定子双绕组感应发电机的设计及控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定子双绕组感应发电机是为了适应变速范围较宽的风力发电以及航空、战车等电源系统的新发展而提出的。它的定子设有两套绕组,一套为功率绕组,输出端接有励磁电容、整流器、滤波电容,输出变频交流电或整流直流电压;另一套为控制绕组,接有静止的励磁变换器,可以为发电机连续地提供励磁,解决了感应发电机在转速和负载都大范围变化时,所需要的大范围变化的励磁电流调节问题。通过系统参数的优化设计和一定的控制策略,在宽变速范围和变负载条件下,可以以小容量的励磁变换器有效地控制大容量的电能输出,或者以小电流的励磁变换器有效地控制大电流的电能输出,保持输出电压的幅值恒定,有效地减小系统的成本、体积和重量。两套定子绕组在电气上没有直接连接,只是通过磁耦合,容易达到控制的高性能。
     本文系统地推导了定子双绕组感应发电机系统在abc和dq坐标下的数学模型和等效电路以及带整流桥负载时的动态数学模型。对电机内部运行的物理过程进行了分析和描述,揭示了通过控制绕组励磁变换器调节发电机无功使功率绕组输出电压稳定的运行机理。给出了电磁转矩方程、运动方程以及基本性能计算式等。
     采用解析法系统地研究了不同绕组结构形式下如双重单层联接、三层联接以及四层联接等定子双绕组感应电机槽漏抗及谐波互漏抗的计算问题,归纳总结了一套统一的槽漏抗与不同节距系数之间的数学计算公式,并可以推广到m相电机的计算中;研究了实现两套绕组dq轴互漏抗解耦的条件。所得结论为定子双绕组感应电机设计中绕组分布及参数计算提供了理论依据。
     研究了变速系统的定子双绕组感应发电机的运动规律。对控制绕组电流变化规律与电机参数、负载大小、转速及变比、功率绕组励磁电容的大小等参数之间的关系进行了详细地探索,提出了通过功率绕组励磁电容的选择来降低控制绕组励磁变换器容量的优化方法。
     研究了用小容量变换器控制大容量电能输出的优化策略,即电机设计和系统设计同一优化的概念,为了使励磁变换器的容量最小,电机的参数和功率侧的励磁电容容量同时优化。根据电机设计的基本原则,以磁路、电路设计为核心得到了设计计算的公式及设计步骤及性能校核方法。采用一种动态全域映射收缩算子的复合形法编制出相应的计算机辅助设计系统。对一台应用于18kW的270V高压直流输出电压的样机进行了优化设计,分析了主要参数对性能的影响规律,并对其进行了有限元电磁场的分析。
     利用具有全局优化搜索能力的改进遗传算法对系统参数的优化结果进行了验证。优化结果表明,该优化方法可以在1:2.5的转速变化范围内,负载从空载到额定负载变化,控制绕组与输出功率的容量比可以降到1/3左右,效率可达90%以上,这对于降低控制绕组的容量和铜耗,提高效率,降低系统运行的成本及体积、重量是很有意义的,对于风力发电、航空、战车等变速范围较大的场合有一定的工程应用价值。
     研究了低压大电流发电系统的特殊设计方法。充分利用定子双绕组感应发电机系统有两个定子绕组的特点,提高控制绕组与功率绕组的匝数比来提高控制绕组的电压,使控制绕组励磁变换器的电流降低。同时省去功率侧的励磁电容器和控制侧的滤波电感,构成高电压小电流的新型励磁控制系统,降低了系统的成本、体积和重量。建立了定子双绕组感应发电机的系统仿真模型,研究了1:2.5的宽变速运行的励磁变换器自励建压问题,对整流型负载下的稳态特性、动态特性、变速运行特性以及纯阻性负载下的变速运行进行了系统地仿真研究,对两种负载的运行性质进行了对比总结,系统仿真结果与样机计算结果吻合。
     建立了基于dSPACE试验平台的定子双绕组感应发电机系统的实时试验模型;对优化设计的18KW、270V高压直流输出的样机系统进行了1:2变速比范围的试验研究,对额定转速下系统的变载运行规律以及励磁电容改变时的变速运行规律进行了试验研究,得到了与仿真结果及理论设计结果相吻合的结果,验证了所发现的控制绕组电流变化规律的正确性以及所提优化策略的正确性。
Wind generating system and high voltage DC stand-alone supply system of aviation and tank have presented new demands for induction generator. The dual stator-winding induction generator is presented for these demands. Two sets of three-phase windings are embedded in the stator slots, the one referred as power winding with excited capacitors C, supplies power to DC load via a bridge rectifier. The other termed the control winding, is connected PWM excited converter, which supplies only the reactive power and none of active power to control the output voltage stable. Solving the problem of large varying excited current adjusting of induction generator with variable load and speed. By the optimal design of machines parameters and excited capacitor and proper control strategy, the minimal capacity converter can be used to control large power output or the minimal current of converter can be used to control large current output under wide speed range and load, which reduces the cost,volumes and weight of system .Both the two sets of windings have none of electrical connection but magnetic coupling exiting, so the harmonic from the converter of control winding has little disturbance on the load, and the electromagnetic compatibility and efficiency have been improved more.
     The general mathematic model and equivalent circuit under axis of dq and abc reference of dual stator-winding induction machine with rectifier load are derived. The physical process inside machine is proposed. The operational mechanism of the system is revealed. Electromagnetic torque and motional equation and basic characteristic expression are given.
     The analytical calculations of slot and harmonious leakage reactance of dual stator-winding induction machine with different winding structure, such as double single-layer and three-layer and four-layer, are presented systematically, the relevant formulas with different pitch are derived, and generalized to m-phase machines. The decouple of dq axes leakage reactance between of the two sets of windings is studied. These conclusions will provide theoretical guidance to the winding distributing and parameters calculating.
     The operational laws of this system under variable speed are studied firstly. The capacity ratio between control winding and power winding is proposed. The relation between reactive capacity and parameters of machine, load, rotating speed, speed ratio and exciting capacitors is analyzed. The distribution of reactive power with variable speed and laws of winding’s currents are given. The determination of excited capacitors to minimize the reactive power of control winding under variable load and speed is given. The optimal strategy of minimal capacity converter can be used to control large power output is studied. The simultaneously optimal design concept of dual stator-winding induction generator and excited capacitor with wide speed range is researched, which the machines parameters and excited capacitor are simultaneously optimized to make the minimizing to reactive power of excited converter. The designing features of high voltage DC induction generator are given. The design formulae and processes and collating means based circuit and magnetic path are presented. The CAD are designed by complex method with dynamic full reflection and retraction operator. A prototype of 18kW and 270V high voltage DC is designed, The parameters effects on the capacity of control winding is analysised, and finite element method is given.
     The improved real-coded genetic algorithm is used to test the designed results theoretically. The results show this scheme has prominent effect to reduce reactive power of control winding, and the capacity of converter can be reduced to 1/3 of output rated power, which makes the cost, dimension of inverter much smaller.
     The special design strategy of minimal current converter can be used to control large current output is studied. When the output voltage of power winding is very low and the output current very high,the winding turns ratio between the two winding is choosed to reduced the current of control winding.The excited capacitor can be canceled.These can reduce the cost and volume of the system.
     The universal simulation model of dual stator-winding induction generator system is established by MATLAB/SIMULINK. The starting-up process by the PWM excitation converter is resolved. And the performances of steady and dynamic operation with variable speed are simulated based direct flux stator control of control winding. The performances under resistor load and bridge rectifier are compared.
     The Real-time experimental model based dSPACE is setup, and the experiment is done with a 18 kW and 270V rectified DC output prototype. The experiments are done under different load and different capacitors and 1:2 speed ratio. The experimental results are anastomose with those of simulating, which validates the control winding current laws and the optimal strategy. The operational laws of the system with variable load are experimented.
引文
[1] C.Bansal,T.S.Bhatti,D.P.Kothari. Bibliography on the Application of Induction Generator in Nonconventional Energy Systems. IEEE Trans on Energy Conversion. 2003,18(3):433~438
    [2] Shashank W, Vivek A. Simple control for a wind-driven induction generator. IEEE Industry Application Magazine,2001(3):44-53
    [3] Singh B,Shilpakar L B. Analysis of a novel solid state voltage regulator for a self-excited induction generator. IEE Proc-Gener. Transm.Distrib.,1998,145(6):647-655
    [4] B Singh,R.K.Misshra,and M.K.Vasantha. Voltage regulator for isolated self-excited cage induction generator,Electr. Power System Res,1992,24(2):75-83
    [5] R.C.Bansal. Three phase self-excited induction generators: an overview. IEEE Trans on Energy Conversion. 2005,20(2): 292~299
    [6] 王承煦,张源.“风力发电”,北京:中国电力出版社,2003
    [7] 叶杭治.“风力发电机组的控制技术”,北京:机械工业出版社,2002
    [8] 苏绍禹.“风力发电机设计与运行维护”北京:中国电力出版社,2003
    [9] 严仰光.航空航天器供电系统.北京:航空工业出版社.1995
    [10] 严东超.飞机电气系统总体设计.北京:航空工业出版社,2001
    [11] 于敦.国外飞机供电系统手册.北京:中国航空信息中心,1997
    [12] R.E.Quigley. More Electric Aircraft, IEEE APEC,93:906-911
    [13] Emadi,and Ehsani. Aircraft Power System: Technology,State of the Art and Future Trends,IEEE Aerospace and Electronics System Magazine,2000(1): 28-32
    [14] 沈颂华. 航空航天器供电系统,北京:北京航空航天大学出版社,2005
    [15] 黄文新.笼型感应发电机---电力电子变换器高压直流发电系统研究.[博士学位论文],南京:南京航空航天大学,2002.
    [16] 胡育文 黄文新 张兰红. 异步电机起动/发电系统的研究,电工技术学报, 2006,21(5):7-13.
    [17] 胡育文.航空电源系统的新发展.南京:南京航空航天大学航空电源重点实验室学术年会论文集,2004
    [18] 刘迪吉.航空电机学.北京:航空工业出版社, 1992
    [19] F.Chen. Capacitance Requirements of Self-Excited Induction Generator,IEEE Trans on Energy Conversions ,1993,8(2): 304-311.
    [20] N.H.Malik ,S.E.Haque. Steady State and Performance of an Isolated Self-Excited Induction Generator. IEEE Trans on Energy Conversions, 1986 ,1(3): 134-139 .
    [21] M.B.Brennen,and A.Abbondanti. Static Exerciter for Induction Generators, IEEE Trans Ind Appl.1977,13(5): 422-427.
    [22] J.M.Ecder,J.T.Boys,J.L.Woodward. Self-excited Induction Machine as a Small Low-Cost Generator,IEE Proc C ,Gener.Transm.Dirstrib,1984,131(2): 33-41
    [23] Jain,D.K,Mittal,A.P,Singh,Bhim. Advanced Controlled Series Compensated Self-Excited Induction Generator, Proceedings of the IEEE International Conference on Power Electronics,Drives Energy Systems for Industrial Growth, 1996 (2): 707-712
    [24] G.H.Studtmann. AC-DC Generating System, U.S.A, Patent No.3,829,758, August 13,1974
    [25] D.W.Novotny,D.J.Gritter, G.H.Studtmann. Self-Excitation in Inverter Driven Induction Machines. IEEE Trans on Power Apparatus and Systems,1977.96(4):1117-1125.
    [26] Muljadi E, Lipo T A. Series compensated PWM inverter with battery supply applied to isolated induction generator.IEEE Transzctions on Industry Applications,1994,30(4): 1073-1082
    [27] M.G.Simoes,B.K.Bose,RJ.Spiegel. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. IEEE Trans. Power Electron.1997,12(1): 87-95.
    [28] S.N.Bhadra,K.Venkata Ratnam, A Manjunath. Study of Voltage Build up in a self-excited Variable Speed Induction Generator/Static Inverter System with D.C. Side Capacitor. Proceedings of the IEEE International Conference on Power Electronics, Energy Systems for Industrial Growth,1996,2:964~970.
    [29] Irfan Alan,Thomas A.Lipo. Control of a Poly-phase Induction Generator/Induction Motor Power Conversion System Completely Isolated from the Utility, IEEE Trans on Industry Applications, 1994,30(3):636~647.
    [30] Roberto Leidhold, Guillermo Garcia,Maria Ines Valla. Field-Oriented Controlled Induction Generator with Loss Minimization. IEEE Trans on Industration Electronics,2002,49(1):147~155.
    [31] D.Seyoum, M.F.Rahman,C.Grantham. Terminal Voltage Control of a Wind Turbine Driven Isolated Induction Generator using Stator Oriented Field Control. APEC 2003:846~852
    [32] John George, Erdman William,Hudson Raymond. Stator Flux Estimation from Inverter Switching States for the Field Oriented Control of Induction Generator. ConferenceRecord-IAS Annual Meeting,1995,1:182~188.
    [33] Roberto Leidhold and Guillermo Garcia. Variable Speed Field-Oriented Controlled Induction Generator. Industry Applications Conference, 1998,10:540~546
    [34] Y.W.Liao,E.Levi. Modeling and Simulation of a Stand-alone Induction Generator with Rotor Flux Oriented Control. Electric Power Systems Research.1998,46(2):141~152.
    [35] S R Silva, R O C Lyra. PWM Converter for Excitation of Induction Generators. The European Power Electronics Association ,1993(8):174~178.
    [36] Lyra,R.O.C, Silva,S.R,Cortizo,P.C. Direct and Indirect Flux Control of an Isolated Induction Generator.IEEE, Power Electronics and Drive Systems, 1995., Proceedings of International Conference 1995(1):140~145.
    [37] Roberto Leidhoid, Guillermo Garcia,Maria Ines Valla. Induction Generator Controller based on the Instantaneous Reactive Power Theory. IEEE Trans on Energy Conversion,2002,17(3):368~372.
    [38] Shiao,Ying Shing, Lin Chin E. Prototype induction generator VSCF system for aircraft, International IEEE/IAS Conference on Industrial Automation and control: Emerging Technologies ,Proceedings 1995,:148-155
    [39] Enes Goncalves Marra, Jose Antenor Pomilio. Induction Generator based System Providing Regulated Voltage with Constant Frequency. IEEE Transactions on Industrial Electronics,2000,47(4):908~914.
    [40] Enes Goncalves Marra, Jose Antenor Pomilio. Self-excited Induction Generator Controlled by a VS-PWM Bi-Directional Converter for Rural Applications. APEC ,98(2):116~122.
    [41] R.Pena, J.C.Clare, G.M.Asher.“Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind-energygeneration.” Proc. Inst. Elect Eng.,pr. B, vol.143, no.3, pp.231-241 ,May 1996
    [42] 马洪飞,徐殿国.几种变速恒频风力发电系统控制方案的对比分析.电工技术杂志,2000,10 : 43~46
    [43] Debiprasad Panda, Thoms.A.Lipo “Reduced switch count double converter fed wound rotor induction machine drive for wind energy application.” Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE International, vol.3, pp:1924-1931, 1-4 June 2003
    [44] 张凤阁,王正,王凤翔.“ALA转子无刷双馈风力发电机的参数计算方法与转子制造工艺探讨”,太阳能学报,2002.8,pp:498-502
    [45] 张彦锋,潘再平,章玮,贺益康.“无刷双馈电机的研究及应用前景”机电工程,1998.6,pp:55-60
    [46] 张凤阁.磁场调制式无刷双馈电机的研究.[博士学位论文],沈阳:沈阳工业大学,1999
    [47] 邓先明,姜建国.无刷双馈电机的工作原理及电磁设计.中国电机工程学报,2003,23(11): 126-132
    [48] R.Spee,A.K.Wallace. Performance simulation of brushless doubly-fed adjustable speed drives. IEEE Industrial Application Society Annual Meeting,1989(1):738~743.
    [49] E.F.Fuchs,L.T.Rosenberg. Analysis of an alternator with two displace stator windings,IEEE Trans on PAS, 1974, 93(6): 1776-1786
    [50] G.K.Singh. Multi-phase induction machine driver research—a survey, Electric Power Systems Research, 2002, 61(3): 139-147
    [51] R.H.Nelson,P.C.Krause. Induction machine ananlysis for arbitrary displancement between multiple winding sets, IEEE Trans on PAS, 1973,93(2): 841-848
    [52] Mothmed A.Abbas,Roland Christen,Thomas M.Jahns. Six-phase voltage source inverter driven induction motor.IEEE Trans on IA, 1984, 20(5): 1251-1259
    [53] Lurong Ye,Longya Xu. Analysis of a stator winding structure minmizing harmmonic current and torque ripple for dual six-step converter-fed high power AC machines, Conference Record-IAS Annual Meeting, 1993, 3(8): 197-202
    [54] R.Bojoi,M.Lazzari. Digital field oriented control for dual three-phase induction motor drivers, IEEE Transactions on Industry Applications. 2003,39(3): 752-760
    [55] Yifan Zhao,Thomas A Lipo. Space vector PWM control of dual three-phase induction machine using vector space decomposition, IEEE Trans on Industry Applications, 1995, 31(5): 1100-1109
    [56] Alfredo Munoz-Garcia ,Thomas A.Lipo. Dual stator winding induction machine drive, IEEE Trans on Industry Applications,36(5):1369-1379
    [57] Ahmed Alaa Mahfouz,O.P.Malik. Unity power factor operation for 3-phase induction motors, IECON Proceedings, 1995(1): 300-305
    [58] 王东,马伟明, 李玉梅,等.带有静止励磁调节器的双绕组感应发电机的研究. 中国电机工程学报, 2003,23(7):145-150.
    [59] 傅玉,马伟明,王东,等.新型定子双绕组自激感应发电机的电压调节.中国电机工程学报,2003,23(3):121~125.
    [60] 傅玉,马伟明,李玉梅,等. 带有电流控制电压型逆变器的新型双绕组感应发电机的电压控制.电工电能新技术,2003,22(3):55~58.
    [61] 肖飞,张波涛,马伟明,等.一种双绕组感应发电机及其励磁控制.电力系统自动化, 2003,27(18):26~29.
    [62] Olorunfemi Ojo,Innocent Ewean Davidson. PWM-VSI Inverter-Assisted Stand-Alone Dual Stator Winding Induction Generator. IEEE Trans. On. Industry Application, 2000,36(6): 1604-1611.
    [63] Olorunfemi Ojo. Innocent Ewean Davidson. A Dual Stator Winding Induction Generator with a Four Switch Inverter-Battery Scheme for Control. PESC,2000(1):230~234.
    [64] 张波涛,马伟明. 3相定子电压定向的12/3相双绕组感应发电机励磁控制的实现.中国电机工程学报,2004,24(2):135~138
    [65] 王东,马伟明,顾伟峰,等.12/3相双绕组感应发电机的谐波不对称分析. 中国电机工程学报,2004,24(5):148~152
    [66] 顾伟峰,马伟明,王东,等. 12/3相双绕组感应发电机自激起励时谐波振荡问题研究. 中国电机工程学报,2004,24(6):148~152
    [67] 张波涛,马伟明,肖飞,等.12/3相双绕组感应发电机励磁系统的控制方法和动态特性的研究[J].中国电机工程学报,2005,25(12):143-148.
    [68] Dong Wang, Weiming Ma, Fei Xiao. etc. A novel stand-alone deal stator-winding induction generator with static excitation regulation. IEEE Trans. On Energy Conversion,Vol.20,No.4,200520(4): 826-835
    [69] 刘陵顺,胡育文,黄文新. 电力电子变换器控制的感应电机发电技术,电工技术学报,2005,20(5):1-7
    [70] 黄文新. 应用于风力发电中的定子双绕组异步电机发电技术,国家高技术研究发展计划(863计划)专题课题申请书,2006
    [71] 高景德,王祥珩,李发海.交流电机及其系统的分析.北京:清华大学出版社,2005
    [72] R.F.Schiferl,C.M.Ong. Six phase synchronous machine with AC and stator connections,IEEE Trans. On power apparatus and systems, 1983,102(8):2685-2701
    [73] 顾伟峰,马伟明,王东.双绕组感应发电机数学模型dq轴解耦问题研究,中小型电机,2004,31(4):1-5
    [74] Tarek Ahmed, Katsumi Nishida, Mutsuo Nakaoka. A novel stand-alone induction generator system for AC and DC power applications,Industry applications conference,2005:2950—2957.
    [75] 程小华. 感应电机内部物理过程的框图描述,微特电机,2003(4): 16,40
    [76] 陈世坤.电机设计,北京:机械工业出版社,2002
    [77] 刘陵顺,胡育文,黄文新.定子双绕组感应电机漏电抗计算的研究,航空学报,2006,27(1):109—114
    [78] Hadiouche, D.; Razik, H.; Rezzoug, A. On the design of dual-stator windings for safe VSI fed AC machine drives, Industry Applications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE, vol2 : 1123-130
    [79] 吴旭升,马伟明,顾伟峰,等.交直流混合供电的三/十二相电机定子漏电抗计算,电工技术学报,2004,19(3):9-13
    [80] 杨向宇.电机的计算机辅助设计,北京:机械工业出版社,1996
    [81] Malakondaiah Naidu, James Walters. A 4-kW 42-V Induction-Machine-Based Automotive Power Generation System with a Diode Bridge Rectifier and a PWM Inverter. IEEE Teans. On Industry Applications,2003,39(5):1287-1293
    [82] Weiming Ma,DongWang,FeiXiao,etc.A high speed induction generator based on power intergration techniques,Industry Applications Conference,2005,vol 4,pp.2272--2279
    [83] 刘陵顺,胡育文,黄文新. 变速变负载运行的双绕组感应发电机控制绕组无功容量优化的分析,电工技术学报,2006,21(3):94-99
    [84] 刘陵顺,胡育文,黄文新.变速运行的双绕组感应发电机电磁优化设计[J],中国电机工程学报,2006,26(3):125-130
    [85] [苏] B.A.巴拉古洛夫著,朱耀忠 许巧保译.特种交流电机设计,北京:国防工业出版社,1987
    [86] 俞鑫昌.电机、电器优化设计.北京:机械工业出版社,1988
    [87] 包广清,江建中.现代电机优化设计纵横谈,中小型电机,2004,31(4):1-6
    [88] J.Faiz,A.A.Dagari,S.Horning,A.Keyhani. Design of a Three-phase self-excited induction generator, IEEE Trans. On Energy Conversion,1995,10(3):516-523
    [89] 王凤翔.交流电机的非正弦供电.北京:机械工业出版社,1997.
    [90] 徐士良.C常用算法程序集,北京:清华大学出版社,1994
    [91] Kenneth A. Cunefare,Brian S.Dater. Structural acoustic optimisation using the complex method[J].Journal of computation acoustics,2003,11(1):115-123
    [92] 李亮,迟世春,林皋.一类新复合形法及其在临界滑动面搜索中的应用,岩土工程学报,2005,27(4):448-452
    [93] 李亮,迟世春,林皋.基于最大熵原理的复合形法及其在边坡稳定分析中的应用.中国工程科学,2005,7(4):64-73.
    [94] Borland/Inprise著,梁志刚,汪浩,康向东等译. C++Build 5 开发人员指南,北京:机械工业出版社,2000
    [95] 汤蕴璆.电机内的电磁场(第二版),北京:科学出版社,1998
    [96] 刘国强,赵凌志,蒋继娅. ANSOFT 工程电磁场有限元分析,北京:电子工业出版社,2005
    [97] 李敏强,寇纪凇,遗传算法的基本理论与应用,北京:科学出版社,2002
    [98] 李鲲鹏,胡虔生. 遗传算法电机优化设计简介,微特电机,2001,29(4):32-33
    [99] 方瑞明.高速变频电机设计与电机智能设计方法的研究,[博士学位论文],南京:东南大学,2002
    [100] G.FUAT Uler, Osama A. Mohammed, and Chang-Seop Koh. Utilizing genetic Algorithms for optimization design of electromagnetic devices, IEEE Trans.on Magnetics, 1994,30(6):4296-4298
    [101] 汪洁,樊叔维,鱼振民,等.遗传算法的改进及其在电机全局优化中的应用,西安交通大学学报,1998,32(1):5-8
    [102] 李小平,王凤儒.优解保留遗传算法收敛性的研究[J],电机与控制学报,2000,4(1): 52-55
    [103] 王小平,曹立明.遗传算法--理论、应用于软件实现[M],西安:西安交通大学出版社,2002.
    [104] Liu Lingshun, Hu Yuwen, Huang Wenxin. Optimal Design of Dual Stator--Winding Induction Generator with Variable Speed based on Improved Genetic Algorithm, ICEM2005:2343-2348
    [105] 贾继承,马伟明,刘德志.带整流负载的双绕组感应发电机励磁控制方法研究,电源技术应用,2003,6(9):449-453
    [106] 王兆安,杨君,刘进军. 谐波抑制和无功功率补偿,北京:机械工业出版社,2004
    [107] 尹玲玲. 适用于变速恒频风力发电系统的定子双绕组感应发电系统的研究, [硕士学位论文],南京:南京航空航天大学,2006
    [108] 陈桂明,张明照、戚红雨,等. 应用matlab建模与仿真,北京:科学出版社,2001
    [109] 叶万富,定子双绕组感应发电系统的研究,[硕士学位论文],南京:南京航空航天大学,2005
    [110] dSPACE Release New Features and Mgration, Release 4.0, dSPACE Gmbh,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700