电涡流脉冲热成像无损检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无损检测是保障重大工程装备制造质量和运行安全的关键技术,电涡流脉冲热成像无损检测技术综合运用了电涡流与焦耳热现象,具有非接触、单次检测面积大、效率高等优势,是近年来无损检测领域的研究热点。
     目前,电涡流脉冲热成像中,多通过人工选择特定时刻的热图像实现缺陷检测,对人员要求高,劳动强度大。而材料表面热发射率不均,热传导等的存在,造成缺陷图像模糊,进一步增加了缺陷识别的难度。针对这些问题,本文对金属材料缺陷的电涡流热响应特征、热图像强化及自动识别提取技术进行了研究。首先,构建了电涡流脉冲热成像的涡流分布及热传导模型,分析了不同缺陷与材料表面热发射率的瞬态热响应特征;其次,以瞬态热响应特征为依据,研究了材料表面热发射率不均影响的抑制算法和图像增强算法;最后,根据缺陷的空间和瞬态热响应特征,提出了包含缺陷信息热图像的自动识别提取方法。
     本文的主要研究内容如下:
     1)分析了电涡流激励参数,如频率、幅度、时间、线圈材料等对涡流加热效果的影响,设计了电涡流脉冲热成像实验系统,并搭建了实验平台。选取不同电、磁参数的金属材料,制作了表面及深层缺陷的试件,以及可模拟材料表面热发射率变化的试件。
     2)通过理论分析、仿真和实验验证,探讨了被测材料的表面及深层缺陷的检测机理,深入分析了缺陷与电涡流和热传导的作用过程。在得出不同缺陷涡流和热量空间分布的同时,分别给出了其瞬态温度响应的变化过程和形态特征。另外,还讨论了材料表面热发射率对红外热响应的作用,指出了其对检测结果的干扰机理,为热发射率不均的抑制提供了理论依据。
     3)根据电、磁、热以及红外热辐射理论,系统的分析了不均匀热发射率条件下缺陷的红外热响应特征。采用频域、时域和统计学分析方法,如傅里叶变换、二次热平衡法、归一化和曲线形态相似性比较等,提取像素级的瞬态红外热响应特征,抑制材料表面热发射率不均的影响,强化突出缺陷信息。给出了每种方法的强化原理及依据,并进行了实验验证。另外,还从自动化程度、缺陷信息的完整性、应用前景等方面对其进行了比较,指出了每种方法的优劣。所提出的热发射率不均抑制算法,在不增加成本和操作复杂度的情况下,提高了电涡流脉冲热成像对复杂环境的适应能力,为其从实验室向现场应用的推广提供了支撑。
     4)以瞬态红外热响应为观测信号,构建了电涡流脉冲热成像的信号混叠模型。利用不同区域热响应彼此独立的特性,开展了基于主成分分析和独立成分分析的热响应盲分离算法研究,并进行了验证实验,给出了不同主成分(独立成分)的物理含义,实现了无先验信息条件下缺陷信息的强化。分别从信号的分离原理和分离后图像的物理含义等方面对两种分离方法进行了系统的比较分析。论证了两种求解方法在增强缺陷图像对比方面的优势和不足。所提出的图像增强算法,有效克服了横向热传导造成的缺陷图像模糊,提高了电涡流脉冲热成像的缺陷检测能力。
     5)根据缺陷的瞬态热响应及空间热分布特性,提出了基于混叠向量特征和主成分(独立成分)峰度系数的主成分(独立成分)识别算法,并给出了理论解释。在验证试验中,实现了包含缺陷信息热图像的自动提取,摆脱了对人工筛选热图像的依赖,降低了操作人员的劳动强度,提高了检测效率。
Non-destructive testing and evaluation (NDT&E) is important to the structuralhealth monitoring (SHM) and quality control of key structure. Pulsed eddy currentthermography (ECPT), is new emerging NDT&E technique, which combines eddycurrent and thermography. The major advantage of ECPT over other techniques is thepotential in accurate non-contact inspection of a large area with a short time and largestandoff distances.
     ECPT mainly use a specific manual selected frame to detect the defects. It not onlyrequires experienced operators, but is labor consuming. And worse still, surfaceemissivity variation and heat diffusion causes "blurred effect", which seriously pullsdown the image quality and raises the difficulty of defect detection. To overcome thisissue, this thesis focus on the ECPT features of metallic material, infrared imageenhancement and automatic feature extraction. First, develop an ECPT model to analyzethe transient infrared response behavior in various defects and surface emissivityconditions; following the achievements, reduce the effect of surface emissivity variationto enhance the infrared image; lastly, proposes an automatic image extraction methodfor defect detection.
     The main contributions are:
     1) Analyze the influence of different eddy current excitation parameters, such asfrequency, amplitude, time, coil material and so on. Design and develop an ECPTexperiment set-up. Manufacture surface and undersurface defects using materials withdifferent electromagnetic properties. A sample with emissivity variation is also made.
     2) Through theoretical analyzing, simulation and verified experiment, discuss theinteraction of defect with eddy current and heat diffusion, and point out the mechanismof surface and undersurface defect detection. Not only present eddy current and heatdistribution, but describe the changing behavior of transient response. The effect ofsurface emissivity is also considered in detail, which provides fundamental support forimage enhancement.
     3) According to electromagnetism, thermology and thermal radiation, the defectfeature under emissivity variation is systematically discussed. Several methods areproposed to extract the pixel level features corresponding to material temperature, such as Fourier transform, two heat balance method, normalization, and similarity oftransient response behavior. Their advantages and disadvantages are also given from thepoint of information integrity, automation and application prospect. All of thesemethods can reduce the effect of emissivity variation, without any further cost andoperation. This benefit pushes ECPT development from a lab technique to in-situapplication.
     4) Taking the infrared response as an observation, a single channel blind sourceseparation model is developed for ECPT. Since the response of different areas areindependent, both principal component analysis (PCA) and independent componentanalysis (ICA) are employed to enhance image contrast without any training knowledge.Verified experiments are carried out, and the physical meaning of principle componentand independent component are detailly given. Their advantages and disadvantages arealso discussed from both of the mathematical and physical side. Both of these methodscan reduce the "blurred effect", and improve the probability of detection (POD) ofECPT.
     5) Kurtosis and normalized mixing vector are employed to quantify the spatial andtime features respectively. Both of them are used as indicators for automatic defectdetection. Their efficiency is verified through theoretical analysis and experiment. In theexperiment, defect image is automatically extracted, which shows the potential incutting down labour and raising efficiency.
引文
[1]徐章遂,徐英等.裂纹漏磁定量检测原理与应用[M].北京:国防工业出版社,2005.
    [2]徐滨士.工程机械再制造及其关键技术[M].北京:中国科技出版社,2009.
    [3]金丹,陈旭.多轴随机载荷下的疲劳寿命估算方法[J].力学进展,2006,36(1):65-74.
    [4] L Cheng, G Y Tian. Surface crack detection for carbon fiber reinforced plastic (CFRP) materialsusing pulsed eddy current thermography[J]. IEEE Sensors Journal,2011,11(12):3261-3268.
    [5] G Zenzinger, J Bamberg, W Satzger, et al. Thermographic crack detection by eddy currentexcitation[J]. Nondestructive Testing and Evaluation,2007,22(2-3):101-111.
    [6] J Wilson, G Y Tian, I Mukriz, et al. PEC thermography for imaging multiple cracks from rollingcontact fatigue[J]. NDT&E International,2011,44(6):505-512.
    [7] X Maldague. Theory and practice of infrared technology for nondestructive testing[M]. NewYork: John Wiley&Sons,2001.
    [8]姜千辉.红外热波序列图像的图像分割与三维可视化研究[D].北京:首都师范大学,2007.
    [9]田裕鹏.红外辐射成像无损检测关键技术研究[D].南京:南京航空航天大学,2009.
    [10] J N Zalamedaa, N Rajicb, W P Winfreec. A comparison of image proceesing algorithms forthermal nondestructive evaluation[J]. Thermosense XXV. SPIE,2003,5073:374-385.
    [11] T Sakagami, S Kubo,T Endo. Development of a new processing technique of sequentialtemperature data after pulse heating for quantitative nondestructive testing[J]. ThermosenseXXVI, SPIE,2004,5405:357-365.
    [12] N P Avdelidis, D P Almond, A Dobbinson, et al. Aircraft composites assessment by means oftransient thermal NDT[J]. Progress in Aerospace Sciences,2004,40143-162.
    [13] L D Favro, G M Newaz, R L Thomas, et al. Progress in thermosonic crack detection forNondestructive Evaluation[C]. DARPAPrognosis Bidder’s Conference, USA,2002,25-26.
    [14] N P Avdelidis, C Ibarra-Castanedo, X Maldague, et al. A thermographic comparison study forthe assessment of composite patches[J]. Infrared Physics Technology,2004,45:291-299.
    [15]洪毅,缪鹏程,张仲宁,等.超声红外热像技术及其在无损检测中的应用[J].南京大学学报(自然科学),2003,39(4):547-552.
    [16] J W Wilson, G Y Tian. Pulsed electromagnetic methods for defect detection andcharacterisation[J]. NDT&E International,2007,40(4):275-283.
    [17] M J nsson, B Rendahl, I Annergren. The use of infrared thermography in the corrosion sciencearea[J]. Materials and Corrosion,2010,61(11):961-965.
    [18] S Pickering, D Almond. Matched excitation energy comparison of the pulse and lock-inthermography NDE techniques[J]. NDT&E International,2008,41:501-509.
    [19] J Vrana, M Goldammer, K Bailey, et al. Induction and conduction thermography: optimizing theelectromagnetic excitation towards application[C]. In Chimenti, D. O. T. a. D. E., Review ofQuantitative Nondestructive Evaluation,2008.
    [20] G Riegert, A Gleiter, G Busse. Potential and limitation of eddy current lockin-thermography[C].In SPIE,2006.
    [21] A R Al-Qubaa, G Y Tian, J Wilson, etc. Feature extraction using normalized cross-correlationfor pulsed eddy current thermographic images[J]. Measurement Science and Technology,2010,21(11):115501.
    [22] J Wilson, G Y Tian, I Z Abidin, et al. Pulsed eddy current thermography: System developmentand evaluation[J]. Insight: Non-Destructive Testing and Condition Monitoring,2010,52(2):87-90.
    [23] G Riegert, T Zweschper, G Busse. Eddy-current lockin-thermography: Method and itspotential[J]. J. Phys. IV France,2005,125:587-591.
    [24] J Bohm, K J Wolter. Inductive Excited Lock-In Thermography for Electronic Packages andModules[C]. In33rd Int. Spring Seminar on Electronics Technology,2010.
    [25] TSakagami, S Kubo. Development of a new crack identification method based on singularcurrent field using differential thermography[C]. the SPIE Conference on Thermosense XXI,Oriando, Florida, April1999.
    [26] J Vrana, M Goldammer, J Baumann, et al. Mechanisms and Models for Crack Detection withInduction Thermography[J]. Review of Quantification Nondestruntive Evaluation,2008,27:475-482.
    [27] U Netzelmann, G Walle. Induction Thermography as a Tool for Reliable Detection of SurfaceDefects in Forged Components[C]. In17th World Conference on Nondestructive Tesing,Shanghai,2008.
    [28] G Zenzinger, J Bamberg, W Satzger, et al. Thermographic crack detection by eddy currentexcitation[J]. Nondestructive Testing and Evaluation,2007,22(2-3):101-111.
    [29] J Bamberg, W Satzger, G Zenzinger. Optimized Image Processing for eddycurrent-thermography[J]. Review of Quantification Nondestruntive Evaluation,2006,25:708-712.
    [30] B Oswald-Tranta, G Wally. Thermo-inductive surface crack detection in metallic materials[C].In9th European Conference on NDT, Berlin, Germany,2006.
    [31] B Oswald-Tranta, G Wally. Thermo-inductive investigations of steel wires for surface cracks[C].In Proceedings of SPIE, Bellingham, WA,2005.
    [32] G Wally, B Oswald-Tranta. The influence of crack shapes and geometries on the result of thethermo-inductive crack detection[C]. In Proceedings of SPIE, Orlando,207.
    [33] M Grenier, C Ibarra-Castanedo, X Maldague. Development of a hybrid non-destructiveinspection system combining induction thermography and eddy current techniques[C]. In10thInternational Conference on Quantitative InfraRed Thermography, Quebec,2010.
    [34] I Z Abidin, G Y Tian, J Wilson, et al. Quantitative evaluation of angular defects by pulsed eddycurrent thermography[J]. NDT&E International,2010,43(7):537-546.
    [35] L Cheng, G Y Tian. Transient thermal behavior of eddy-current pulsed thermography fornondestricutve evaluation of composites[J]. IEEE Transactions on Instrument andMeasurement,2013,62(5):1215-1222.
    [36] A Yin, B Gao, G Y Tian, W L Woo, et al. Physical interpretation and separation of eddy currentpulsed thermography[J]. Journal of Applied Physics,2013(113):064101.
    [37] L Bai, B Gao, G Y Tian, et al. Spatial and Time Patterns Extraction of Eddy Current PulsedThermography using Blind Source Separation[J]. IEEE Sensor Journal,2013,13:2094-2101.
    [38] L Bai, G Y Tian. Stress measurement using pulsed eddy current thermography[C]. the51stAnnual Conference of the British Institute of Non-Destructive Testing, Daventry,2012..
    [39] B Oswald-Tranta. Thermo-inductive investigations of magnetic materials for surface cracks[J].QIRT Journal,2004,1(1):33-46.
    [40] B Oswald-Tranta. Thermo-inductive crack detection[J]. Journal of Nondestructive Testing andEvaluation,2007,22(2-3):137-153.
    [41] G Walle and U Netzelmann. Thermographic crack detection in ferritic steel components usinginductive heating[C]. In9th European Conference on non-destructive testing (ECNDT2006),Berlin, Germany,2006,25-29.
    [42] B Weekes, D P Almond, P Gawley, et al. Eddy-current induced thermography-probability ofdetection study of small fatigue cracks in steel, titanium and nickel-based superalloy[J].NDT&E International,2012,49:47-56.
    [43] C Colombo, L Vergani, M Burman. Static and fatigue characterization of new basalt fibrereinforced composites[J]. Composite Structures,2012,94:1165-1174.
    [44] B Ramdane, D Trichet, M Belkadi, et al.3-D numerical modeling of the thermo-inductivetechnique using shell elements[J]. IEEE Transactions on Magnetics,2010,46(8):3037-3040.
    [45] E Z Kordatos, D G Aggelis, T E Matikas. Monitoring mechanical damage in structural materialsusing complimentary NDE techniques based on thermography and acoustic emission[J].Composites Part B,2012,43:2676-2686.
    [46]薛书文,宗明成,丁铁英,等.利用红外成像技术检测金属内部近表缺陷[J].红外与毫米波学报,1998,17(6):424-428.
    [47]杨小林,代永朝,李艳红,等.红外热波技术在飞机复合材料损伤检测中的应用[J].无损检测,2007.29(4):200-202.
    [48]梅林,陈自强,王裕文,等.脉冲加热红外热成像无损检测的有限元模拟及分析[J].西安交通大学学报,2000,34(1):66-70.
    [49]梅林,吴立德,王裕文.脉冲加热红外无损检测中的图像处理[J].红外与毫米波学报,2002,21(5):372-376.
    [50]郭兴旺,刘颖韬,郭广平,等.脉冲相位法及其在复合材料无损检测中的应用[J].北京航空航天大学学报,2005,31(10):1049-1053.
    [51]郭兴旺,刘颖韬,郭广平,等.红外无损检测加热不均时的图像处理方法[J].北京航空航天大学学报,2005,31(11):1204-1207.
    [52]郭兴旺, Vavilov V,郭广平,等.复合材料红外无损检测的建模分析和热像处理[J].北京航空航天大学学报,2004,30(4):363-369.
    [53] G Liu, G Li. Numerical simulation of defect inspection using electromagnetically stimulatedthermography[J]. J. Shanghai Jiaotong Univ.,2011,16(3):262-265.
    [54] L Cheng, G Y Tian. Comparison of nondestructive testing methods on detection ofdelaminations in composites[J]. Journal of Sensors,2012,1-7.
    [55] M Pan, Y He, G Y Tian., et al. Defect characterisation using pulsed eddy current thermographyunder transmission mode and NDT applications[J]. NDT&E International,2012,52:28-36.
    [56] Y He, M Pan, F Luo. Defect characterisation based on heat diffusion using inductionthermography testing[J]. Review of Scientific Instruments,2012,83:104702.
    [57] Y He, G Y Tian, L Cheng, et al. Parameters influence in steel corrosion evaluation using PECthermography[C]. In Automation and Computing (ICAC),201117th International Conferenceon,2011,255-260.
    [58] Y He, G Y Tian, L Cheng, et al. Corrosion Characterisation under Coating Using Pulsed EddyCurrent Thermography[C]. In50th Annual Conference of The British Institute ofNon-Destructive Testing, Telford, UK,2011.
    [59] Y He, G Y Tian, L Cheng, et al. Parameters Influence in Steel Corrosion Detection Using PulsedEddy Current Thermography [C]. In17th International Conference on Automation andComputing (ICAC’11), Huddersfield, UK,2011;255-260.
    [60] N P Avdelidis, D P Almond. Transient thermography as a through skin imaging technique foraircraft assembly: modelling and experimental results[J]. Infrared Physics&Technology,2004,45:103-114.
    [61] M Noethen, K-J Wloter, N Meyendorf. Surface crack detection in ferritic and austenitic steelcomponents using inductive heated thermography[C].33rd Int. Spring Seminar on ElectronicsTechnology,2010,249-254.
    [62] B Oswal-Tranta. Thermoinductive investigations of magnetic materials for surface cracks[J].Quantitative Infrared Thermography Journal.2004,1(1):33-46.
    [63] C Ibarra-Castanedo, F Galmiche, A Darabi, et al. Thermographic non-destructive evaluation:overview of recent progress[C]. Thermosense XXX. SPIE.2003,5073:450-459.
    [64] M Omar, M I Hassan, K Saito, et al. IR self-referencing thermography for detection of in-depthdefects[J]. Infrared Physics&Technology,2005,46:283-289.
    [65] C Ibarra-Castanedo, D Gonzalez, M Klein, et al. Infrared image processing and data analysis[J].Infrared Physics&Technology,2002,46:75-83.
    [66] H D Benítez, C Ibarra-Castanedo, A H Bendada, et al. Differentiated absolute phase contrastalgorithm for the analysis of pulsed thermographic sequences[J]. Infrared Physics&Technology,2006,48:16-21.
    [67] M A Omar, Y Zhou. A quantitative review of three flash thermography processing routines[J].Infrared Physics&Technology.2008,51(4):300-306.
    [68] C Ibarra-Castanedo, D González, F Galmiche, et al. Discrete signal transforms as a tool forprocessing and analyzing pulsed thermographic data[C]. SPIE,2007,6205:620514-1-12.
    [69] S Shapard, J Lhota, B Rubadeux, et al. Reconstruction and enhancement of activethermographic image sequences[J]. Opt. Eng.,2003,42(5):1337-1342.
    [70] X Maldague, Marinetti S. Pulsed Phase Infrared Thermography[J]. J. Appl. Phys.1996,79(5):2694-2698.
    [71] H D. Benítez, C Ibarra-Castanedo, A H Bendada, et al. Definition of a new thermal contrast andpulse correction for defect quantification in pulsed thermography[J]. Infrared Physics&Technology,2008,51(3):160-167.
    [72] N Rajic. Principal component thermography for flaw contrast enhancement and flaw depthcharacterisation in composite structures[J]. Composite Structures.2002,58:521–528.
    [73] S Marinetti, E Grinzato, P G Bison, et al. Statistical analysis of IR thermographic sequences byPCA[J]. Infrared Phys.&Technol.,2005,46:85-91.
    [74] K Chatterjee, S Tuli. Image enhancement in transient lock-in thermography through time seriesreconstruction and spatial slope correction[J]. IEEE Transactions on Instrument andMeasurement,2012,61(4):1079-1089.
    [75] A A Khan, V Vrabie, J I Mars, et al. A source separation technique for processing ofthermometric data from fiber-optic DTS measurement for water leakage identification indikes[J]. IEEE Sensors Journal,2008,8(7):1118-1129.
    [76] N Tsopelas, N J Siakavellas. Improvements in electromagnetic-thermal non-destructiveinspection by data processing[J]. NDT&E International2009,42:477-486.
    [77] N P Avdelidis, D P Almond. Through skin sensing assessment of aircraft structures using pulsedthermography[J]. NDT&E International,2004,37(5):353-359.
    [78] N P Avdelidis, B C Hawtin, D P Almond. Transient thermography in the assessment of defectsof aircraft composites[J]. NDT&E International,2003,36(6):433-439.
    [79] T Sakagami, S Kubo. Quantitative nondestructive evaluation of delamination damage in CFRPpressure vessels for space use[C]. SPIE,2007,6205:62051A1-8.
    [80] K E Cramera, W P Winfreea, et al. Status of thermal NDT of space shuttle materials atNASA[C]. SPIE,2007,6205:62051B1-8.
    [81] B Ramdane, D Trichet, MBelkadi,et al.3-D numerical modeling of the thermo-inductivetechnique using shell elements[J]. IEEE Transactions on Magnetics,2010,46(8):3037-3040.
    [82] J Wilson, G Y Tian, I Z Abidin, et al. Modelling and evaluation of eddy current stimulatedthermography[J]. Nondestruvtive Testing and Evaluation,2010,25(3):205-218,2010.
    [83] G Sposito, P Cawley, P B Nagy. Potential drop mapping for the monitoring of corrosion orerosion[J]. NDT&E International,2010,43(5):394-402.
    [84] H Ramos, O Postolache, F C Alegria, et al. Using the skin effect to estimate cracks depths inmetallic structures[C]. IEEE Int. Instrum. and Meas. Technology Confe-rence-I2MTC2009,Singapore, May2009,1361-1366.
    [85] K. Küpfmüller. Einfübrung in die theoretische Elektrotechnik[C]. Springer Verlag: Berlin.Heidelberg, New York,1968.
    [86] J G Sun. Analysis of pulsed thermography methods for defect depth prediction[J]. Journal ofHeat Transfer,2006,128:329-338.
    [87] W J Parker, R J Jenkins, C P Butler, et al. Flash method of determining thermal diffusivity, heatcapacity, and thermal conductivity[J]. Journal of Applied Physics,1961,32(9):1679-1684.
    [88] H S Carslaw, J C Jaeger. Conduction of heat in solids[M]. New York: Osford University Press,1959.
    [89] S M Shepard, J R Lhotak, B A Rubadeux et al. Reconstruction and enhancement of activethermographic image[J]. Optical engineering,2003,42:1337-1342.
    [90] http://infrared-thermography.com/material.htm.
    [91] X Maldague, Y Largou t. Depth study in pulsed phase thermography using neural networks:modeling, noise, experiments[C]. Special QIRT’98issue of Revue Générale de Thermique,1998,37(8):704-708.
    [92] S Vallerand, A Darabi, X Maldague. Defect detection in pulsed thermography: a comparison ofkohonen and perceptron neural networks[C]. SPIE: Thermosens XXI, Orlando,1999,370:20-25.
    [93] F Galmiche, X Maldague, S Valler, et al. Pulsed phased thermography with the wavelettransform[J]. Review of Progress in Quantitative NDE,2000,19A:609-615.
    [94] J L Rodgers, W A Nicewander. Thirteen ways to look at the correlation coefficient[J]. TheAmerican Statistician,1988,42(1):59-66.
    [95] S M Stigler. Francis Galton's Account of the Invention of Correlation[J]. Statistical Science.1989,4(2):73–79.
    [96] N B N Ganesan, C V Krishnamurthy, K Balasubramaniam. Simultaneous Estimation ofElectrical and Thermal Properties of Isotropic Material from the Tone-Burst Eddy CurrentThermography (TBET) Time–Temperature Data[J]. IEEE Transactions on Magnetics,2011,47:2213-2219.
    [97] D J Roth, J R Bodis, C Bishop. Thermographic imaging for high-temperature compositematerials-a defect detection study[J]. Res Nondestr Eval,1997,9:147-169.
    [98] H I Ringermacher, J Archacki, W A Veronesi. Nondestructive testing: transient depththermography[P].1998.
    [99] B Gao, W L Woo, S S Dlay. Single Channel Source Separation Using EMD-Subband VariableRegularized Sparse Features[J]. IEEE Trans. on Audio, Speech and Language Processing,2011,19:961-976.
    [100] G J Jang, T W Lee. A maximum likelihood approach to single channel source separation[J].Journal of Machine Learning Research,2003,4:1365–1392.
    [101] M E Davies, C J James. Source separation using single channel ICA[J]. Signal Processing,2007,87:1819-1832.
    [102] A Hyvarinen, E Oja. Independent component analysis: algorithms and applications[J]. NeuralNetworks,2000,12(4-5):411-430.
    [103]倪晋平,马远良,等.用独立成分分析算法实现水声信号盲分离[J].声学学报,2002,27(4):321-326.
    [104]斯华龄,张立明.智能视觉图像处理[M].上海:上海科技教育出版社,2002.
    [105] J Joutsensalo, P Pajunen. Blind symbol learing algorithms for CDMA system[C]. Int Joint conf.On Neural Networks, Anchorage, Alaska, May4-9,1998(1):152-155.
    [106] Y Feng, V zarzoso, A K Nandi. WDM monitoring through blind signal separation[C]. OpticalFiber communication Conference and Exhibit, March2002,746-748.
    [107]李荣华,赵敏,王进.盲信号分离的理论与发展现状[J].移动通信,2008,67-72.
    [108] C Jutten, J Herault. Blind Separation of sources, Part I: An adaptive algorithm based onneuromimetic[J]. Signal Processing,1991,24(1):1-10.
    [109] S Haykin, Z Chen. The cocktail party problem. Neural Computation,2005,17:1875-1902.
    [110]李小军,朱孝龙,张贤达.盲信号分离研究分类与展望[J].西安电子科技大学学报(自然科学版),2004,31(3):399-404.
    [111] A Cichocki, S Amari. Adaptive blind signal and image processing: learning algotithms andapplicationsp[M]. John Wiley and Sons, LTD,2002.
    [112]刘琚,何振亚.盲源分离与盲反卷积[J].电子学报,2002,30(4):570-576.
    [113]丁志中.盲信号分离及其在心电和语音信号处理中的应用[M].合肥:中国科学技术大学,2007.
    [114]黄青华.基于源信号模型的盲分离技术研究及应用[M].上海:上海交通大学,2007.
    [115]彭耿,黄知涛,姜文利,等.单通道盲信号分离研究进展与展望[J].中国电子科学研究院学报,2009,4(3):268-277.
    [116] L Atlas, C Janssen. Coherent modulation spectral filtering for single-channel music sourceseparation[C]. ICASSP2005, Philadelphia PA, USA,20054:461-464.
    [117] A Ozerov, P Philippe, R I Gribonval, et al. One microphone singing voice separation usingsource-adapted models[C].2005IEEE workshop on Applications of Signal Processing toAudio and Acoustics New Paltz NY, USA,2005,90-93.
    [118] J Lee, K J Lee, S K Yoo. Development of a new signal processing algorithm based onindependent component analysis for single channel ECG data[C]. EMBS2004, San FrancisoCA, USA,1:224-226.
    [119] P Cao, E E-C Chang, L Wyse. Blind separation of fetal ECG from single mixture using SVDand ICA[C]. ICICS-PCM2003, Singapore2003,3:1418-1422.
    [120] E S Warner, I K Proudler. Single-channel blind signal separation of filtered MPSK signals[C].IEE Proceeding of Radar Sonar&Navigation,2003,150(6):396-402.
    [121] T V Irtranen. Monaural sound source separation by nonnegative matrix factorization withtemporal comtinuity and sparseness criteria[J]. IEEE Transactions on Audio Speech andLanguage Processing,2007,15(3):1066-1074.
    [122] B R Madhusudana, V S Shashanka, Paris Smaragdis. Latent dirichlet decomposition for singlechannel speaker separation[C]. ICASSP2006, Toulouse, France,2006,5:821-824.
    [123] C Dric, F Votte, S J Godsill. A bayesian approach for blind separation of sparse sources[J].IEEE Transactions on Audio Speech and Language Processing,2006,14(6):2174-2188.
    [124]徐尚志,苏勇,叶中付.欠定条件下的盲分离算法[J].数据采集与处理,2006,21(2):128-132.
    [125] M A Omar, R Parvataneni, Y Zhou. A combined approach of self-referencing and principlecomponent thermography for transient, steady, and selective heating scenarios[J]. InfraredPhysics&Technology,2010,53:358-362.
    [126] A Malhi, R X Gao. PCA-based feature selection scheme for machine defect classification[J].IEEE Transactions on Instrumentation and Measurement,2004,53(6):1517-1525.
    [127] A N Rajagopalan, R Chellappa, N T Koterba. Background learning for robust face recognitionwith PCA in the presence of clutter[J]. IEEE Transactions on Image Processing,2005,14(6):832-843.
    [128]黄艳林,李友荣,肖涵,等.基于相空间重构与独立分量分析的局部独立投影降噪算法[J].中国科技论文在线.
    [129] T Sakagami, S Kubo. Development of a new crack identification technique based on near-tipsingular electrothermal field measured by lock-in infrared thermography[J]. JSMEinternational journal, series A,2001,44(4):528-534.
    [130] D James, K William. Accurate singular values of bidiagonal matrices[J]. Journal on Scientificand Statistical Computing,1990,11:873–912.
    [131] A Hyvarinen, J Karhunen, E Oja. Independent component analysis and blind sourceseparation[M]. John Wiley&Sons,2011,20–60.
    [132] K J Kim, S Zhang, S W Nam. Improved fastica algorithm using a sixth-order newton'smethod[J]. IEICE Electronics Express,2009,6(13):904-909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700