption method was used to immobilize GOx、Hb on the surface of carbon black powders and the Nafion was used to fix the catalyst.The direct electrochemistry and the electrocatalytic activity towards theβ-D(+)-glucose and H_2O_2 was also investigated.The stability of the electrode was studied.The FTIR spectroscopic and electrochemical measurements demonstrated that GOx could be immobilized on the surface of CB using a simple adsorptionmethod.The electrochemical measurements indicated that GOx immobilized on CB could undergo the quasi-reversible and direct electrochemical reaction and keep the bioelectrocatalytic activity for the glucose oxidation.Its formal potential,E~(0'),is -0.436 V and the electron transfer rate constant k_s value was estimated to be 0.800 s~(-1),which is thirty times larger than those obtained for GOx repoted previously.This maybe be attributed to the oxygen-contained groups on the CB,such as -COOH and-OH groups.These groups can supply the favorable microenvironment for the immobilization of enzyme.Even after conservation for two weeks,its electrocatalytic activity decreased only 5%,illustrating the good stability of GOx immobilized on CB.The FTIR spectrum,UV-Vis spectroscopy and XPS spectra showed that secondary structure of Hb immobilized on the surface of CB was not destroyed and Hb retained its biological activity.The CV experiment results demonstrated that immobilized Hb could undergo a direct quasi-reversible electrochemical reaction.Its formal potential,E~(0'),is -0.330 V in phosphate buffer solution(pH 6.9) at a scan rate of 100 mV/s and is almost independent of the scan rate in the range of 40-200 mV/s.The electron transfer rate constant k_s value was estimated to be 1.02 s~(-1),which is larger than those obtained for Hb immobilized on Au-colloid-cysteamine-modified gold electrode(0.49 s~(-1)),Hb modified CNT powder microelectrodes electrodes(0.062 s~(-1)),indicating a reasonably fast electron transfer between the immobilized Hb and the underlying electrode.The surface concentration (F) of Hb was 3.55×10~(-9) mol/cm~2.The above results showed that as the carrier of enzyme,CB is promised to have wide application in the future.The method presented here is simple and effective and can be easily extended to immobilize and obtain the direct electrochemistry of other enzymes or proteins.
     2.In order to realize the effective realize the direct electron -transfer of biocatalyst (enzyme and proteins) and electrode,a whisker-like carbon composite(MCWC) was fabricated.The adsorption method was used to immobilize Hb on the surface of MCWC.Spectrometric technique indicated that immobilized Hb retained its native structure.The cyclic voltammetric results showed that immobilized Hb could undergo a direct quasi-reversible electrochemical reaction and has good bioelectrocatalytic activity and good stability for the reduction of H_2O_2.The electron transfer rate constant,ks,is 2.07 s~(-1),which is larger than that on some other carriers reported previously.The surface concentration of Hb is 4.56×10~(-13) mol/cm~2,which is lager than 1.32×10~(-13) mol/cm~2 on carbon black.This maybe because that the special carbon thorns structure can increase the specific area of adsorption,moreover,the numerous "V-type" channels formed among the thorns facilitates the fast diffusion of products. In addition,the oxygen-contained groups,such as -COOH groups and-OH groups can supply the favorable microenvironment for the immobilization of enzyme.Using the same method,the direct electrochemistry of Laccase on the MCWC was also studied.The electron transfer rate constant k_s value was estimated to be 0.77 s~(-1) and the surface concentration(Γ) of Lac was 2.73×10~(-12) mol/cm~2.The above results showed that as the new carrier of enzyme,MCWC is promised to be used widely in the fabrication of the biocatalyst of biofuel cell.
     3.Besides the carbon material,silica mesoporous sieves also could be used as carriers of biocatalyst in biofuel cell.3D large cage-like mesoporous silica sieves FDU-12 can be used as the carrier of horseradish peroxidase(HRP) due to its large cage size, appropriate entrance size and good biocompatibility.Spectrometric technique indicated that immobilized HRP retained its native structure.The cyclic voltammetric results showed that immobilized HRP could undergo a direct quasi-reversible electrochemical reaction and has good bioelectrocatalytic activity and good stability for the reduction of H_2O_2.The electron transfer rate constant k_s value was estimated to be 1.20 s~(-1),indicating fast electron transfer between the immobilized HRP and the electrode.The surface concentration(Γ) of immobilized HRP was 5.44×10~(-11) mol/cm~2, which was twice larger than the single layer adsorption concentration of HRP(2×10~(-11) mol/cm~2).This maybe be attributed to the 3D uniform pore structure of FDU-12 which facilitated the fast diffusion of products and provided favorable microenvironment for HRP.Large cage-like mesoporous silica sieves FDU-12 was promised to provide new idea for the direct electrochemistry of enzyme and development of new biofuel cell and biosensors
引文
[1]M.Winter,R.J.Brodd.,What are batteries,fuel cells,and supercapacitors,Chem.Rev.,2004,104(10):4245-4270.
    [2]J.McGinley,F.N.McHale,P.Hughes,et al.,Production of electrical energy from carbohydrates using a transition metal-catalysed liquid alkaline fuel cell,Biotechnol.Lett.,2004,26(23):1771-1776.
    [3]S.Dawar,B.K.Behera,P.Mohanty,Development of a low-cost oxy-hydrogen biofuel cell for generation electricity using nostoc as a source of hydrogen,Int.J.Energy Res.,1998,22:1019-1028.
    [4]K.Joon,Fuel cells—a 21st century power system,J.Power Sources,1998,71:12-18.
    [5]I.Willner,Biomaterials for sensors,fuel cells,and circuitry,Science,2002,298:2407-2408.
    [6]A.Pizzariello,M.Stred'ansky,S.Miertu,A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix,Bioelectrochemistry,2002,56(1-2):99-105.
    [7]A.Naidja,C.R.Krishna,T.Butcher,D.Mahajan,Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems,Prog. Energ.Combust.Energy Sci.,2003,29(2):155-191.
    [8]W.R.Grove,Fuel cells,Phil.Mag,1939,(14):127.
    [9]S.C.Barton,J.Gallaway,P.Atanassov,Enzymatic biofuel cells for implantable and microscale devices,Chem.Rev.,2004,104:4867-4886.
    [10]F.Hollmann,A.Schmid,Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions,Biocatal.Biotransfor.,2004,22(2):63-88.
    [11]A.K.Shukla,P.Suresh,S.Berchmans,et al.,Biological fuel cells and their applications,Curr.Sci.,2004,87:455-468.
    [12]孙卫中,漫谈生物燃料电池,化学教学,2007,9,48-50.
    [13]贾鸿飞,谢阳,王宇新,生物燃料电池,电池,2000,30(2):86-89.
    [14]韩保祥,毕可万,采用葡萄糖氧化酶的生物燃料电池的研究,生物工程学报,1992,8:203-206.
    [15]V.Soukharev,N.Mano,A.Heller,A four-electron O_2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V,J.Am.Chem.Soc.,2004,126(27):8368-8369.
    [16]N.Mano,J.L.Fernandez,Y.Kim,et al.,Oxygen is electroreduced to water on a "wired" enzyme electrode at a lesser overpotential than on platinum,J.Am.Chem.Soc.,2003,125(50):15290-15291.
    [17]A.Sato,K.Kano,T.Ikeda,Diaphorase/naphthoquinone derivative-modified electrode as an anode for diffusion-controlled oxidation of NADH in electrochemical cells,Chem.Lett.,2003,32(10):880-881.
    [18]M.R.Tarasevich,V.A.Bogdanovskaya,A.V.Kapustin,Nanocomposite material laccase/dispersed carbon carrier for oxygen electrode,Electrochem.Commun.,2003,5(6):491-496.
    [19]K.Kano,T.Ikeda,Bioelectrocatalysis:powerful means of connecting electrochemistry to biochemistry and biotechnology,Electrochemistry,2003,71(2):86-99.
    [20]R.Ferrigno,A.D.Stroock,T.D.Clark,et al.,Membraneless vanadium redox fuel cell using laminar flow,J.Am.Chem.Soc.,2002,124(44):12930-12931.
    [21]E.Simon,C.M.Halliwell,C.S.Toh,et al.,Immobilisation of enzymes on poly(aniline)-poly(anion) composite films.Preparation of bioanodes for biofuel cell applications,Bioelectrochemistry,2002,55(1-2):13-15.
    [22] C.M. Halliwell, E. Simon, C.S. Toh, et al., The design of dehydrogenase enzymes for use in a biofuel cell: the role of genetically introduced peptide tags in enzyme immobilization on electrodes, Bioelectrochemistry, 2002, 55 (1-2): 21-23.
    
    [23] O.A.Raitman, E.Katz, A.F.Buckmann, et al., Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems, J. Am. Chem. Soc, 2002, 124 (22): 6487-6496.
    
    [24] C.M.Halliwell, E.Simon, C.S.Toh, et al., Immobilisation of lactate dehydrogenaseon poly(aniline)-poly(acrylate) and poly(aniline)-poly-(vinyl sulphonate) films for use in a lactate biosensor, Anal. Chim. Acta, 2002, 453(2): 191-200.
    
    [25] S. Wilkinson, "Gastrobots" - Benefits and challenges of microbial fuel cells in food powered robot applications, Autonomous Robots, 2000, 9 (2): 99-111.
    
    [26] M.J.Cooney, E.Roschi, I.W.Marison, et al., Physiologic studies eith the sulfate-reducing bacterium desulfovibrio desulfuricans : Evalucation for use in a biofuel cell, Enzme Microb Technol, 1996,18:358-365.
    
    [27] A.A.Karyakin, S.V.Morozov, E.E.Karyakine, et al., Hydrogen fuel electrode based on bioelectroanalysis by the enzyme hydrogenase, Electrochem. Commun., 2002, 4: 417-420.
    
    [28] G.Tayhas, R.Palmore, et al., Mirobial and enzymatic biofiel cell., Am Chem Soc Symp Ser., 1994,566: 271-290.
    
    [29] S.Tsujimura, M.Kawaharada, T.Nakagawa, et al., Mediated bioelectrocatalytic O_2 reduction to water at highly positive electrode potentials near neutral pH, Electrochem. Commun., 2003, 5 (2): 138-141.
    
    [30] T. Ikeda, K. Kano, Bioelectrocatalysis-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells, Biochimica Et Biophysica Acta-Proteins and Proteomics, 2003, 1647 (1-2): 121-126.
    
    [31] S. Tsujimura, H. Tatsumi, J. Ogawa, et al., Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin Oxidase as an enzyme and 2,2 '-azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator, J. Electroanal. Chem., 2001, 496 (1-2): 69-75.
    [32] L.T. Kubota, F. Munteanu, A. Roddick-Lanzilotta, et al., Electrochemical investigation of some aromatic redox mediators immobilized on titanium phosphate, Quimica Analitica, 2000, 19: 15-27.
    [33] D.H. Park, S.K. Kim, I.H. Shin, et al., Electricity production in biofuel cell using modified graphite electrode with Neutral Red, Biotechnol. Lett., 2000, 22(16): 1301-1304.
    [34] G. Tayhas, R. Palmore, H.H. Kim, Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell, J. Electroanal. Chem., 464(1): 110-117.
    [35] W. Johnston, M.J. Cooney, B.Y. Liaw, R. Sapra, M.W.W. Adams, Design and characterization of redox enzyme electrodes: new perspectives on established techniques with application to an extremeophilic hydrogenase, Enzyme Microb. Tech., 2005, 36(4): 540-549.
    [36] N. Kosaric, J. Velikonja, Liquid and gaseous fuels from biotechnology: challenge and opportunities, FEMS Microbiology Reviews, 1995, 16 (2-3): 111-142.
    [37] C.M. Halliwell, Nanoanalytical measurement of protein orientation on conductive sensor surfaces, Analyst, 2004, 129 (12): 1166-1170.
    [38] I. Willner, E. Katz, F. Patolsky, et al., Biofuel cell based on glucose Oxidase and microperoxidase-11 monolayer-fundionalized electrodes, J Chem Soc PERKIT, 1998,2(8): 1817-1822.
    [39] S.D. Roller, H.P. Bennetto, G.M. Delaney, et al., Electron transfer coupling in microbial fuel cells, 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria, J. Chem. Tech. Biotechnol, 1984, 34B: 3-12.
    [40] C.M. Moore, S.D. Minteer, R.S. Martin, Microchip-based ethanol/oxygen biofuel cell, Lab on a Chip, 2005, 5 (2): 218-225.
    [41] M.J. Cooney, E. Roschi, I.W. Marison, et al., Physiologic studies with the sulfate-reducing bacterium desulfovibrio desulfuricans: Evaluation for use in a biofuel cell, Enzyme Microb. Technol., 1996, 18: 358-365.
    [42] B.E. Logan, C. Murano, K. Scott, et al., Electricity generation from cysteine in a microbial fuel cell, Water Research, 2005, 39(5): 942-952.
    [43] K. Rabaey, G. Lissens, S.D. Siciliano, et al., A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett., 2003, 25 (18): 1531-1535.
    
    [44] 吴祖林,刘静,生物质燃料电池的研究进展,电源技术,2005,29:333—340.
    
    [45] C.F. Thurston, H.P. Bennetto, G.M. Delaney, et al., Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields, J. Gen. Microbiol., 1985, 131(6): 1393-1401
    [46] G.M. Delaney, H.P. Bennetto, J.R. Mason, et al., Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations, J. Chem. Tech. Biotechnol., 1984, 34B: 13-27.
    [47] A.M. Lithgow, L. Romero, I.C. Sanchez, et al., Interception of the electron transport chain in bacteria with hydrophilic redox mediators, J. Chem. Res. Synop., 1986,5: 178-179.
    [48] H.J. Kim, H.S. Park, M.S. Hyun, et al., a mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme Microb. Technol., 2002, 30:145-152.
    [49] K. Rabaey, N. Boon, S.D. Siciliano, et al., Biofuel cells select for microbial consortia that self-mediate electron transfer, Appl. Environ. Microb., 2004, 70 (9): 5373-5382.
    [50] A.KorneelRabaey, A.WillyVerstraete, Mecrobialfuelcells:novelbiotechnology for energy generation, Trends in biotechnology, 2005.23:291-298.
    [51] K.Tanaka, R.Tamamushi, T.Ogawa, et al., Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis, J. Chem. Technol. Biotechnol., 1985, 35B: 191-197.
    [52] K. Tanaka, N. Kashiwagi, T. Ogawa, et al., Effects of light on the electrical output of bioelectrochemical fuel-cells containing Anabaena variabilis M-2: Mechanism of the post -illumination burst, J. Chem. Technol. Biotechnol., 1988,42:235-240.
    [53] I. Karube, S. Suzuki, Biochemical energy conversion by immobilized photosynthetic bacteria, Methods Enzymol, 1998, 137: 668-674.
    [54] W. Habermann, E-H. Pommer, Biological fuel cells with sulphide storage capacity, Appl. Microbiol. Biotechnol., 1991, 35: 128-133.
    [55] A.A. Karyakin, S.V. Morozov, E.E. karyakina, et al., Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase, Electrochem. Commun., 2002, 4: 417-420.
    [56] G.T.R.Palmore, H.H.Kim, Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell, J. Electroanal. Chem., 1999,464: 110-117.
    [57] I. Willner, H.S. Vered, E. Katz, et al., Integration of a reconstituted de novo synthesized hemoprotein and native metalloproteins with electrod supports for bioelectronic and bioelectrocatalytic application, J. Am. Chem. Soc, 1999, 121(27): 6455-6468.
    [58] M. Zayats, E. Katz, I. Willner, Electrical contacting of flavoenzymes and NAD(P)~+-depedent enzymes by reconstitution and affinity interactions on phenylboronic acid monolayers associated with Au-electrodes, J. Am. Chem. Soc, 2002, 124(49): 14724-14735.
    [59] M. Zayats, E. Katz, I. Willner, Electrical contacting of glucose Oxidase by surface-reconstitution of the apo-protein on a relay-boronic acid-FAD cofactor monolayer, J. Am. Chem. Soc, 2002, 124(10): 2120-2121.
    [60] A.A Karyakin, S.V. Morozov, E. E Karyakina , et al., Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase, Electrochemistry Communications , 2002 , 4 :417.
    [61] Evelyne Simon , Catherine M Halliwell, Chee Seng Toh , et al. Immobilisation of enzymes on poly(aniline) -poly(anion) composite films. Preparation of bioanodes for biofuel cell applications, Bioelectrochemistry , 2002 ,55 :13.
    [62] T. Ruzgas , E. CsoEregi , J. Emneus , et al., Peroxidase-modified electrodes : Fundamentals and application, Anal. Chim. Acta , 1996,330 :123.
    [63] E.V. Plotin, I.J. Higgins, H.A.O. Hill, Biotechnol. Lett., 1981, 3: 187.
    [64] P.L.Yue, K.Lowther, Enzymatic oxidation of C1 compounds in a biochemical fuel cell, J. Chem. Eng., 1986, 33B: 69-77.
    [65] B. Persson, L. Gorton, G. Jahansson, et al., Biofuel anode based on D-glucose dehydrogenase, nicotinamide adenine dinuclecotide and a modified electrode, Enzyme Microb. Technol., 1985, 7(11): 549-552.
    [66] C. Laane, W. Pronk, M. Franssen, et al., Use of a bioelectrochemical cell for the synthesis of (bio) chemicals, Enzyme Microb. Technol., 1984, 6(4): 165-168.
    [67] A. Heller, Miniature biofuel cells, Phys. Chem. Chem. Phys., 2004, 6(2): 209-216.
    [68] N. Mano, F. Mao, W. Shin, et al. A miniature biofuel cell operating at 0.78 V, Chem. Commun., 2003 (4): 518-519.
    [69] N. Mano, A. Heller, A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions, J. Electrochem. Soc, 2003, 150 (8): A1136-A1138.
    [70] F. Mao, N. Mano, A. Heller, Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "wiring" hydrogels, J. Am. Chem. Soc, 2003, 125 (16): 4951-4957.
    [71] N. Mano, H.H. Kim, Y.C. Zhang, et al. An oxygen cathode operating in a physiological solution, J. Am. Chem. Soc, 2002, 124 (22): 6480-6486.
    [72] X.G.Li, Y.GAO, T.H.LU, et al., Electrocatalytic behavior of microperoxidase-11 adsorbed on activated carbon for reduction of oxygen and hydrogen peroxide, Chinese Journal of Applied Chemistry, 2000 ,19 (3) :285.
    [73] I .Willner , E .Katz , F. Patolsky , et al., Biofuel cell based on glucose Oxidase and microperoxidase-11 monolayer-functionalized electrodes, J . Chem. Soc. , Perkin Trans., 1998,2:1 817.
    [74] S. Tsujimura, H. Tatsumi , J. Ogawa ,et al., Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin Oxidase as an enzyme and 2 ,2 %-azinobis (3-ethylbenzothiazolin-6- sulfonate) as an electrontransfer mediator, J . Electroanal. Chem., 2001 ,496 : 69.
    [75] G. Tayhas, R. Palmore , H. H.Kim, Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell, J . Electroanal. Chem., 1999,464: 110.
    [76] I.Willner, B.Willner, Biomaterials integrated with electronic elements : en route to bioelectronics, Trends Biotechnol., 2001 ,19 : 222.
    [77] E. Katz, B. Filanovsky , I. Willner, A biofuel cell based on two immiscible solvents and glucose Oxidase and microperoxidase-11 monolayer-functionalized electrodes, New J . Chem., 1999 , 23 :481.
    [78] A. Pizzariello, M. Stred ansky , S. Miertus. A glucose/ hydrogen peroxide biofuel cell that uses Oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix, Bioelectro chemistry , 2002,56 : 99.
    [79] E .Katz, I.Willner, A. B. Kotlyar, A non-compartmentalized glucose/ O2 biofuel cell by bioengineered electrode surfaces, J . Electroanal. Chem., 1999 ,479 : 64.
    [80] S.C. Barton , H.H. Kim , G. Binyamin , et al., Electroreduction of O2 to Water on the 'wired' Laccase Cathode, J . Phys. Chem. B ,2001 , 105 : 11 917.
    [81] S.C. Barton , H.H. Kim , G. Binyamin , et al. The 'wired' laccase cathode : high current density electroreduction of 02 to water at + 0.7 V(NHE) at pH 5, J . Am. Chem. Soc. 2001 ,123 :5 802.
    [82] S.C. Barton , M.Pickard , R.Vazquez-Duhalt, et al. Electroreduction of O_2 to water at 0. 6 V (SHE) at pH 7 on the 'wired' Pleurotus ostreatus laccase cathode, Biosensors and Bioelectronics, 2002, 17 :1 071.
    [83] I.Willner, Biomaterials for sensors, fuel cells, and circuitry, Science, 2002 ,298 :2 047.
    [84] T.Chen, S.C.Barton,, G.Binyamin, Z.Q.Gao, Y.C.Zhang, H.H Kim, A Heller, J. Am. Chem. Soc, 2001, 123: 8630.
    
    [85] H.H Kim, N.Mano, X.C.Zhang, A.Heller, Electrochem. Soc, 2003, 150: 209.
    [86] N.Mano, F.Mao, A.Heller, J. Am. Chem. Soc. 2003, 125: 6588.
    [87] L. Garza, G. Jeong, PA. Liddell, et al., Enzyme-based photoelectro- chemical biofuel cell, J. Phys. Chem. B, 2003, 107 (37): 10252-10260.
    [88] S. Tsujimura, K. Kano, T. Ikeda, Glucose/O_2 biofuel cell operating at physiological conditions, Electrochemistry, 2002, 70 (12): 940-942.
    [89] I. Willner, G. Arad, E. Katz, A biofuel cell based on pyrroloquinoline quinone and microperoxidase-11 monolayer-functionalized electrodes, Bioelectrochem. Bioenerg., 1998, 44(2): 209-214.
    [90] P. Costamagna, S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects, J. Power Sources, 2001, 102 (1-2): 242-252.
    [91] A. Heinzel, V.M. Barragan, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells, J. Power Sources, 1999, 84 (1): 70-74.
    [92] K.M. McGrath, G.K.S. Prakash, G.A. Olah, Direct methanol fuel cells, J. Indu. Eng. Chem., 2004, 10 (7): 1063-1080.
    [93] R. Dillon, S. Srinivasan, A.S. Arico, et al. International activities in DMFC R&D: Status of technologies and potential applications, J. Power Sources, 2004, 127: 112-126.
    [94]周卫江,周振华,李文震,孙公权,辛勤,直接甲醇燃料电池阳极催化剂研究进展,化学通报,2003,4:228.
    [95]R.A.Marcus,N.Sutin,Electron transfers in chemistry and biology,Biochim.Biophys.Acta.,1985,811(3):265-322.
    [96]A.Heller,Electrical wiring of redox enzymes,Acc.Chem.Res.,1990,23(5):128-134.
    [97]S.Igarashi,J.Okuda,K.Ikebukuro,et al.,Molecular engineering of PQQGDH and its applications,Arch.Biochem.Biophys.,2004,428(1):52-63.
    [98]F.Barriere,Y.Ferry,D.Rochefort,et al.,Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell,Electrochem.Commun.,2004,6(3):237-241.
    [99]M.A.Case,G.L.McLendon,Metal-Assembled Modular Proteins:Toward Functional Protein Design,Acc.Chem.Res.,2004,37(10):754-762.
    [100]C.O'Fagain,Enzyme stabilization-recent experimental progress,Enzyme Microb.Tech.,2003,33(2-3):137-149.
    [101]B.Willner,I.Willner,E.Katz,Functional biosensor systems via surface-nanoengineering of electronic elements,Reviews in Molecular Biotechnology,2002,82(4):325-355.
    [102](a)M.J.Eddowes,H.A.O.Hill,Chem.Commun.,1977,771.(b) P.Yeh,T.Kuwana,Chem.Lett,1977,1145.
    [103]S.Tsujimura,K.Kano,T.lkeda,Bilirubin oxidase in multiple layers catalyzes four-electron reduction of dioxygen to water without redox mediators,J.Electroanal.Chem.,2005,576(1):113-120.
    [104]T.Ikeda,A novel electrochemical approach to the characterization of oxidoreductase reactions,Chemical Record,2004,4(3):192-203.
    [105]Y.Tian,L.Q.Mao,T.Okajima,et al.,Electrochemistry and electrocatalytic activities of superoxide dismutases at gold electrodes modified with a self-assembled monolayer,Anal.Chem.,2004,76(14):4162-4168.
    [106]S.Tsujimura,T.Nakagawa,K.Kano,et al.,Kinetic study of direct bioelectrocatalysis of dioxygen reduction with bilirubin oxidase at carbon electrodes,Electrochemistry,2004,72(6):437-439.
    [107]C.Leger,S.J.Elliott,K.R.Hoke,et al.,Enzyme electrokinetics:Using protein film voltammetry to investigate redox enzymes and their mechanisms, Biochem., 2003, 42: 8653-8662.
    [108] K.F.Aguey-Zinsou, P.V.Bernhardt, U.Kappler, et al., Direct electrochemistry of a bacterial sulfite dehydrogenase, J. Am. Chem. Soc, 2003, 125:530-535.
    [109] L.Gorton, A. Lindgren, T. Larsson, et al., Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors, Anal. Chim. Acta, 1999, 400(1-3): 91-108.
    [110] A.L.Ghindilis, P.Atanasov, E. Wilkins, Enzyme-catalyzed direct electron transfer fundamentals and analytical applications, Eletroanalysis, 1997, 9(9): 661-674.
    [111] T. Ruzgas, E. Csoregi, J. Emneus, L. Gorton, et al., Peroxidase-modified electrodes: Fundamentals and application, Anal. Chim. Acta, 1996, 330(2-3): 123-138.
    [112] T.S. Wong, U. Schwaneberg, Protein engineering in bioelectrocatalysis, Curr. Opin. Biotech., 2003, 14 (6): 590-596.
    [113] T. Ikeda, K. Kano, An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors and biofuel cells, J. Biosci. Bioeng., 2001, 92( 1): 9-18.
    [114] Y. Corvis, A. Walcarius, R. Rink, N.T. Mrabet, E. Rogalska, Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers, Anal. Chem., 2005, 77(6): 1622-1630.
    [115] J.L. Blin, C. Gerardin, C. Carteret, L. Rodehuser, C. Selve, M.J. Stebe, Direct one-step immobilization of glucose Oxidase in well-ordered mesostructured silica using a nonionic fluorinated surfactant, Chem. Mater., 2005, 17(6): 1479-1486.
    [116] L.Y. Su, F.M. Hawkridge, M.C. Rhoten, Electroreduction of oxygen by cytochrome c Oxidase immobilized in electrode-supported lipid bilayer membranes, Chemistry & Biodiversity, 2004, 1 (9): 1281-1288.
    [117] J.H. Fendler, Membrane mimetic Chemistry., New York: Wiley, 1982.
    [118] J.F. Rusling, A.E.F. Nassar, Enhanced electron transfer for myoglobin in surfactant films on electrodes, J. Am. Chem. Soc, 1993, 115(25): 11891-11897.
    [119] Z.Zhang, A..E.F. Nassar, Z.Lu, et al., Direct electron injection from electrodes to Cytochrome P450_(cam) in biomembrane-like films, J. Chem. Soc. Faraday Trans., 1997, 93:, 1769-1774.
    [120] Z.Lu; Q.Huang; J.F.Rusling, Films of hemoglobin and didodecyldimethylammonium bromide with enhanced electron transfer rates, J. Electroanal. Chem., 1997, 423, 59-66.
    [121] J.Yang, N.Hu, Direct electron transfer for hemoglobin in biomembrane-like dimyristoyl phosphatidylcholine films on pyrolytic graphite electrodes, Bioelectrochem. Bioenerg., 1999,48: 117-127.
    [122] X. Chen, X.S. Peng, J.L. Kong, J.Q. Deng, Facilitated electron transfer from an electrode to horseradish peroxidase in a biomembrane-like surfactant film, J. Electroanal. Chem., 2000, 480: 26-33.
    [123] J. Zhou, J. Zheng, S. Jiang, Molecular Simulation Studies of the Orientation and Conformation of Cytochrome c Adsorbed on Self-Assembled Monolayers, J. Phys. Chem. B., 2004, 108(45): 17418-17424.
    [124] Y. Lvov, G. Decher, G.Sukhorukov, Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine), Macromolecules, 1993, 26(20): 5396-5399.
    [125] P.L. He, N.F. Hu, G.Zhou, Assembly of electroactive layer-by-layer films of hemoglobin and polycationic poly(diallyldimethylammonium), Biomacromolecules, 2002, 3(1): 139-146.
    [126] P.L. He, N.F. Hu, Direct electrochemistry of hemoglobin in layer-by-layer {PDDA/Hb}n films assembled on pyrolytic graphite electrodes, Chin. Chem. Lett., 2001, 12: 629-630.
    [127] Y.D. Jin, Y Shao, S. Dong, Direct electrochemistry and surface plasmon resonance characterization of alternate layer-by-layer self-assembled DNA-myoglobin thin films on chemically modified gold surfaces, Langmuir, 2003, 19(11): 4771-4777.
    [128] L. Wang, E.K. Wang, Direct electron transfer between Cytochrome c and a gold nanoparticles modified electrode, Electrochem. Commun., 2004, 6 (1): 49-54.
    [129] J. Xu, G.Wang, Q. Zhang, D. Zhou, H. Chen, Interfacing Cytochrome c to Au electrodes with humic acid film, Electrochem. Commun., 2004, 6: 278-283.
    [130] S.Wu, F.Zeng, H.Zhu, Z.Tong, Energy and Electron Transfers in Photosensitive Chitosan , J. Am. Chem. Soc, 2005, 127(7): 2048-2049.
    [131]钱军民,李旭祥,聚合物在生物传感器中的应用研究进展,高分子材料科学与工程,2002,18:21-26.
    [132]G.Wu,H.Pan,Y.Wu,et al.,Handbook of biochemical and molecular biological experiments,Scientific Press,Chinese,1999.
    [133]Gill,Bio-doped Nanocomposite Polymers:Sol-Gel Bioencapsulates,Chem.Mater.,2001,13:3404-3421.
    [134]Q.Wang,G.Lu,B.Yang,Myoglobin/Sol-Gel film modified electrode:Direct electrochemistry and electrochemical catalysis,Langmuir,2004,20(4);1342-1347.
    [135]J.J.Niu,Y.Z.Guo,S.J.Dong,The direct electrochemistry of Cryo-hydrogel immobilized myoglobin at a glassy carbon electrode,J.Electroanal.Chem.,1995,399:41-46.
    [136]C.Fan,H.Wang,S.Sun,D.Zhu,G.Wagner,G.Li,Electron-transfer reactivity and enzymatic activity of hemoglobin in a sephadex membrane,Anal.Chem.,2001,73(13):2850-2854.
    [137]Q.Wang,G.Lu,B.Yang,Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film,Biosens.Bioelectron.,2004,19:1269-1275.
    [138]Nadzhafova,V.N.Zaitsev,M.V.Drozdova,A.Vaze,J.F.Rusling,Heme proteins sequestered in silica sol-gels using surfactants feature direct electron transfer and peroxidase activity,Electrochem.Commun.,2004,6:205-209.
    [139]H.H.Liu,Z.Q.Tian,Z.X.Lu,et al.,Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films,Biosens.& Bioelectron.,2004,20(2):294-304.
    [140]P.Ugo,V.Zhangrando,L.M.Moretto,et al.,Ion-exchange voltammetry and electrocatalytic sensing capabilities of Cytochrome c at polyestersulfonated ionomer coated glassy carbon electrodes,Biosens.Bioelectron.,2002,17:479-487.
    [141]R.Huang,N.F.Hu,Direct electrochemistry and electrocatalysis with horseradish peroxidase in Eastman AQ films,Bioelectrochem.,2001,54:75-81.
    [142]L.Shen,N.Hu,Heme protein films with polyamidoamine dendrimer:direct electrochemistry and electrocatalysis,Biochimica et Biophysica Acta, 2004, 1608:23-33.
    [143] P. K. Ghosh, A.J. Bard, Clay-modified electrodes, J. Am. Chem. Soc, 1983, 105(17): 5691-5693.
    
    [144] S.M. Mcha, A. Fitch, Mikrochim. Acta, 1998, 128: 1.
    [145] C.H. Lei, F. Lisdat, U. Wollenberger, et al., Cytochrome c/clay-modified Electrode, Electroanalysis, 1999, 11: 274-276.
    [146] C.H. Lei, U. Wollenberger, C. Jung, et al., Clay-Bridged electron transfer between Cytochrome P450cam and electrode, Biochem. Biophys. Res. Commun., 2000, 268: 740-744.
    [147] C.H.Lei, U.Wollenberger, N.Bistolas, et al., Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles, Anal. Bioanal. Chem., 2002, 372: 235-239.
    [148] C.H.Lei, U. Wollenberger, F.W. Scheller, Clay based direct electrochemistry of myoglobin, Quimica Analitica, 2000, 19: 28-31.
    [149] C.H. Fan, Q.X. Gao, D.X. Zhu, et al., An unmediated hydrogen peroxide biosensor based on hemoglobin incorporated in a montmorillonite membrane, Analyst, 2001, 126(7): 1086-1089.
    [150] V.V. Shumyantseva, Y.D. Ivanov, N. Bistolas, et al., Direct electron transfer of cytochrome P450 2B4 at electrodes modified with nonionic detergent and colloidal clay nanoparticles, Anal. Chem., 2004, 76 (20): 6046-6052.
    [151] C.Richard, F. Balavoine, P. Schultz, T.W. Ebbesen, et al., Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes, Science, 2003, 300: 775-778.
    [152] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, et al., Fullerene pipes, Science, 1998,280: 1253-1256.
    [153] V. A. Sinani, M. K. Gheith, A. A.Yaroslavov, et al., Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations, J. Am. Chem. Soc, 2005, 127(10): 3463-3472
    [154] K.Shen, S.Curran, H.Xu, S.Rogelj, Y.Jiang, J.Dewald, T.Pietrass, Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion: a combined TEM and Resonant Micro-Raman spectroscopy study, J. Phys. Chem. B., 2005, 109(10): 4455-4463.
    [155] E.Katz, I.Willner, Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics,Chem.phys.Chem.,2004,5(8):1085-1104.
    [156]J.J.Gooding,R.Wibowo,J.Q.Liu,et al.,Protein Electrochemistry Using Aligned Carbon Nanotube Arrays,J.Am.Chem.Soc.,2003,125(30):9006-9007.
    [157]C.X.Cai,J.Chen,Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode,Anal.Biochem.,2004,325(2):285-292.
    [158]C.X.Cai,J.Chen,Direct electrochemistry of horseradish peroxidase at a carbon nanotube electrode,Acta Chim.Sinica.,2004,62(3):335-340.
    [159]F.Zhao,X.Wu,M.Wang,Y.Liu,L.Gao,S.J.Dong,Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials,Anal.Chem.,2004,76(17):4960-4967.
    [160]O.Lioubashevski,V.I.Chegel,F.Patolsky,et al.,Enzyme-catalyzed bio-pumping of electrons into Au-nanoparticles:A surface plasmon resonance and electrochemical study,J.Am.Chem.Soc.,2004,126(22):7133-7143.
    [161]P.He,N.Hu,J.F.Rusling,Driving forces for layer-by-layer self-assembly of films of SiO_2 nanoparticles and heine proteins,Langmuir,2004,20(3):722-729.
    [162]E.Topoglidis,A.E.G.Cass,B.O'Regan,J.R.Durrant,Immobilisation and bioelectrochemistry of proteins on nanoporous TiO_2 and ZnO films,J.Electroanal.Chem.,2001,517(1-2):20-27.
    [163]唐芳琼,孟宪伟,陈东,冉均国,苟立,郑昌琼,纳米颗粒增强的葡萄糖生物传感器,中国科学(B辑),2000,30(2):119-124.
    [164]Y.Zhang,P.He,N.Hu,Horseradish peroxidase immobilized in TiO_2nanoparticle films on pyrolytic graphite electrodes:Direct electrochemistry and bioelectrocatalysis,Electrochimica Acta,2004,49:1981-1988.
    [165]S.Liu,Z.Dai,H.Chen,H.Ju,Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor,Biosens.Bioelectron.,2004,19:963-969.
    [166]C.T.Kresge,M.E.Leonowicz,W.J.Roth,J.C.Vartuli,J.S.Beck,Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism,Nature,1992,359,710-712.
    [167]J.C.Vartuli,K.D.Schmitt,C.T.Kresge,W.J.Roth,M.E.Leonowicz,S.B.McCullen,S.D.Hellring,J.S.Beck,J.L.Schlenker,D.H.Olson,E.W.Sheppard,Effect of surfactant silica molar on the formation of mesoporous molecular-sieves-inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications,Chem.Mat.,1994,6,2317-2326.
    [168]J.C.Vartuli,C.T.Kresge,M.E.Leonowicz,A.S.Chu,S.B.McCullen,I.D.Johnsen,J.S.Beck,E.W.Sheppard,Synthesis of mesoporous materials-liquid-crystal templating versus intercalation of layered silicates,Chem.Mat.,1994,6,2070-2077.
    [169]J.M.Kisler,A.Dahler,G.W.Stevens,A.J.O'Connor,Separation of biological molecules using mesoporous molecular sievesMicroporous and Mesoporous M aterials 2001,44-45,769.
    [170]H.Takahashi,B.L i,T.Sasaki,C.Miyazaki,T.Kajino,S.Inagaki,Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent Microporous and Mesoporous Materials,2001,44-45,755-762.
    [171]L.Washmonn-Kriel,V.L.Jimenez,K.J.Balkus,J.Mol.Catalysis B:Enzymatic,Cytochrome c immobilization into mesoporous molecular sieves 2000,10,453
    [172]H.P.Liu,P.A.Wright,N.R.Botting,J.Mol.CatalysisB:Enzymatic,2001,15,81.
    [173]J.Fan,C.Z.Yu,L.M.Wang,B.Tu,D.Y.Zhao,Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies,Chem.Commun.,2003,2140-2141.
    [174]高波,朱广山,傅学奇,辛明,裘式纶,介孔分子筛SBA-15中α-胰凝乳蛋白酶组装及催化活性研究,高等学校化学学报,2003,24,1100-1102.
    [175]薛屏,卢冠忠,郭杨龙,王箔松,吴东方,青霉素酰化酶在含铁MCM-41介孔分子筛上的固定化研究,化学通报,2003,10,681-683.
    [176]Z.H.Dai,S.Q.Liu,H.G.Ju,H.Y.Chen,Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix,Biosensors and Bioelectronics,2004,19,861-867.
    [177]K.Gong,M.Zhang,Y.Yan,L.Su,L.Mao,S.Xiong,Y.Chen,Sol-Gel-Derived ceramic-carbon nanotube nanocomposite electrodes:Tunable electrode dimension and potential electrochemical applications,Anal.Chem.,2004,76(21):6500-6505.
    [178] M. Zhang, A. Smith, W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes, Anal. Chem., 2004, 76(17): 5045-5050.
    [179] N. Mano, H.H. Kim, A. Heller, On the relationship between the characteristics of bilirude oxidases and O_2 cathodes based on their "wiring", J. Phys. Chem. B, 2002, 106(34): 8842-8848.
    [180] J.L. Fernandez, N. Mano, A. Heller, et al, Optimization of "wired" enzyme O_2-electroreduction catalyst compositions by scanning electrochemical microscopy, Angew. Chem. Int. Edit., 2004, 43 (46): 6355-6357.
    [181] L.X. Shi, Y. Xiao, I. Willner, Electrical contacting of glucose Oxidase by DNA-templated Polyaniline wires on surfaces, Electrochem. Commun., 2004,6(10): 1057-1060.
    
    [182] L. Zhang, Q. Zhang, Electrochem.Commun, 2007, 9, 1530-1535.
    [183] M. Weissbluth, Molecular Biology; Springer-Verlag: New York, 1974,15 .
    [184] D. Pahari, A.B. Patel, D.V Behere, Spectroscopic studies on calcium depleted horseradish peroxidase: Observation of tryptophan sensitized bound terbium(III) fluorescence, J. Inorg. Biochem., 1995, 60: 245-255.
    [185] N. C. Veitch, Horseradish peroxidase: a modern view of a classic enzyme, Phytochemistry, 2004, 65: 249-259.
    [186] H. Takahashi, B. Li, T. Sasaki, et al., Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent, Micropor. Mesopor. Mat., 2001, 44-45: 755-762.
    [187] T. Ferri, A. Poscia, R. Santucci, Direct electrochemistry of membrane-entrapped horseradish peroxidase: Part I. A voltammetric and spectroscopic study, Bioelectrochem. Bioenerg., 1998, 44(2): 177-181.
    [188] Lindgren, M. Tanaka, T. Ruzgas, et al., Direct electron transfer catalyzed by recombinant forms of horseradish peroxidase: Insight into the mechanism, Electrochem.Commun., 1999, 1 (5): 171-175.
    [189] E.E Ferapontova, V.G Grigorenko, A.M Egorov, et al., Direct electron transfer in the system gold electrode-recombinant horseradish peroxidases, J. Electroanal. Chem., 2001, 509 (1): 19-26.
    [190] E. Ferapontova, E. Puganova, Effect of pH on direct electron transfer between graphite and horseradish peroxidase, J. Electroanal. Chem., 2002, 518(1): 20-26.
    [191] A .M. Rad, H. Ghourchian, A .A. Moosavi-Movahedi, J. Hong, K. Nazari, Biosens. Bioelectron., 2007,362,38 -43.
    [192] K .G .Welinder, Eur. J. Biochem. 1979, 96 ,483-502.
    [193] Z .M. Liu, J. F. Dubremetz, V. Richard, Q. Yang, Z .K .Xu, P. Seta, J.Membrane Sci .,2005, 267, 2-7.
    [194] N. Mano, F. Mao, A. Heller, On the parameters affecting the characteristics of the "wired" glucose Oxidase anode, J. Electroanal. Chem., 2005, 574 (2): 347-357.
    [195] N. Nakadan, S. Imabayashi, M. Watanabe, Temperature-induced reversible change in the redox response in phenothiazine-labeled poly(ethoxyethyl glycidyl ether) and its application to the thermal control of the catalytic reaction of glucose Oxidase, Langmuir, 2004, 20 (20): 8786-8791.
    [196] N. Mano, F. Mao, A. Heller, Electro-oxidation of glucose at an increased current density at a reducing potential, Chem. Commun., 2004, (18): 2116-2117.
    [197] B. M. Hallberg, C. Leitner, D. Haltrich, C. Divnel, Crystal structure of the 270 kDa Homotetrameric lignin-degrading enzyme pyranose 2-oxidase, J. Mol. Biol., 2004, 341:781-796.
    [198] E. Katz, L. Sheeney-Haj-Ichia, I. Willner, Electrical contacting of glucose Oxidase in a redox-active rotaxane configuration, Angew. Chem. Int. Edit., 2004, 43 (25): 3292-3300.
    [199] Y. Xiao, F. Patolsky, E. Katz, et al., "Plugging into enzymes": Nanowiring of redox enzymes by a gold nanoparticle, Science, 2003, 299: 1877-1881.
    [200] J. Wang, J. Liu, L. Chen, F. Lu, Highly selective membrane-free, mediator-free glucose biosensor, Anal. Chem., 1994, 66(21): 3600-3603.
    [201] H.J. Hecht, H.M. Kalisz, J. Hendle, R.D. Schmid, D. Schomburg, Crystal structure of glucose Oxidase from Aspergillus niger refined at 2.3 A resolution, J. Mol. Biol., 1993, 229: 153-172.
    [202] D.L. Ohnson, J.L. Thompson, S.M. Brinkmann, K.A. Schuller, L.L. Martin, Electrochemical characterization of purified Rhus vernicifera Laccase: Voltammetric evidence for a sequential four-electron transfer, Biochemistry, 2003,42(34): 10229-10237.
    [203] Christenson, N. Dimcheva, E.E. Ferapontova, et al., Direct electron transfer between ligninolytic redox enzymes and electrodes, Electroanalysis, 2004, 16(13-14): 1074-1092.
    [204] M. Wilmot, J. Hajdu, M.J. McPherson, P.F. Knowles, S.E.V. Phillips, Visualization of dioxygen bound to copper during enzyme catalysis, Science, 1999,286: 1724-1728.
    [205] E.I. Solomon, M.D. lowery, Electronic structure constributions to function in bioinorganic chemistry, Science, 1993, 259: 1575-1580.
    [206] H. Decker, F. Tuczek, Tyrosinase/catecholoxidase activity of hemocyanins: Structural basis and molecular mechanism, Trends Biochem. Sci., 2000, 25 (8): 392-397.
    [207] T.E.Machonkin, L.Quintanar, A.E.Palmer, et al., Spectroscopy and reactivity of the type 1 copper site in Fet3p from Saccharomyces cerevisiae: Correlation of structure with reactivity in the multicopper oxidases, J. Am. Chem. Soc, 2001, 123 (23): 5507-5517.
    [208] T.Sakurai, J.Takahashi, EPR spectra of type 3 copper centers in Rhus vernicifera laccase and Cucumis sativus ascorbate Oxidase, Biochimica etc., Biophysica Acta (BBA)/Protein Structure and Molecular Enzymology, 1995, 1248(2): 143-148.
    [1]马礼敦,高等结构分析,复旦大学出版社:上海,2001
    [2]严风霞,王筱敏,现代光学仪器分析选论,华东师范大学出版社:上海,1992,p137
    [3]黄惠忠,纳米材料分析,化学工业出版社:北京,2003
    [4]陈国珍,黄贤智,刘文远,分光光度法(上册),原子能出版社:北京,1980
    [5]周伟舫,电化学测量,上海科学技术出版社,1983
    [6]吴浩青,李永舫,电极过程动力学,高等教育出版社:北京,1998
    [7]查仝性等,电极过程动力学导论,科学出版社:北京,1984
    [8]田昭武,电化学研究方法,科学出版社:北京,1984
    [9]藤岛昭,相泽益男,井上撤著,陈震,姚建年译,电化学测定方法,北京大学出版社:北京,1995,p204.
    [1]A.L.Ghindilis,P.Atanasov,E.Wilkins,Enzyme-catalyzed direct electron transfer fundamentals and analytical applications,Eletroanalysis,1997,9(9):661-674.
    [2]N.Mano,F.Mao,A.Heller,A miniature biofuel cell operating in a physiological buffer,J.Am.Chem.Soc.,2002,124(44),12962-12963.
    [3]J.E.Frew,H.A.O.Hill,Direct and indirect electron transfer between electrodes and redox proteins,Eur.J.Biochem.1988,172(2):261-269.
    [4]R.Santucci,A.Picciau,L.Campanella,M.Brunori,Electrochemistry of metalloproteins,Curr.Top Electrochem.,1994,3:313-328.
    [5]F.A.Armstrong,Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions,J.Chem.Soc.,Dalton Trans,2002,661-671.
    [6]K.F.Aguey-Zinsou,P.V.Bernhardt,U.Kappler,et al.,Direct electrochemistry of a bacterial sulfite dehydrogenase,J.Am.Chem.Soc.,2003,125:530-535.
    [7]蔡称心,陈静,碳纳米管电极上辣根过氧化物酶的直接电化学,化学学报,2004,62:335-340.
    [8]J.Z.Xu,J.J.Zhu,Q.Wu,Z.Hu,H.Y.Chen,Direct electron transfer between glucose oxidase and multi-walled carbon nanotubes,Chin.J.Chem.,2003,21(8):1088-1091.
    [9]董绍俊,车广礼,谢远武著,化学修饰电极(修订版),北京:科学出版社,2003,456-570
    [10]D.E.Reed,F.M.Hawkridge,Direct electron-transfer reations of cytochrome-C at silver electrodes,Anal.Chem.,1987,59:2334-2339.
    [11]I.Taniguichi,K.Watanabe,M.Tominaga,etal.,Direct electron-transfer of horse heart myogiobin at an indium oxide electrode,J.Electroanal.Chem.,1992,333:331-338.
    [12]H.J.Hecht,H.M.Kalisz,J.Hendle,R.D.Schmid,D.Schomburg,Crystal structure of glucose oxidase from Aspergillusniger refined at 2.3 A resolution,J.Mol.Biol., 1993,229: 153-172.
    [13]X.Chen, Y.Hu, G.S.Wilson, Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composite membrane, Biosens. Bioelectron., 2002, 17(11-12): 1005-1013.
    [14]J.J. Niu, J.Y. Lee, Reagentless mediated biosensors based on polyelectrolyte and sol-gel derived silica matrix, Sensor Actuat. B-Chem., 2002, 82(2-3): 250-258.
    [15] X.Chen, S.J.Dong, Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor, Biosensors & Bioelectronics, 2003, 18(8): 999-1004.
    [16]J.J.Xu, Z.H.Yu, H.Y.Chen, Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion, Anal. Chim. Acta, 2002, 463(2): 239-247
    [17] S. Reiter, K. Habermuller, W. Schuhmann, A reagentless glucose biosensor based on glucose Oxidase entrapped into osmium-complex modified polypyrrole films, Sensor Actuat. B-Chem., 2001, 799(2-3): 150-156.
    [18]L.Jiang, C.J.McNeil, J.M. Cooper, Direct electron transfer reactions of glucose Oxidase immobilized at a self-assembled monolayer, J. Chem. Soc, Chem. Commun., 1995, 1293-1295.
    [19]R.M.Ianniello, T.J.Lindsay, A.M.Yacynych, Differential pulse voltammetric study of direct electron transfer in glucose Oxidase chemically modified graphite electrodes, Anal. Chem., 1982,54(7): 1098-1101.
    [20] K. Narasimhan, L.B. Jr. Wingard, Enhanced direct electron transport with glucose Oxidase immobilized on (aminophenyl)boronic acid modified glassy carbon electrode, Anal. Chem., 1986, 58(14): 2984-2987.
    [21]Y. Zhao, W.Zhang , H.Chen, Anal. Sci.,2002,18:939
    [22] 季君晖,炭黑表面性能的表征,炭素,1999,4:8-12.
    [23]J.J.Davis, M.H.L.H.Green, H.A.O.Hill, Y.C.Leung, P.J.Sadler, et al., The immobilisation of proteins in carbon nanotubes, Inorganic Chimica.Acta, 1998, 272:261-266o
    [24]K.Niwa, M.Furukawa, K.Niki, IR reflectance studies of electron-transfer promoters for cytochrome -C on a gold electrode, Electroanal. Chem., 1988, 245: 275-285.
    [25]G.Irace, E.Bismuto, F.Savy, G.Colonna, Unfolding pathway of myoglobin-molecular-properties of intermediate forms, Arch Biochem. Biophys., 1986,244:459-469.
    [26]A.Guiseppi-Elie, C.H Lei, R.H. Baughman, Direct electron transfer of glucose Oxidase on carbon nanotubes, Nanotechnology, 2002,13:559-564.
    [27]V.H.Willner,R.B.Shabtai,R.Blonder,E.Katz,G.L.Tao, Electrical wiring of glucose Oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes, J.Am.Chem.Soc, 1996,118:10321 -10322.
    [28] J.Q.Liu, M.N.Paddon-Row, J.J.Gooding, Heterogeneous electron-transfer kinetics for flavin adenine dinucleotide and ferrocene through alkanethiol mixed monolayers on gold electrodes, J.Phys.Chem.B .,2004,108:8460-8466.
    [29]A.J.Bard,L.R. Faulkner, Electrochemical Methods, Fundamental and Applications 2nd ed. New York: John Wiley & Sons Inc, 2001, 594.
    [30]E.Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem., 1979, 101: 19-28.
    [1]F.W.Scheller,U.Wollenberger,C.Lei,W.Jin,B.Ge,C.Lehmann,F.Lisdat,V.Fridman,Bioelectrocatalysis by redox enzymes at modified electrodes,Reviews in Molecular Biotechnology, 2002, 82, 411-424.
    [2]F.A.Armstrong, G.S.Wilson, Recent developments in faradaic bioelectrochemistry, Electrochimica Acta, 2000, 45, 2623-2645.
    [3] O.Kievit, G.W.Brudvig, Direct electrochemistry of photosystem I, Journal of Electroanalytical Chemistry, 2001,497, 139-149.
    [4] C.Cai, J.Chen, Direct electron transfer of glucose Oxidase promoted by carbon nanotubes , Analytical Biochemistry, 2004,332 ,75-83.
    
    [5] Y.Wu, T.Komatsu, E.Tsuchida, Electrochemical studies of albumin-heme hybrid in aqueous media by modified electrode, Inorganica Chimica Acta, 2001, 322, 120-124.
    
    [6] L.Andolfi, D.Bruce, S.Cannistraro, G.W.Canters, J.J.Davis, H.A.O.Hill, J.Crozier, M.P.Verbeet, C.L.Wrathmell, Y.Astier, The electrochemical characteristics of blue copper protein monolayers on gold, Journal of Electroanalytical Chemistry, 2004,565 ,21-28.
    
    [7] J.E.Frew, H.A.O.Hill, Direct and indirect electron transfer between electrodes and redox proteins , Eur. J. Biochem., 1988,72, 261-269.
    
    [8] P.D.Barker, K.D.Gleria, H.A.O.Hill, V.J.Lowe, Electron-transfer reactions of metallo proteins at peptide-modified gold electrodes, Eur. J. Biochem., 1990,190,171-175.
    
    [9] R.Santucci, A.Faraoni, L.Campanella, G.Tranchide, M.Brunori, Use of solid-state promotions in the electrochemistry of cytochrome -c at a gold electrode, Biochem. J., 1991,273, 783-786.
    [10] M.Weissbluth, 1974. Molecular Biology: Biochemistry and Biophysics, vol. 15. Springer, New York, p. 68.
    [11] J.Yu,H. Ju, Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol-gel film, Anal. Chim. Acta, 2003,486 ,209-216.
    [12] K.M. Faulkner, C. Bonaventura, A.L. Crumbliss, A spectroelectrochemical method for differentiation of steric and electronic effects in hemoglobins and myoglobins, J. Biol. Chem., 1995,270, 13604-13612.
    
    [13] E.Topoglidis,Y.Astuti,F.Duriaux,M.Gra¨tzel,J.R. Durrant, Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes, Langmuir, 2003,19, 6894-6900.
    
    [14] L.Shen, N.Hu, Heme protein films with polyamidoamine dendrimer: direct electrochemistry and electrocatalysis, Biochimica et Biophysica Acta, 2004,1608, 23-33.
    [15] X.Han, W.Huang, J.Jia, S.Dong, E.Wang, Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H_2O_2, Biosensors and Bioelectronics ,2002,17, 741-746.
    [16]Q.Wang,G.Lu,B.Yang,Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film, Biosensors and Bioelectronics, 2004,19, 1269-1275
    [17] H.Wang, R.Guan, C.Fan, D.Zhu, G.Li, A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film, Sens. Actuators B Chem., 2002,84, 214-218.
    [18] H.Y.Gu, A.M.Yu, H.Y.Chen, Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode, J. Electroanal. Chem., 2001,516 ,119-126.
    [19] C.Fan, G.Wagner, G.Li, Effect of dimethyl sulfoxide on the electron transfer reactivity of hemoglobin, Bioelectrochem, 2001,54,49-51.
    [20] Y.Qiao, J.Zhang, T.Lu, Direct electrochemistry and bioelectrocatalysis of hemoglobin immobillised on CdS nanoparticles, Chinese Journal of Inorganic Chemistry, 2006,12, 1282-1284.
    [21] J.Feng, J.Xu, H.Chen , Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide, Electrochemistry Communication, 2006,8, 77-82.
    [22] Z.Dai, S.Liu, H.Ju, H.Chen, Electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix, Biosensors and Bioelectronics, 2004,19 ,861-867
    [23] X.Han, W.Cheng, Z.Zhang, S.Dong, E.Wang, Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles, Biochim. Biophys. Acta, 2002,1556,273-277.
    [24] C.Cai, J.Chen, Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode, Anal. Biochem., 2004,325,285-292.
    [25] N.Jia , L.Wang , L.Liu , Q. Zhou , Z. Jiang , Bamboo-like CNx nanotubes for the immobilization of hemoglobin and its bioelectrochemistry, Electrochemistry Communications, 2005,7, 349-354
    [26] M.Makadsi, Y.Ramadin, S.Saq'an, A .Ahmad, A.Zihlif, E.Martuscelli, GRagosta, Observed anisotropy in the electrical conductivity of carbon black/polyethylene composites, J. Polym. Mater., 2001,18, 91-95.
    [27] S.F.Yasin, A.Zihlif, G.Ragosta, The electricalbehaviour of laminated conductive polymer composite at low temperatures J. Mater. Sci., 2005,16, 63-69.
    [28]J.K.Kauppinen, D.J.Mofate, H.H.Mantsch, D.G.Lameron, Fourier self-deconvolution-a method for resolving intrinsically overlapped bands,Appl.Spectrosc, 1981, 35, 271-276.
    [29]J.J.Davis, M.H.L.H.Green, H.A.O.Hill, Y.C.Leung, P.J.Sadler, et al., The immobilisation of proteins in carbon nanotubes, Inorganic Chimica.Acta, 1998, 272:261-266.
    [30] P.George, G. Hanania, Spectrophotometric study of ionizations in methemoglobin. Biochem. J., 1953,55, 236-243.
    [31] J.Chen, C.Cai, Direct electrochemical oxidation of NADPH at a low potential on the carbon nanotube modified glassy carbon electrode, Chinese Journal of Chemistry, 2004, 22,167-171
    [32] H.Liu, N.Hu, Direct evidence of singlet molecular oxygen [O_2 (~1△__g)] production in the reaction of acetonitrile with hydrogen peroxide in alkaline solutions, Anal. Chim. Acta, 2003, 481,91-99.
    [33]X.Chen, N.Hu, Y.Zeng, J.F.Rusling, Ordered Electrochemically Active Films of Hemoglobin, Didodecyldimethylammonium Ions, and Clay, Langmuir, 1999, 15, 7022-7030.
    [34]A.J.Bard, L.R.Faulkner, Electrochemical Methods, Fundamental and Applications, second ed., John Wiley & Sons, New York, 2001.
    [35]R.W.Murray, in: A.J. Bard (Ed.), Electroanalytic Chemistry, vol. 13, Marcel Dekker, New York, 1984, p. 205.
    [36]E.Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical system, J. Electroanal. Chem., 1979,101 ,19-28.
    [37] H.Y.Gu, A.M.Yu, H.Y.Chen, Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes, J.Electroanal.Chem., 2001,516, 119-126.
    [38]Y.D.Zhao, Y.H.Bi, W.D.Zhang, Q.M.Luo, The interface behavior of hemoglobin at carbon nanotube and the detection for H_2O_2, Talanta, 2005, 65, 489-494.
    [1]J.E.Frew,H.A.O.Hill,Direct and indirect electron transfer between electrodes and redox proteins,Eur.J.Biochem.,1988,172(2):261-269.
    [2]R.Santucci,A.Picciau,L.Campanella,M.Brunori,Electrochemisry of metalloproteins,Curr.Top.Electrochem.,1994,3:313-328.
    [3]F.A.Armstrong,H.A.O.Hill,N.J.Walton,Direct electrochemistry of redox proteins,Acc.Chem.Res.,1988,21(11):407-413.
    [4]T.Ruzgas,E.Csoregi,J.Emnens,L.Gorton,G.Marko-Varga,Peroxidase-modified electrodes:Fundamentals and application,Anal.Chim.Acta,1996,330(2-3):123-138.
    [5] L. Gorton, A. Lindgren, T. Larsson, F.D. Munteanu, T. Ruzgas, I. Gazaryan, Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors, Anal. Chim. Acta, 1999, 400(1-3): 91-108.
    [6] T. Ferri, A. Poscia, R. Santucci, Direct electrochemistry of membrane-entrapped horseradish peroxidase. Part I. A voltammetric and spectroscopic study, Bioelectrochem. Bioenerg., 1998, 44(2): 177-181.
    [7] T. Ferri, A. Poscia, R. Santucci, Direct electrochemistry of membrane-entrapped horseradish peroxidase: Part II: Amperometric detection of hydrogen peroxide, Bioelectrochem. Bioenerg., 1998, 45(2): 221-226.
    [8] X. Chen, X. Peng, J. Kong, J. Deng, Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode, Anal. Chim. Acta, 2000, 412(1-2): 89-98.
    [9] X. Chen, X. Peng, J. Kong, J. Deng, Facilitated electron transfer from an electrode to horseradish peroxidase in a biomembrane-like surfactant film, J. Electroanal. Chem., 2000, 480(1-2): 26-33.
    [10] R. Huang, N. Hu, Direct electrochemistry and electrocatalysis with horseradish peroxidase in Eastman AQ films, Bioelectrochemistry, 2001, 54(1): 75-81.
    [11] Y.-D. Zhao, W.-D. Zhang, H. Chen, Q.-M. Luo, S.F.Y. Li, Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode, Sensors and Actuators B, 2002, 87(1): 168-172.
    [12] A. Lindgren, M. Tanaka, T. Ruzgas, L. Gorton, I. Gazaryan, K. Ishimori, I. Morishima, Direct electron transfer catalysed by recombinant forms of horseradish peroxidase: insight into the mechanism, Electrochem. Commun., 1999, 1(5): 171-175.
    [13] S. Varma, Electrochemical studies on reconstituted horseradish peroxidase modified carbon paste electrodes, Bioelectrochemistry, 2002, 56(1-2): 107-111.
    [14] E.E. Ferapontova, L. Gorton, Effect of pH on direct electron transfer in the system gold electrode-recombinant horseradish peroxidase, Bioelectrochemistry, 2002, 55(1-2): 83-87.
    [15] E.E. Ferapontova, L. Gorton, Effect of proton donors on direct electron transfer in the system gold electrode-horseradish peroxidase, Electrochem. Commun., 2001, 3(12): 767-774.
    [16] E.E. Ferapontova, V.G. Grigorenko, A.M. Egorov, T. Borchers, T. Ruzgas, L. Gorton, Direct electron transfer in the system gold electrode-recombinant horseradish peroxidases, J. Electroanal. Chem., 2001, 509(1): 19-26.
    [17] E.E. Ferapontova, E. Puganova, Effect of pH on direct electron transfer between graphite and horseradish peroxidase, J. Electroanal. Chem., 2002, 518(1): 20-26.
    [18] S.S. Razola, B.L. Ruiz, N.M. Diez, H.B. Mark, et al., Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode, Biosensors and Bioelectronics, 2002, 17(11-12): 921-928.
    [19] P.D. Barker, K.D. Gleria, H.A.O. Hill, V.J. Lowe, Electron transfer reactions of metalloproteins at peptide-modified gold electrodes, Eur. J. Biochem., 1990, 190(1): 171-175.
    [20] R.Santucci,A.Faraoni,L.Campanella,G.Tranchide,M.Brunori, Use of 'solid-state' promoters in the electrochemistry of cytochrome c at a gold electrode, Biochem. J., 1991,273:783-786.
    [21] M.Weissbluth, 1974. Molecular Biology: Biochemistry and Biophysics, vol. 15. Springer, New York, p. 68.
    [22] J.Yu,H.Ju,Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol-gel film, Anal. Chim. Acta, 2003,486 ,209-216.
    [23] K.M. Faulkner, C. Bonaventura, A.L. Crumbliss, A spectroelectrochemical method for differentiation of steric and electronic effects in hemoglobins and myoglobins, J. Biol. Chem., 1995,270, 13604-13612.
    [24] E.Topoglidis,Y.Astuti,F.Duriaux,M.Gra¨tzel,J.R.Durrant, Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes, Langmuir, 2003,19, 6894-6900.
    [25] L.Shen, N.Hu, Heme protein films with polyamidoamine dendrimer: direct electrochemistry and electrocatalysis, Biochimica et Biophysica Acta, 2004,1608,23-33.
    [26] X.Han, W.Huang, J. Jia, S.Dong, E.Wang, Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H_2O_2, Biosensors and Bioelectronics ,2002,17, 741-746.
    [27] Q.Wang, G.Lu, B.Yang, Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film, Biosensors and Bioelectronics, 2004,19, 1269-1275
    [28] H.Wang, R.Guan, C.Fan, D.Zhu, G.Li, A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film, Sens. Actuators B Chem., 2002,84, 214-218.
    [29] H.Y.Gu, A.M.Yu, H.Y.Chen, Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode, J. Electroanal. Chem., 2001,516 ,119-126.
    [30] C.Fan, G.Wagner, G.Li, Effect of dimethyl sulfoxide on the electron transfer reactivity of hemoglobin, Bioelectrochem, 2001,54,49-51.
    [31] Y.Qiao, J.Zhang, T.Lu, Direct electrochemistry and bioelectrocatalysis of hemoglobin immobillised on CdS nanoparticles, Chinese Journal of Inorganic Chemistry, 2006,12, 1282-1284.
    [32] J.Feng, J.Xu, H.Chen , Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide, Electrochemistry Communication, 2006,8, 77-82.
    [33] Z.H.Dai, S.Q.Liu, H.X.Ju, H.Y.Chen, Electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix, Biosensors and Bioelectronics, 2004,19 ,861-867
    [34] X.J.Han, W.L.Cheng, Z.L.Zhang, S.J.Dong, E.K.Wang, Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles, Biochim. Biophys. Acta, 2002,1556,273-277.
    [35] C.X.Cai, J.Chen, Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode, Anal. Biochem., 2004,325,285-292.
    [36] N.Q.Jia , L.J.Wang , L.Liu , Q. Zhou , Z.Y. Jiang , Bamboo-like CNx nanotubes for the immobilization of hemoglobin and its bioelectrochemistry, Electrochemistry Communications, 2005,7, 349-354
    [37] G.X.Ma, T.H.Lu,Y.Y.Xia, Direct electrochemistry and bioelectrocatalysis of hemoglobinimmobilized on carbon black, Bioelectrochemistry 71 (2007) 180— 185
    [38] Y.G.Wang, H.Q.Li, Y.Y.Xia,Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance, advanced materials, 2006, 18, 2619-2623
    [39] J .K .Kauppinen, D.J.Mofate, H .H.Mantsch, D.G. Lameron, Resolution of complex band contours by means of Fourier selfdeconvolution, Appl.Spectrosc, 1981,35,271.
    [40] J.J.Davis, M.H.L.H.Green, H.A.O.Hill, Y.C.Leung, P.J.Sadler, et al., The immobilisation of proteins in carbon nanotubes, Inorganic Chimica.Acta, 1998, 272:261-266.
    [41] P.George, G. Hanania, Spectrophotometric study of ionizations in methemoglobin. Biochem. J., 1953, 55, 236-243.
    [42] H.Liu, N.Hu, Direct evidence of singlet molecular oxygen [O_2 (~1△_g)] production in the reaction of acetonitrile with hydrogen peroxide in alkaline solutions, Anal. Chim.Acta, 2003, 481, 91-99.
    [43] X.Chen, N.Hu, Y.Zeng, J.F.Rusling, Ordered Electrochemically Active Films of Hemoglobin, Didodecyldimethylammonium Ions, and Clay, Langmuir, 1999, 15, 7022-7030.
    [44] A.J.Bard, L.R.Faulkner, Electrochemical Methods, Fundamental and Applications, second ed., John Wiley & Sons, New York, 2001.
    [45] R.W.Murray, in: A.J. Bard (Ed.), Electroanalytic Chemistry, vol. 13, Marcel Dekker, New York, 1984, p. 205.
    [46] E.Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical system, J. Electroanal. Chem., 1979,101,19-28.
    [47] R.A.Kamin, G.S.Wilson, Rotating-ring-disk enzynme electrode for biocatalysis kinetic-studies and characterization of the immobilized enzyme layer Anal Chem., 1980,52,1198-1205.
    [48] Y.D.Zhao, Y.H.Bi, W.D.Zhang, Q.M.Luo, The interface behavior of hemoglobin at carbon nanotube and the detection for H_2O_2, Talanta, 2005,65,489-494.
    [49] H.Y.Wang, R.Guan, C.H.Fan, D.X.Zhu, G.X.Li, A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film, Sens. Actuat. B., 2002,84 ,214-218.
    [1]S.C.Barton,J.Gallaway,P.Atanassov,Enzymatic biofuel cells for implantable and microscale devices,Chem.Rev.,2004,104:4867-4886.
    [2]F.Hollmann,A.Schmid,Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions,Biocatal.Biotransfor.,2004,22(2):63-88.
    [3]A.K.Shukla,P.Suresh,S.Berchmans,et al.,Biological fuel cells and their applications,Curr.Sci.,2004,87:455-468.
    [4]A.Heller,Miniature biofuel cells,Phys.Chem.Chem.Phys.,2004,6(2):209-216.
    [5]蔡称心,陈静,陆天虹,碳纳米管修饰电极上葡萄糖氧化酶的直接电子转移,中国科学,2003,33:511-518.
    [6]D.M.Sun,C.X.Cai,X.G.Li,et al.,Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon,J.Electroanal.Chem.,2004,566(2):415-421.
    [7]S.J.Elliott,A.E.McElhaney,C.Feng,et al.,A voltammetric study of interdimain electron transfer within sulfite oxidase,J.Am.Chem.Soc.,2002,124:11612-11613.
    [8]C.R.Hess,G.A.Juda,D.M.Dooley,et al.,Gold electrodes wired for coupling with the deeply buried active site of Arthrobacter globiformis amine oxidase,J.Am.Chem.Soc.,2003,125:7156-7157.
    [9]C.-X.Cai,J.Chen,Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode,Anal.Biochem.,2004,325:285-292.
    [10]F.A.Armstrong,Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions,J.Chem.Soc.,Dalton Trans,2002,661-671.
    [11]K.F.Aguey-Zinsou,P.V.Bernhardt,U.Kappler,et al.,Direct electrochemistry of a bacterial sulfite dehydrogenase,J.Am.Chem.Soc.,2003,125:530-535.
    [12]董绍俊,车广礼,谢远武著,化学修饰电极(修订版),北京:科学出版社,2003,456-570.
    [13]蔡称心,陈静,碳纳米管电极上辣根过氧化物酶的直接电化学,化学学报, 2004,62:335-340.
    [14]J.E.Frew,H.A.O.Hill,Direct and indirect electron transfer between electrodes and redox proteins,Eur.J.Biochem.,1988,172(2):261-269.
    [15]R.Santucci,A.Picciau,L.Campanella,M.Brunori,Electrochemisry of metalloproteins,Curr.Top.Electrochem.,1994,3:313-328.
    [16]P.D.Barker,K.D.Gleria,H.A.O.Hill,V.J.Lowe,Electron transfer reactions of metalloproteins at peptide-modified gold electrodes,Eur.J.Biochem.,1990,190(1):171-175.
    [17]R.Santucci,A.Faraoni,L.Campanella,G.Tranchide,M.Brunori,Use of 'solid-state' promoters in the electrochemistry of cytochrome c at a gold electrode,Biochem.J.,1991,273:783-786.
    [18]吕新萍,朱启忠,董学卫,徐国英,漆酶的固定化及其在生物传感器方面的应用,生命的化学,2007,27,254-255
    [19]A.P.Cole,D.E.Root,P.Mukherjee,et al.,A trinuclear intermediate in the copper-mediated reduction of O_2:Four electrons from three coppers,Science,1996,273:1848-1850.
    [20]A.E.Palmer,S.K.Lee,E.I.Solomon,Decay of the peroxidae intermediate in laccase:Reductive cleavage of the O-O bond,J.Am.Chem.Soc.,2001,123:6591-6599.
    [21]P.Brandi,et al.,In search for practical advantages from the immobilisation of an enzyme:the case of laccase,J Mol Catal B Enzyme 2006,41:61-69.
    [22]王军涛等,磁性壳聚糖微球同定化漆酶催化肾上腺素,武汉理工大学学报,2007,9(1):1-3
    [23]史伯安等,漆酚-(8-羟基)喹啉-Cu(Ⅱ)高分子配合物固定化漆树酶的研究,化学与生物工程,2005,6,15-17
    [24]S.C.Barton,H.-H.Kim,G.Binyamin,et al.,Electroreduction of O_2 to water on the "Wired" laccase cathode,J.Phys.Chem.B,2001,105(47):11917-11921.
    [25]Y.G.Wang,H.Q.Li,Y.Y.Xia,Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance,Advanced Materials,2006,18,2619-2623
    [26]J.J.Davis,M.H.L.H.Green,H.A.O.Hill,Y.C.Leung,P.J.Sadler,et al.,The immobilisation of proteins in carbon nanotubes,Inorganic Chimica.Acta,1998,272:261-266。
    [27]A.J.Bard,L.R.Faulkner,Electrochemical Methods,Fundamental and Applications, 2nd ed. New York: John Wiley & Sons Inc, 2001, 594.
    [28] E.Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical system, J. Electroanal. Chem., 1979,101,19-28.
    [1]I.C.Popescu,G.Zetterberg,L.Gorton,Influence of graphite powder,additives and enzyme immobilization procedures on a mediatorless HRP-modified carbon -paste electrode for amperometric flow-injection detection of H_2O_2,Biosens.Bioelectron.1995,10,443-461.
    [2]Y.Zhuo,R.Yuan,Y.Q.Chai,A.L.Sun,Y.Zhang,J.Z.Yang,A tris(2,2'-bipyridyl)cobalt(Ⅲ)-bovine serum albumin composite membrane for biosensors Biomaterials,2006,27,5420-5429.
    [3]J.E.Frew,H.A.O.Hill,Direct and indirect electron transfer between electrodes and redox proteins,Eur.J.Biochem.,1988,172(2):261-269.
    [4]R.Santucci,A.Picciau,L.Campanella,M.Brunori,Electrochemisry of metalloproteins, Curr. Top. Electrochem., 1994, 3: 313-328.
    [5] W.J. Zhang,G.X Li, Third-generation biosensors based on the direct electron transfer of proteins, Anal.Sci., 2004,20,603-609.
    [6] K.Chattopadhyay, S.Mazumdar, Direct electrochemistry of heme proteins: effect of electrode surface modification by neutral surfactants Bioelectrochemistry 2000,53,17-24.
    [7] Y.T Kong, M.Boopathi, ,Y.B. Shim, Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode Biosens.Bioelectron. 2003,19,227-232.
    [8] Z.H. Dai, H.X.Ju, H.Y. Chen, Mesoporous materials promoting direct electrochemistry and electrocatalysis of horseradish peroxidaseElectroanalysis 2005,17,862-868.
    [9] J.H. Yu, H.X. Ju, Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method Anal.Chem., 2002,74,3579-3583.
    [10] J.Wang, M. Musameh, Y .J. Lin, Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors Am.Chem.Soc.,2003,125,2408-2409
    [11] C.T.Kresge,M.E.Leonowicz,W.J.Roth,J.C.Vartuli,J.S.Beck,Ordered mesopor ous molecular-sieves synthesized by a liquid-crystal template mechanism, Nature,1992,359, 710-712.
    [12] J.C.Vartuli, K.D.Schmitt, C.T.Kresge,W.J. Roth, M.E.Leonowicz, S.B. McCullen, S. D.Hellring, J. S.Beck, J.L.Schlenker, D.H.Olson, E.W.Sheppard, Effect of surfactant silica molar on the formation of mesoporous molecular-sieves-inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications, Chem.Mat., 1994,6,2317-2326.
    [13] J.C.Vartuli,C.T.Kresge, M.E.Leonowicz, A .S.Chu, S .B.McCullen,I. D. Johnsen, J.S. Beck, E.W. Sheppard, Synthesis of mesoporous materials - liquid-crystal templating versus intercalation of layered silicates, Chem.Mat., 1994,6, 2070-2077.
    [14] J.M.Kisler, A.Dahler, G.W. Stevens, A.J.O'Connor, Separation of biological molecules using mesoporous molecular sievesMicroporous and Mesoporous M aterials 2001,44-45, 769.
    [15] H.Takahashi, B.L i, T. Sasaki, C. Miyazaki,T. Kajino, S .Inagaki, Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent Microporous and Mesoporous Materials,2001,44-45,755-762.
    [16]L.Washmonn-Kriel,V.L.Jimenez,K.J.Balkus,J.Mol.Catalysis B:Enzymatic,Cytochrome c immobilization into mesoporous molecular sieves 2000,10,453
    [17]H.P.Liu,P.A.Wright,N.R.Botting,J.Mol.Catalysis B:Enzymatic,2001,15,81.
    [18]J.Fan,C.Z.Yu,L.M.Wang,B.Tu,D.Y.Zhao,Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies.Chem.Commun.,2003,2140-2141.
    [19]高波,朱厂山,傅学奇,辛明,裘式纶,介孔分子筛SBA-15中α-胰凝乳蛋白酶组装及催化活性研究,高等学校化学学报,2003,24,1100-1102.
    [20]薛屏,卢冠忠,郭杨龙,王箔松,吴东方,青霉素酰化酶在含铁MCM-41介孔分子筛上的固定化研究,化学通报,2003,10,681-683.
    [21]J.Deere,E.Magner,J.G.Wall,B.K.Hodnett,Adsorption and activity of cytochrome c on mesoporous silicates Chem.Commun,2001,465-466.
    [22]J.Fan,C.Z.Yu,T.Gao,J.Lei,B.Z.Tian,L.M.Wang,et al.,Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties,Angew.Chem.Int.Ed.,2003,42,3146-3150.
    [23]Y.J.Han,G.D.Stucky,A.Bultler,Mesoporous silicate sequestration and release of proteinsJ.Am.Chem.Soc.,1999,121,9897-9898.
    [24]J.K.Kauppinen,D.J.Mofate,H.H.Mantsch,D.G.Lameron,Fourier self-deconvolution-a method for resolving intrinsically overlapped bands,Appl.Spectrosc,1981,35,271-276.
    [25]P.George,G.Hanania,Spectrophotometric study of ionizations in methemoglobin.Biochem.J.,1953,55,236-243.
    [26]A.J.Bard,L.R.Faulkner,Electrochemical Methods,Fundamental and Applications,second ed.,John Wiley & Sons,New York,2001.
    [27]R.W.Murray,in:A.J.Bard(Ed.),Electroanalytic Chemistry,vol.13,Marcel Dekker,New York,1984,p.205.
    [28]E.Laviron,General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical system,J.Electroanal.Chem.,1979,101,19-28.
    [29]A.M.Bond,Modern polarographic methodsin analytical chemistry,Marcel Dekker:New York,1980,pp 27.
    [30] I.Yamazaki,T.Araiso,Y.Hayashi,H.Yamada,R.Makino, Analysis of acid-base properties of peroxidase and myoglobin Adv.Biophys.,1978,11,249-81.
    [31] H.H.Liu, Z.Q.Tian, Z.X.Lu, Z.L.Zhang, M.Zhang, D.W. Pang, Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films Biosens. Bioelectron., 2004, 20, 294-304.
    [32] L.Gorton, G .Jonsson-Petersson, E.Csoregi, K Johansson, E .Dominguez,G . Marko-Varga, Amperometric biosensors on an apparent direct electron -transfer between electrodes and immobilized peroxidases-plenary lecture, Analyst, 1992,117,1235-1241.
    [33] R.A.Kamin, G.S.Wilson, Rotating-ring-disk enzynme electrode for biocatalysis kinetic-studies and characterization of the immobilized enzyme layer Anal Chem., 1980,52,1198-1205.
    [34] S.Q. Liu, H.X. Ju, Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode Anal. Biochem., 2002,307,110-116.
    [35] T.Ferri, A. Poscia, R. Santucci, Direct electrochemistry of membrane-entrapped horseradish peroxidase. Part I. A voltammetric and spectroscopic study, Bioelectrochem. Bioenerg., 1998, 44, 177-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700