蓄热式低温余热回收及其在工业窑炉上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国能源消费以煤为主,效率低且污染严重。提高天然气等清洁燃料的消费比例有利于优化我国的能源结构。与煤炭相比,天然气等价格相对较高,需要进一步提高其利用效率,最有效的方法是回收燃烧后烟气的低温余热。
     国外已经普遍使用冷凝式锅炉及热水器回收烟气中水蒸汽的冷凝潜热,有效地提高了燃气炉的热效率。但冷凝式锅炉和热水器用低温给水作为介质回收冷凝潜热,难以推广到其他类型加热炉上。
     本文提出利用助燃空气回收烟气的低温余热,该技术路线有更广的应用范围。通过热平衡计算,发现烟气温度低于一个临界值时,可以用助燃空气回收烟气中水蒸汽冷凝潜热,而高于该值时只能回收烟气的显热。过剩空气系数1.1时,天然气烟气的临界值在270℃左右,焦炉煤气烟气的临界值在260℃左右,过剩空气系数增大临界值升高。
     烟气低温余热的回收需要通过空气预热器完成,其内部属于气-气换热,传热系数低于气-液换热,且传热温差很小,若采用常规的管式、板式、热管式换热器,金属耗量大,成本高,很可能得不偿失。经过对比分析,本文采用蓄热式换热器作为冷凝式余热回收换热器,该换热器结构紧凑、效率高、耐腐蚀、布置灵活,可以满足回收烟气冷凝余热的要求。
     建立了一台蓄热式冷凝燃气实验炉,在空气预热器烟气进口温度250℃时可以将烟气出口温度降低到25℃左右的水平,水蒸汽冷凝余热得以回收,整个实验炉热效率按低位发热量计算可达106.7%。换向时间对蓄热式加热炉性能有重要影响,换向周期越短,热效率越高,且炉内、蓄热室内的温度波动减小,有利于加热炉稳定运行。
     预热空气温度升高后燃烧过程中NOx生成量增多,文中对两种空气分级燃烧器进行了实验研究,实验结果均显示空气分级燃烧可以有效降低燃烧过程中NOx排放。但两种燃烧器的最佳一次空气比例有所区别,说明该最佳值与燃烧器结构直接相关,设计中需要根据燃烧器特定结构分析确定。
     空气分级低NOx燃烧器不需要空气高速射流,阻力损失小。同时蓄热室内也采用了比较大的流通面积,降低了气体流速,减小了蓄热室阻力。整个蓄热式燃烧器阻力降低有效地解决了蓄热式加热炉炉压偏高问题。
     针对一台管式加热炉的节能改造,将蓄热式冷凝余热回收与传统烟气余热回收技术进行了经济性对比。结果显示蓄热式冷凝换热器比传统管式换热器成本低13.6%左右,且采用蓄热式冷凝换热器的管式炉比采用管式空气预热器的管式炉热效率提高3%,因此蓄热式冷凝余热回收系统具有明显的经济优势。
     在一台陶瓷梭式窑上进行了烟气冷凝余热回收工业应用,结果显示蓄热式冷凝余热回收技术可实现26.8%的节能量。并且采用蓄热式燃烧后炉内温度分布更均匀,产品质量得以提升。
The energy consumption in China is currently dominated by coal with low efficiency and high pollution. It helps to optimize China's energy structure by promoting the consumption proportion of the natural gas and other clean fuels. Compared with coal, the price of natural gas is relatively high. The most effective way of further improving the utilization efficiency of the natural gas lies in recovering the low temperature waste heat of flue gas after combustion. Condensing boilers and water heaters have been widely used abroad to recover the condensation latent heat of water vapor within the flue gas. The thermal efficiency of the gas furnaces was improved greatly. As low temperature water supply is adopted as medium to recover the condensation latent heat in condensing boilers and water heaters, it is difficult to extend other types of furnaces.
     Combustion air was used to recover the low temperature waste heat within flue gas in this paper. It holds a wider range of application. Heat balance calculation proved that the condensation latent heat of water vapor within flue gas could be recovered by combustion air when the flue gas temperature was below a threshold value, while the sensible heat was recovered when it was above that value. When the excess air ratio was 1.1, the threshold of the natural gas flue gas was about 270℃and the threshold of the coke oven gas flue gas was around 260℃. Both the excess air ratio and the threshold value increased.
     The air preheater is the key equipment in the recovery of low temperature waste heat, in which the heat transferred from gas to gas. The gas to gas heat transfer coefficient is lower than gas to liquid heat transfer, with small temperature difference. It doesn't pay if the conventional heat exchangers (tubular, plate or heat pipe) are used instead, with great metal consumption and high cost. After comparative analysis, the regenerative heat exchanger was adopted to recover the low temperature waste heat. The heat exchanger was compact, efficient, corrosion-resistant and flexible to arrange, as met the demands of recovering the condensation latent heat of flue gas.
     A regenerative condensing gas-fired boiler was established as the experimental device. When flue gas inlet temperature of the air preheater was 250℃, the flue gas outlet temperature could be reduced to around 25℃. The condensation latent heat of water vapor was recovered. The thermal efficiency of the entire experimental furnace calculated up to 106.7% by low calorific value. Switch time played an important role in the performance of the regenerative furnace. The thermal efficient increased with the decrease of switch time. Besides, small temperature fluctuations within the furnace and the regenerative chamber favored stable furnace operation.
     NOx production increased when the preheating air heated and combusted. Experiments were conducted on the two air staged burners. The experimental results showed that air-staged combustion reduced NOx emissions effectively during combustion. Though, the optimum primary air ratio of the two burners differed with each other. It indicated that the optimum was directly related to the burner structure and should be determined in accordance with the specific structure of the burner in design.
     Air-staged low NOx burners were low in resistance loss without high-speed air jet. Meanwhile, the regenerative chamber adopted a relatively large flow area, reducing the gas flow velocity and the regenerative chamber resistance. The high pressure of the regenerative furnace was settled effectively with the decrease of the resistance of the entire regenerative burner.
     Aiming at the energy-saving modification of a tubular furnace, the economic comparison between the regenerative condensation waste heat recovery technology and the conventional flue gas heat recovery technology was made. It demonstrated the cost of the regenerative condensation heat exchanger was lower than that of the conventional tubular heat exchanger by about 13.6%. And the thermal efficient of the tubular furnace with regenerative condensation heat exchanger was higher than that of the conventional one by 3%. Therefore, the regenerative condensation waste heat recovery system was in evident economic advantage.
     Industrial application of flue gas condensation waste heat recovery was carried out on a shuttle kiln. The results showed that the regenerative condensation heat recovery technology could achieve amount of energy savings by 26.8%. Moreover, the temperature distribution within the furnace was more uniform and the product quality was improved applying regenerative combustion.
引文
[1]王秀强.2011年能源结构调整未达标:非化石能源比重不升反降.21世纪经济报道.2012-02-03.
    [2]贺桐.神木煤矿采空区屡发地质灾害-建议谁开采谁治理.西安晚报.2011-02-21.
    [3]铁路部一半以上运输能力用于煤炭运输.中国市场研究报告网.2011-11-10.
    [4]班玮.德国承诺至2022年关闭所有核电站.新华网.2011-5-30
    [5]张家强,王德杰.我国能源形势及发展展望,中国地质矿产经济学会青年分会2009年学术年会,2010.
    [6]杨洋.油价过“百”:通胀输入须警惕.金融时报.2012-03-13.
    [7]王军善.依存度上升对石油安全影响有多大.中国改革报.2012-02-09.
    [8]瞿国华.加速发展天然气产业是我国能源结构调整的核心任务之一.中外能源,2011,16(1):2-7.
    [9]王秀强.业界吁提高中国天然气定价话语权.中国能源报.2011-07-18.
    [10]于祥明.煤炭消费比重下降至63%跨区域整合将成重点.上海证券报,2010-07-22.
    [11]瞿国华.“十二五”期间我国天然气消费格局主要特征及发展方向探讨.中外能源,2011,16(2):1-7.
    [12]杨敏建,张鸣林,韩梅,周仕学.焦炉煤气利用现状及发展方向.煤矿现代化,2011(6):1-3.
    [13]潘丽华.蓄热式燃烧器的发展及应用.上海金属,2002,24(4):42-45.
    [14]娄桂云.冷凝式热水器换热装置的研究:[硕士学位论文].上海:同济大学,2005.
    [15]叶勇军.冷凝式燃气锅炉的节能与环保特性研究:[硕士学位论文].衡阳:南华大学,2005.
    [16]金定安,曹子栋,俞建洪.工业锅炉原理.西安:西安交通大学出版社,1986.
    [17]张春蕾.燃气锅炉冷凝换热器的研究:[硕士学位论文].北京:北京建筑工程学院,2007.
    [18]龙惟定,丁长庆,丁文婷.试论中国的能源结构与空调冷热源的选择取向.暖透空调.2000,30(5):27-32.
    [19]寇广孝,王汉青,王志勇,等.冷凝锅炉与热泵联合系统.中国建设信息.2004(6):107-109.
    [20]明彦华.欧洲各国政府对冷凝燃气热水器推广给力.中国家电网.2010-11-4.
    [21]吴冬梅.混合气体水平管外对流冷凝换热机理研究:[硕士学位论文].北京:北京交通大学,2006.
    [22]A.P. Colburn, O. A. Hougen. Design of Cooler Condensers for Mixtures of Vapors with Noncondensing Gases. Ind. and Eng. Chem..1934,26(11):1178-1182.
    [23]W.W. Akers. Condensation of a Vapor in the Presence of a non condensable Gas. Chem. Eng. Prog. Symp,ser,1960,56.
    [24]Y. Kuhn. E. Schrock, P. Peterson, An investigation of condensation Steam-gas mixtures flowing downward inside a vertical tube, Nucl.Eng. Design,1997,177:53-69.
    [25]D. G. Ogg, Vertical Down flow Condensation Heat Transfer in Gas-Steam Mixtures, MS Thesis,University of California, Berkeley,CA,1991.
    [26]Y. Mori,etc..Effect of noncondensable gas on film condensation along a vertical plate in an enclosed chamber. Journal of Heat Transfer.1977,99:257.
    [27]S. Z. Kuhn, V. E. Schrock, P. F. Peterson. An investigation of condensation from steam-gas mixture flowing downward inside a vertical tube. Nuclear Engineering and Design,1997, (177):53-69.
    [28]E.C. Siow, S.J. Ormiston, H.M. Soliman. Two-phase modelling of laminar film condensation from vapor-gas mixtures in declining parallel-plate channels. International Journal of Thermal Sciences,2006, (7):1-9.
    [29]E. M. Sparrow, E. Marschall. Binary gravity flow film condensation.ASME Journal of Heat Transfer.1969, (91):205-211.
    [30]M. Mosaad. Mixed-Convection Laminar Film Condensation on an Inclined Elliptical Tube. Journal of Heat transfer Transaction ofthe ASME. APRIL,2001,123:294-300.
    [31]J.W. Rose. Approximate Equatios for Forced Convection Condensation in the Presence of a Non-condensable Gas on a flat Plate and Horizontal Tube. International Journal of Heat and Mass Transfer.1980.23.539-546.
    [32]W,C, Lee, J.W. Rose. Forced convection Film Condensation on a Horizontal Tube With and without Non-Condensing Gases. International Journal of Heat and Mass Transfer.1984,27(4).519-528.
    [33]A.F.Mills, C. Tan,D.K. Chung.Experimental study of condensation From steam-Air Mixtures Flowing over a Horizontal Tube:Overall Condensation Rates.Proc.5th Int.Heat Transfer Conf..Tokyo.1974.5.20-23.
    [34]L.D.Berman.Determining the Mass Transfcr Coefficient in Calculations on Condensation of steam Containing Air. Thermal Engng.1969.16:85-99.
    [35]D.F. Othmer. The condensation of steam. Industrial and Engineering Chemistry.1929, 21:577-583.
    [36]S.J. Meisenburg, R.M. Boarts, W.L. Badger. The influence of Small Concentrations of Air in Steam on the Steam Film Coefficient of Heat Transfer. Trans. AICHE. 1935,(31):622-637.
    [37]C.L. Henderson, J.M. Marchello.Film Condensation in the Presence of a Noncondensable Gas. J. Heat Transfer.1969, (91):447-450.
    [38]N.L.Ivasbchenco, Heat Transfer with Steam Condensation from a Steam-Gas Mixture. Heat Transfer Soviet Research.1989.21(1):42-47.
    [39]V.M.Borishanskiy.Effect of Noncondensable Gas on Heat Transfer in Steam Condensation in a Vertical Tube.Heat Transfer Soviet Research.1977.9 (2):35-42.
    [40]S.A. Idem, A.M. Jacobi, V.W. Goldschmidt. Heat Transfer Characterization of a Fined-Tube Heat Exchanger (with and without Condensation). Journal of Heat Transfer.1990,112(1):64-70.
    [41]P.F. Peterson, V.E. Schrock, T. Kageyama. Diffusion Layer Theory for Turbulent Vapor Condensation with Non-condensable Gases. Journal of Heat Transfer. 1993,(115):998-1003.
    [42]J.A. Copati, R. Krishna.Influence of Non-condensable on the condensation of vapor mixture forming immiscible liquids Int. Corant. Heat Mass Transfer,2000, 27(3):425-434.
    [43]Lorenzo Rosa, Renzo Tosato.A Simplified Evaluation ofthe Seasonal Efficiency of Boilers. Proceedings of the Intersociety Energy Conversion Engineering Conference.1988 (4):109-114.
    [44]Lorenzo Rosa, Renzo, Tosato.Seasonal Efficiency Simulation and Energy Quality of Gas-Boilers. Proceedings of the Intersociety Energy Conversion Engineering Conference,1986:1-6.
    [45]Lorenzo Rosa.Efficiency of a Gas-Fired Condensing Boiler'Working on an On-Off Cycle Mode.Proceedings of the Intersociety Energy Conversion Engineering Conference,1985:217-222.
    [46]M.Osakabc.Thermal-Hydraulic Behavior and Prediction of Heat Exchanger for Latent Heat Recovery of Exhaust Flue Gas.American Society of Mechanical Engineers,Heat Transfer Division,1999,43-50.
    [47]M.Osakabc, K. Ishia, K. Yagi.Condensation Heat Transfer on Tubes in Actual Flue Gas. Heat Transfer-Asian Research,2001,30(2):139-151.
    [48]Kwangkook Jeong, Michael J. Kessen, Harun Bilirgen, et. al.. Analytical modeling of water condensation in condensing heat exchanger. International Journal of Heat and Mass Transfer.2010, (53) 2361-2368.
    [49]Kyudae Hwang, Chan ho Song, Kiyoshi Saito, et. al.. Experimental study on titanium heat exchanger used in a gas fired water heater for latent heat recovery. Applied Thermal Engineering.2010 (30) 2730-2737.
    [50]Seungro Lee, Sung-Min Kum, Chang-Eon Lee. Performances of a heat exchanger and pilot boiler for the development of a condensing gas boiler. Energy.2011, (36): 3945-3951.
    [51]Renato M. Lazzarin. Condensing boilers in buildings and plants refurbishment. Energy and Buildings.2012,(47):61-67.
    [52]侯利华.冷凝式燃气热水器热交换器的防腐蚀研究:[硕士学位论文].上海:同济大学,2001.
    [53]C.A.Farnsworth.Materials and Design Options for Avoiding Corrosion in Condensing Appliance Heat Exchangers and Vent,1987 International Symposium on Condensing Heat Exchangers.
    [54]万新明.国外冷凝锅炉研究概况.煤气与热力.1989(6):57-63.
    [55]Yoshio Takizawa, Katsuo Sugahara. Corrosion-resistant Ni-Cr-Mo alloys in hot concentrated sulphuricacid with active carbon.Materials Science and Engineering. 1995, (198):145-152.
    [56]Yong-Seog Seo, Sang-Pil Yu, Sung-June Cho, et al.. The catalytic heat exchanger using catalytic fin tubes.Chemical Engineering Science.2003 (58):43-53.
    [57]王朝阳.回收气体总水蒸汽潜热的换热系统的理论和试验研究:[硕士学位论文].杭州:浙江大学,1988.
    [58]笪耀东,车得福,庄正宁,等.高水分烟气对流冷凝换热模拟实验研究.工业锅 炉.2003,(1):12-15.
    [59]庄正宁,李江荣,车得福,等.加湿热空气对流冷凝换热冷凝液量的实验研究.热能动力工程.2005,20(1):69-72.
    [60]Xiaojun Shi, Defu Che, Brian Agnew, et al. An investigation of the performance of compact heat exchanger for latent heat recovery from exhaust flue gases. International Journal of Heat and Mass Transfer.2011(54):606-615.
    [61]Che DF, Liu YH, Gao CY. Evaluation of retrofitting a conventional natural gas fired boiler into a condensing boiler. Energy Conversion and Management,2004, (45):3251-3266.
    [62]熊孟清,林宗虎,刘闲定.含不凝气体的蒸汽冷凝换热系数的关联式.1997,12(5):377-380.
    [63]李慧君,王树众,张斌,等.冷凝式燃气锅炉烟气余热回收可行性经济分析.工业锅炉.2003,78(2):1-4.
    [64]李慧君,林宗虎.燃气锅炉烟气余热回收实验分析.工业锅炉.2004,(6):1-4.
    [65]李慧君,张明智,周兰欣.燃气锅炉的烟气凝结换热.动力工程.2007,27(5):697-701.
    [66]范庆伟,赵钦新,周屈兰等.垂直式内翅片管烟气冷凝换热特性研究.2008年中国工程热物理学会学术会议,多相流分会,086030.
    [67]高东明,史晓军.冷凝式空气加热器回收燃天然气锅炉排烟余热的分析.工业加热.2005,(6):1-6.
    [68]耿克成,田贯三,付林,等.天然气烟气冷凝热效率计算及影响因素分析.煤气与热力,2004,(8):427-431.
    [69]李孝萍.含湿混合气体在垂直管内对流冷凝换热的研究.硕士学位论文.北京.北京建筑工程学院.2001.
    [70]贾力,彭晓峰,孙金栋,等.烟道气的冷凝传热与脱硫的实验研究.应用基础与工程科学学报.2000,8(4):387-393.
    [71]贾力,孙金栋,李孝萍.湿烟气冷凝换热研究.北京建筑工程学院学报.2001,17(2):15-18.
    [72]贾力,孙金栋,李孝萍.天然气锅炉烟气冷凝热能回收的研究.节能环保技术.2001,(1):31-33.
    [73]孙金栋,鲁国丽,贾力.新型烟气冷凝节能与脱硫装置研究.环境污染治理技术与设备.2002,3(8):79-82.
    [74]白凤臣,马文姝.伴随有水蒸汽凝结的烟气受迫对流换热过程研究.电站系统工程.2008,24(4):27-28.
    [75]娄桂云,魏敦崧.冷凝式燃气热水器的试验研究.煤气与热力.2006,26(2):24-26.
    [76]娄桂云,魏敦崧.天然气燃烧烟气的冷凝传热特性.煤气与热力.2005,25(1):6-10.
    [77]叶勇军,寇广孝,王汉青.增氧燃烧型冷凝式燃气锅炉节能特性的研究.工业加热.2007,36(5):7-10.
    [78]王随林,刘贵昌,温治,等.新型防腐镀膜烟气冷凝换热器换热实验研究.暖通空调.2005,35(2):71-74.
    [79]阳利军,刘贵昌,王随林,等.Ni-Cu-P合金镀层在燃气冷凝换热器上的应用.电化学.2008,14(3):325-329.
    [80]郑永新,赵恒谊,叶远璋,等.冷凝式燃气热水器换热器低温段防腐试验研究.煤气与热力.2007,27(7):35-41.
    [81]周绍雷.冷凝式燃气热水器未来市场趋暖.现代家电.2011,(31):49-50.
    [82]秦丽.冷凝式燃气热水器:任重而道远.电器.2011,(5):72-73.
    [83]刘武标,林世平,陈鹏飞,等.新型燃气锅炉尾部烟气余热回收节能器的应用研究.能源工程,2007,(3):70-72.
    [84]刘武标,陈鹏飞.燃气锅炉尾部烟气余热回收冷凝型节能器的实验研究.工业锅炉,2007,(4):1-3.
    [85]王随林,潘树源,艾效逸,等.天然气供暖锅炉热能回收利用与工程示范.暖通空调.2008,38(增刊):1-3.
    [86]高春阳,刘艳华,车得福.天然气锅炉改造为冷凝式锅炉的经济性评价.节能技术.2003,21(5):8-11.
    [87]Chen Q, Finney K, Li HN, et al. Condensing boiler applications in the process industry. Applied Energy,2012 (89):30-36.
    [88]田贯三,付林,江亿.用天然气烟气废热作低温热源热泵循环的分析.2003,24(4):472-476.
    [89]周建新,宋秉棠,等.板式空气预热器的推广应用.石油化工设备.2007,36(1):68-70.
    [90]张铁峰.板式空气预热器在工业炉中的应用.化工装备技术.2002,23(1):23-26.
    [91]黄双,康强利,刘新轩,等.板式空气预热器在芳烃加热炉的应用.2005,34(2):57-58.
    [92]左超,邓育江,张龙,等.板式空气预热器在高硫工况中的应用.2006,35(6):73-75.
    [93]张春生.回转式空气预热器漏风分析与解决方案.热电技术.2006,(4):1-4.
    [94]尚文祥,贾建良,张奎,等.大型回转式空气预热器密封间隙调整方法.山西电力.2006;(2):33-34.
    [95]李军红.降低回转式空气预热器漏风率的技术措施.华中电力.2004,17(5):58-61.
    [96]刘涛,唐源湘,朱庆林.900MW机组空气预热器的技术改造.电力建设.2006,27(5):31-33.
    [97]陈丽霞.回转式空气预热器堵灰的预防与清除.工业安全与环保.2005,31(7):19-22.
    [98]杨宝林,张保瑞.回转式空气预热器堵灰原因分析及预防措施.河北电力技术.2005,24(6):45-47.
    [99]张范斌.浅谈蓄热和换热技术.工业炉.2003,25(4):14-18.
    [100]J. R. Cornforth. Combustion Engineering and Gas Utilization.3rd edition, New York: E & FN Spon,1992.
    [101]Tsuji H, Gupta A K, Hasegawa T, et al. High Temperature Air Combustion:from energy conservation to pollution reduction, Boca Raton F L:CRC Press,2003:3-4.
    [102]周怀春.高温空气燃烧技术21世纪关键技术之一.工业炉,1998,20(1):19-27.
    [103]代朝红,温治,朱宏祥,等.高温空气燃烧技术的研究现状及发展趋势(上).工业加热,2002,(3):14-18.
    [104]张少忠,罗国民.蓄热燃烧技术在韶钢加热炉上的应用.轧钢,2001,18(4):55-57.)
    [105]岳云飞,李得英.蓄热式推钢加热炉的设计实践.工业炉.2008,30(2):27-29.
    [106]周善良,黄卫国,袁伟林.高炉煤气、空气双蓄热燃烧技术在板坯加热炉上的应用.工业炉,2007,29(3):24-27.
    [107]马庆元,刘学民.蓄热式燃烧技术在洛铜熔铝炉改造中的应用.洁净煤技术,2004,10(2):34-36.
    [108]刘东国,朱红安.蓄热式燃烧技术在环形炉上的应用.工业炉,2007,29(3):47-48.
    [109]邵春雷.高效蓄热式燃烧技术在台车式加热炉上的应用.工业炉,2007,29(5):47-48.
    [110]彭晖,周维汉.蓄热式烤包器在衡钢的应用.冶金能源,2007,26(6):48-49.
    [111]孙全应.高温空气蓄热燃烧技术在工业炉上的合理应用.特钢技术.2004,(4):27-29.
    [112]吕以清.蓄热式燃烧技术在轧钢连续加热炉应用的合理性与适用性(上).工业炉.2007,29(1):25-28.
    [113]梁海风,沈奕光.蓄热式加热炉运行中的问题及处理方法.冶金能源,2004,23(4):38-40.
    [114]吕以清,孙玮,侯卫军.双预热蓄热式加热炉减小炉压的研究与应用.冶金能源,2005,24(6):36-38.
    [115]秦文,孟德鑫,崔卫国.双预热蓄热式加热炉炉压的分析和讨.冶金能源,2007,26(5):34-36.
    [116]张述明,刘艳姝,李波.承钢蓄热式加热炉使用情况分析.工业炉,2005,27(5):24-25.
    [117]苏广江,郑东升.蓄热式加热炉实际应用浅析.冶金能源,2007,26(2):38-40.
    [118]罗国民.蓄热式轧钢加热炉炉压问题的分析与对策.工业炉,2007,29(4):16-17.
    [119]杨占春,陈峨,村上弘二,等.高温空气燃烧技术中换向时间对炉内工况的影响.钢铁研究学报,2007,19(6):48-51.
    [120]谢国威,蔡九菊,孙文强,等.蓄热式连续加热炉炉膛压力问题研究.工业炉,2008,30(1):8-10.
    [121]谢国威,蔡九菊,孙文强,等.蓄热式连续加热炉应用中若干问题研究.中国冶金,2008,18(6):36-39.
    [122]欧阳德日,蒋扬虎,等.蜂窝蓄热体换热特性的实验研究现状与结果分析.工业加热.2006,35(5):27-30.
    [123]Md. A. A. Shoukat Choudhury, Ijaz Hossain. Simulation of a pebble-bed heat regenerator. International Journal of ennergy research.2000,24:239-250.
    [124]Franioise Duprat,Guadalupe Lopez Lopez. Comparison of performance of heat regenerators:Relation between heat transfer efficiency and pressure drop. International Journal of ennergy research.2001,25:319-329.
    [125]Y.Suzukawa, S.Sugiyama, I. Mori.Heat transfer improvement and NOx reduction in an industrial furnace by regenerative combustion system.Proceedings of IECEC 96, IEEE.Washington, DC.1996,2:804-809.
    [126]赵静野,李建树.蓄热式热交换器数学模型的比较.北京建筑工程学院学报.2003,19(2):1-5.
    [127]M.T.Zarrinehkafsh, S.M.Sadrameli. Simulation of fixed bed regenerative heat exchangers for flue gas heat recovery. Applied Thermal Engineering.2004,24: 373-382.
    [128]吕情恒,程素森,杨天钧.球体蓄热体的热饱和时间.北京科技大学学报.2004,26(4):366-368.
    [129]Poo Min Park,Han Chang Cho,Hyun Dong Shin.Unsteady thermal flow analysis in a heat regenerator with spherical particles. International Journal of ennergy research. 2003,27:161-172.
    [130]蔡九菊,陆钟武.填充球蓄热室技术及其在工业炉上的应用.冶金能源.1996,34(2):54-58.
    [131]蔡九菊,饶荣水,于庆波,等.陶瓷球蓄热室阻力特性的实验研究.钢铁.1998,16(6):57-60.
    [132]蔡九菊,于娟,于庆波,等.陶瓷球蓄热室传热特性的研究.钢铁.1999,34(2):54-58.
    [133]蔡九菊,于娟,赵海.冶金炉用填充球蓄热室传热过程的数值模拟及热工特性.金属学报.2000,34(4):418-421.
    [134]王爱华,蔡九菊,王连勇,等.新型高效蓄热式燃烧系统设计研究.工业加热.2004,133(2):1-4.
    [135]温良英,雍海泉等.蓄热式燃烧器蓄热室阻力特性研究.工业加热.2002,(4):8-10.
    [136]温良英,张正荣等.蓄热式燃烧器蓄热室传输特性试验研究.钢铁.2002,37(7):54-57.
    [137]李伟,祈海鹰,由长福,徐旭常.蜂巢蓄热体传热性能的数值研究.工程热物理学报.2001,Vo1.22(5):657-660.)
    [138]欧俭平,蒋绍坚,萧泽强.蜂窝型蓄热体传热过程热工特性的数值研究.耐火材料.2003,37(6):348-251.
    [139]贾力,毛莹,杨立新.蓄热换热的温度分布与热饱和时间的数值模拟研究.2006,14(2):282-290.
    [140]Ying Mao,Li Jia. Experimental Research of High-Temperature Regenerative Heat Transfer. Heat Transfer-Asian Research.2006,35 (5):359-368.
    [141]蒋绍坚,曹小玲,汪洋洋,等.蜂窝陶瓷蓄热体传热数学模型及传热系数求解.工业炉.2001,23(3):50-53.
    [142]Nabil Rafidi,Wlodzimierz Blasiak.Thermal performance analysis on a two composite material honeycomb heat regenerators used for HiTAC burners. Applied Thermal Engineering.2005,25:2966-2982.
    [143]艾元方,梅炽,黄国栋,等.薄壁蓄热器最大相对温度和最佳切换时间.热能动力工程.2006,21(4):362-364.
    [144]艾元方,孙英文,黄国栋,等.用拉普拉斯变换法求解蜂窝蓄热体气固温度分布.工业加热.2006,35(2):4-6.
    [145]王皆腾,祈海鹰,李宇红,等.蜂巢蓄热体传热性能的实验研究.工程热物理学报.2003,24(5):897-899.
    [146]钟水库,马宪国,赵无非,等.蜂窝型陶瓷蓄热体换热器的热动态特性实验研究.工业加热.2006,35(4):35-37.
    [147]饶荣水.蓄热式热交换器的熵产数分析.冶金能源.2001,20(5):21-25.
    [148]饶荣水.蓄热式热交换器热工特性的热力学分析.冶金能源.2000,19(5):25-27.
    [149]饶荣水.蓄热式热交换器的可用能分析.工业炉.2000,22(3):1-4.
    [150]Tsuji H, Gupta A K, Hasegawa T, et al. High Temperature Air Combustion:from energy conservation to pollution reduction, Boca Raton F L:CRC Press,2003:5-6.
    [151]Yutaka Suzukawa,et al.Heat transfer improvement and NOx reduction By highly preheated air combustion.Energy Conversion and Management:1997,38(10): 1061-1073.
    [152]J. Sudo, T. Hasagawa. Advanced HRS Technolology and Its Industrial Application. Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasfication. Editor. ENEA of Italy,2001,8.
    [153]A. Sobiesiak, S. Rahbar, and H. A. Becker. Performance Characteristics of the Novel Low-NOx CGRI Burner For Use with High Air Preheat.Combustion and flame.1998,(115):93-125.
    [154]Wuenning J.A.. Wuenning J.G.. Ten Years of Flameless Oxidation Technical Applications and Potentials. Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasfication. Editor. ENEA of Italy,2001,8.
    [155]Edward W. Grandmaison, Ibrahim Yimer, Henry A. Becker, et al.. The Strong-Jet/Weak-Jet Problem and Aerodynamic Modeling of the CGRI Burner. Combustion and flame.1998,114:381-396.
    [156]Nishimura et al.Low NOx Combustion Under High Preheated Air Temperature Condition in a Industrial Furnace.Energy Conversation and Management.1997, 38(10):1353-1363.
    [157]Cain B.. Robertson T, Newby J.. A review of the Development and commercial Application of the LNI (Low NOx Injection) Technique. Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasfication. Editor. ENEA of Italy,2001,8.
    [158]Rota R., Guarnerl F., Gelosa F., et al.. MILD Combustion in a Small-scale Apparatus. Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasfication. Editor. ENEA of Italy,2001,8.
    [159]T. Ishii, C. Zhang, S. Sugiyama.Effects of Models on the Prediction of NO Formation in a Regenerative Furnace.Journal of Energy Resources Technology.2000,122 (4):224-228.
    [160]LM Dearden, J D Massingham, et al.Air-preheat burners with air-staging controlling NOx emissions from high-temperature.Journal of the Institute of Energy.1996, 69(3):23-30.
    [161]祁海鹰,李宇红等.高温低氧燃烧条件下氮氧化物的生成特性.燃烧科学与技术.2002,8(1):17-22.
    [162]蒋绍坚,彭好义,艾元方.等.高温低氧空气燃烧火焰观察实验研究.冶金能源.2000,19(3):14-18.
    [163]徐华.高温空气燃烧技术的研究:[硕士学位论文].北京:北京工业大学,2002.
    [164]徐华,武立云,马重芳.进一步提高高温空气燃烧余热回收率.工业加热,2002,(3):1-4.
    [165]吴道洪,胡韬,王正华,等.高热值燃料蓄热式冷凝节能锅炉.中国,发明专利,200710100357.7,2008.
    [166]吴道洪,胡韬,王正华,等.低热值燃料单预热蓄热式冷凝节能锅炉.中国,发明专利,200710118450.0,2009.
    [167]吴道洪,胡韬,王正华,等.低热值燃料双预热蓄热式冷凝节能锅.中国,发明专利,200710118452.X.2009.
    [168]贾力.高效、低污染蓄热式燃烧冷凝型天然气锅炉系统.工厂动力.2008,(1):1-5.
    [169]孙殿雨,陈如恒,张来斌,等.影响喷射泵性能的实验研究.石油矿场机械,1996,25(2):41-43.
    [170]廖达雄,任泽斌,余永生,等.等压混合引射器设计与实验研究.强激光与粒子束,2006,18(5):728-732.
    [171]B.索科洛夫,黄秋云译.喷射器.北京:科学出版社,1977.
    [172]韩惠霖.喷射器的新计算方法.流体机械,1988,(12):24-31.
    [173]陈忠海,刘东.设计喷射器的理论探讨.河北建筑工程学院学报,1997(3):57-63.
    [174]B.E. Launder, D.B. Spalding. Lectures in Mathematical Models of Turbulence. London, England:Academic Press,1972.
    [175]FLUENT Inc. FLUENT 6.3 Documentation. FLUENT Inc.2006.
    [176]Riffat S B, Omer S A. CFD modeling and experimental investigation of an ejector refrigeration system using methanol as the working fluid. International Journal of Energy Research.2001,25:115-128.
    [177]钱家麟.管式加热炉(第二版).北京:中国石化出版社,2003.
    [178]Z. Jegla, P. Stehlik, J. Kohoutek. Plant energy saving through efficient retrofit of furnaces, Applied Thermal Engineering.2000,20 (15):1545-1560.
    [179]Z. Jegla, J. Kohoutek, P. Stehlik. Global algorithm for systematic retrofit of tubular process furnaces, Applied Thermal Engineering.2003,23(14):1797-1805.
    [180]于营波.扰流子热管空气预热器在管式加热炉上的应用.实用能源,1992(4):39-40.
    [181]张秀峰.炼油厂加热炉节能改造分析.机械设计与制造,2005(6):105-107.
    [182]罗强.攀钢煤化工厂管式炉节能研究.四川冶金,2010,32(2):53-55.
    [183]Ladislav Lazic, Vladimir L.Brovkin, Vjacheslavi Gupalo, Elena V.Gupalo. Numerical and experimental study of the application of roof flat-flame burners, Applied Thermal Engineering.2011,31(4):513-520.
    [184]R. Vuthaluru, H.B. Vuthaluru. Modelling of a wall fired furnace for different operating conditions using FLUENT, Fuel Processing Technology.2006,87(7) 633-639.
    [185]J.M. Sala, L.M. Lopez Gonzalez, J.L. Miguez, J.J. Eguia, J.E. Vicuna, M.C. Juarez, J. Domenech. Improvement of a chain-hardening furnace by computational fluid dynamics (CFD) simulation, Applied Energy.2005,81 (3):260-276.
    [186]Chungen Yin, Lasse A. Rosendahl, S(?)ren K. Kaer. Chemistry and radiation in oxy-fuel combustion:A computational fluid dynamics modeling study, Fuel.2011,90 (7):2519-2529.
    [187]靳世平,苏红星,陈维汉,等.管式加热炉旋流场燃烧节能技术研究.华中科技大学学报(自然科学版).2005,33(5):76-78.
    [188]M. Muradoglu, K. Liu, S.B. Pope. PDF modeling of a bluff-body stabilized turbulent flame. Combustion and Flame.2003,132(1-2):115-137.
    [189]Yunlong Han, Rui Xiao, Mingyao Zhang, Combustion and Pyrolysis Reactions in Naphtha Cracking Furnace, Chemical Engineering & Technology.2007,30(1): 112-120.
    [190]Lan, X.Y., Gao, J.S., Xu, C.M., Zhang, H.M.. Numerical simulation of transfer and reaction processes in ethylene furnaces, Chemical Engineering Research and Design.2007,85 (A12):1565-1579.
    [191]张莉,尹海国,高然,刘志坚,李安桂,张峰,雷宁.间歇式电瓷窑炉节能措施分析.西安科技大学学报,2009,29(4):441-444.
    [192]蒋方乐,沈超群.梭式窑应用蓄热燃烧技术的节能减排效果.工业炉,2009,31(4):34-35.
    [193]程小苏,柯善军,曾令可.高温空气燃烧技术在陶瓷窑炉的应用分析.工业炉,2009,31(3):15-17.
    [194]曹甄俊,朱彤.自身蓄热式烧嘴在梭式窑中的应用.中国陶瓷,2006,42(6):38-41.
    [195]武秀兰,任强,朱振峰,何选盟.一项极具潜力的节能减排技才——HTAC技术在陶瓷窑炉上的应用.陶瓷,2009(1):45-47.
    [196]刘艳春,龚晖,曾令可,等.梭式窑烟气废热利用的模拟研究.工业加热,2009,38(5):5-9.
    [197]张全胜,刘艳春,曾令可.梭式窑烟囱废热利用高温空气燃烧系统的设计.广东建材,2009(9):138-140.
    [198]徐辛望.蓄热式高温空气燃烧梭式窑:中国,发明专利,CN 101738084A.2010-06-16.
    [199]吴先益,刘志耕,简喜辉,等.采用高温空气燃烧技术的陶瓷梭式窑.中国实用新型专利,ZL 200920185172.5.2010-03-31.
    [200]张继光,武立云.高温空气燃烧技术应用于陶瓷窑炉的实验研究.兰州:第七届全国工业炉学术年会论文集,2006:308-314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700