六自由度并联平台位置正解及控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六自由度并联平台具有承载能力强、刚度大、精度高、动态响应快和累积误差小等特点,因此在机器人、运动模拟器、新型机床和飞船对接器等领域获得了越来越广泛的应用。本论文所研究的六自由度并联平台是用来模拟舰船在海洋中运动的设备,与舰船进行实际航行试验相比,它具有可控性、无破坏性、经济性和可靠性等优点,因此其应用前景非常广阔。本论文针对提高六自由度并联平台的运动性能,主要围绕位置正解和控制策略两方面开展相关的研究工作。
     首先,详细介绍了整个六自由度并联平台的结构,通过拉格朗日法建立了并联平台的动力学模型,分析了液压缸和电液伺服阀的数学模型,并建立了液压伺服系统的数学模型,为实现六自由度并联平台的控制器设计奠定了基础。
     其次,利用神经网络法无需初值选取和Newton-Raphson迭代法求解精度高的优点,提出了神经网络法和Newton-Raphson迭代法相结合的六自由度并联平台位置正解方法。此方法先利用神经网络正解法得到位置正解的粗解,再以此为初值利用Newton-Raphson迭代法通过较少次的迭代获得正解的精确解,这使得两种方法得到了很好的互补。同时为了提高神经网络正解法的学习能力,结合不完全演化策略与空间收缩思想,提出了基于比例再生空间收缩的粒子群优化算法,详细分析了收缩系数和收缩周期对粒子群算法搜索能力的影响,通过基于比例再生空间收缩粒子群优化算法优化神经网络的权值来提高位置正解的精度。
     再次,针对液压伺服系统具有复杂外干扰和系统参数摄动的特点,提出了一种鲁棒复合控制结构,该结构由PD控制器、鲁棒内回路控制器、零相位误差跟踪控制器和动态模糊神经网络补偿器等四部分组成。其中,PD控制器实现系统的反馈控制,以保证整个系统的稳定性;鲁棒内回路控制器能够抑制外界不确定性干扰和系统参数摄动对系统的影响;零相位误差跟踪控制器能够提高系统响应的快速性;动态模糊神经网络补偿器实现对PD控制器的补偿控制,进一步提高了系统对外界不确定性干扰和系统参数摄动影响的抑制能力。
     最后,为了降低六自由度并联平台建模误差和外界干扰对系统性能的影响,利用动力学模型中M(q)-2C(q,(?))的斜对称性,通过Lyapunov直接法得到了鲁棒控制律,设计了一种基于逆向力补偿的鲁棒跟踪控制策略,其内回路采用逆动力学进行补偿,外回路为依据耗散性理论设计的鲁棒控制器,保证了系统跟踪误差的一致终值有界,提高了系统的鲁棒性。
     仿真结果验证了本论文提出的六自由度并联平台位置正解和控制方法的有效性。
The 6-DOF parallel platform has many advantages of large bearing capacity,good rigidity,high accuracy,fast dynamic response and without accumulativeerror,so it is widely used in many fields,such as robot,motion simulator,newtype machine and spacecraft docking.In this paper,the 6-DOF parallel platform isused as an equipment to simulate the ship moving in the sea,and it hascontrollable,non-destructive,economical and reliable abilities compared with theactual trial,so it has very broad application prospects.In order to improve theperformance of the 6-DOF parallel platform,this paper mainly focuses on forwardkinematics and control strategy.
     Firstly,this paper introduces the structure of 6-DOF parallel platform indetail,establishes the platform dynamics model with Lagrange method,analyzesthe mathematical model of hydraulic cylinders and servo valve,and establishesthe hydraulic servo model.So these establish the foundation for the realization of6-DOF parallel platform controller.
     Secondly,this paper uses the advantages of neural network method with nolimit of initial value and Newton-Raphson method with high accuracy,andpresents a forward kinematics method which is put the neural network methodand the Newton-Raphson method together.It uses the neural network method tosolve the imprecise solution of forward kinematics,and then uses theNewton-Raphson method to solve the precise solution after a few iterations withthe imprecise solution as initial iteration,so it has well complementary with thetwo methods.In order to improve the learning ability of neural network method,itpresents renewable proportion space contracting particle swarm optimizationalgorithm with non-complete evolution and space contracting,and analyzesparticle swarm optimization algorithm with contraction factor and contractioncycle in detail.It uses renewable proportion space contracting particle swarm optimization algorithm to optimize the weights of neural network to improveaccuracy of the forward kinematics.
     Thirdly,this paper presents a robust composite control structure withhydraulic servo systems of complex outside interference and system parametersperturbation,and it is composed of PD controller,robust inner loop controller,zero phase error tracking controller and dynamic fuzzy neural network controller.In this composite control structure,PD controller realizes feedback control toensure the stability of the whole system;robust inner loop controller can inhibitthe influence of uncertainty outside interference and system parametersperturbation;zero phase error tracking controller can improve the rapid response;dynamic fuzzy neural network controller realizes the compensation of PDcontroller to further improve the suppression of uncertainty outside interferenceand system parameters perturbation.
     Finally,in order to reduce the modeling error and the external disturbance ofthe 6-DOF parallel platform,it designs a robust tracking control strategy based oninverse dynamics compensation,which is used Lyapunov direct method to obtainthe robust control law with the skewed symmetry of (?)(q)-2C(q,(?)) indynamics model.The control strategy uses inverse dynamics to compensate theinner loop and designs the robust controller based on dissipation theory in outerloop,and it can guarantee the tracking errors uniformly and ultimately boundedand enhance the robustness of the system.
     Simulation results show that the forward kinematics and the control methodsof 6-DOF parallel platform are all effective.
引文
[1]D.Stewart.A Platform with Six Degrees of Freedom.Proc.of the Institution of Mechanical Engineers,London,UK.1965,180(15):371-386P
    [2]K.H.Hunt.Kinematic Geometry of Mechanisms.Oxford:Claredon Press.1978:268-270P
    [3]H.Mac.Callion and D.T.Pham.The Analysis of A 6-DOF Work Station for Mechanized Assembly.Proc.5rd Congress on TMM.Canada:Montreal,1979:611-616P
    [4]K.H.Hunt.Structural Kinematics of In-Parallel-Actuated Robot-Arms.J.of Mech.Trans.and Ant.in Des..1983,105:705-712P
    [5]Yiu Y.K.Kinematic Geometry,Dynamics and Control of Parallel Manipulator.Ph.D.Thesis.Hong Kong:The Hong Kong Unversity of Science and Technology.2002:35-49P
    [6]石德新,万磊,江世媛等.6自由度船舶运动模拟系统.船舶工程.1997,2:4-6页
    [7]Gough V.E.and Whitehall S.G.Universal Tyre Test Machine.Proceedings of the 9~(th)International Technical Congress F.I.S.T.A.May 1962:117P
    [S]R.B.Aronson.A Bright Horizon for Machine Tool Technology.Manufacturing Engineering.1996(3):57-64P
    [9]汪劲松,段广洪,杨向东等.VAMITIY虚拟轴机床.制造技术与机 床.1998,(2):42-43页
    [10]蔡光起,原所先,胡明等.三自由度虚拟轴机床静力学及动力学的若干研究.中国机械工程.1999,10(10):1108-1111页
    [11]黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社.1997:6-32页
    [12]杨宜民,李传芳.仿生型步进式直线驱动器的研究.机器人.1994,16(1):37-39页
    [13]孙立宁.组合积木式微机器人的研究与应用.仪器仪表学报.1998,19(5):465-470页
    [14]毕树生,王守杰,宗光华.串并联微动机构的运动学分析.机器人.1997,19(4):259-264页
    [15]杨芳,曲广吉,杨雷.空间对接中差动式缓冲阻尼机构的建模研究.中国空间科学技术.1996,(3):1-8页
    [16]Harib K.and Srinivasan K.Kinematic and Dynamic Analysis of Stewart Platform-Based Machine Tool Structures.Robotica.2003,21:541-554P
    [17]Arai T.,Clear K,and Homma K.Development of Parallel Link Manipulator for Underground Excavation Task.ISART.1991:541-548P
    [18]Wang H R,Cao F,Huang Z.Design of 6-axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy.Chinese Journal of Mechanical Engineering.1998,3:217-222P
    [19]W.Michael,Decher.Active Acceleration Compensation for Transport of Delicate Obj ects.Georgia Institute of Technology,Atlanta.2000:135-146P
    [20]R.Graf,R.Dillmann.Active Acceleration Compensation Using a
    Stewart-Platform on a Mobile Robot.Proceedings of the second Euromicro Workshop on Advanced Mobile robots,Brescia,Italy.USA,IEEE Comp Soc,Los Alamitos,CA.1997:332-342P
    [21]E.Luca Bruzzone,M.Rezia Molfino.Special Purpose Parallel Robot for Active Suspension of Ambulance Stretchers.International Journal of Robotics and Automation.2003,18(3):121-130P
    [22]K.J.Waldron,M.Raghavan.Kinematics of Hybrid Series-parallel Manipulator System.J.of Dynamic System,Measurement,and Control.1989(111):211-221P
    [23]P.Nanua,K.J.Waldron.Direct Kinematics Solution of a Stewart Platform.IEEE Trans.On Robotics and Automation.1990(6):438-444P
    [24]D.Lazard,J.Merlet.The(true)Stewart Platform has 12 Configurations.Robotics and Automation.1994:2160-2165P
    [25]Jun Yang,Z.J.Geng.Closed Form Forward Kinematics Solution to a Class of Hexapod Robots.Robotics and Automation.IEEE Transactions,1998(6):503-508P
    [26]Dietmaier P.The Stewart-Gough Platform of Geometry Can Have 40 real postures,In ARK.1998,29(4):7-16P
    [27]文福安,梁崇高,廖启征.并联机器人位置正解.中国机械工程.1999,10(9):1011-1013页
    [28]B.Dasgupta,T.S.Mruthyunjaya.The Stewart Platform Manipulator.A Review Mechanism and Machine Theory.2000,35:15-40P
    [29]Ait-Ahmed M.,Renaud M.and Vidyasagar M.Intelligent robotics.Proc.Int.Symp.Intel.Robot.,Tata McGraw-Hill,New Delhi.1993:13-24P
    [30]Innocenti C.,Parenti-Castelli V.New Kinematic Model for the Closure Equations of the Generalized Stewart Platform Mechanism.Symposium on Advances in Robot Kinematics.1991,26:247-252P
    [31]Innocenti C.,Parenti-Castelli V.Closed Form Solution of PRR-3S and PPR-3S Structures.Proc.IEEE 5~(th)Int.Conf.Advanced Robotics,Pisa,Italy.1991:932-937P
    [32]Innocenti C.,Parenti-Castelli V.Forward Kinematics of the General 6-6 Fully Parallel Mechanism:an Exhaustive Numerical Approach via a Mono-Dimensional-Search Algorithm.ASME Journal of Mechanical Design.1993(115):932-937P
    [33]Dasgupta B.,Mruthyunjaya T.S.A Constructive Predictor-corrector Algorithm for the Directposition Kinematicsproblem for a General 6-6 Stewart Platform.Mechanism and Machine Theory.1996,31(6):799-811P
    [34]McAree P.R.,Daniel R.W.A Fast Robust Solution to the Stewart Platform Forward Kinematics.Robotic Systems.1996,13(7):407-427P
    [35]Boudreau R.,Turkkan N.Solving the Forward Kinematics of Parallel Manipulators with a Genetic Algorithm.J.Robotic System.1996,13(2):119-125P
    [36]Merlet J.P.Parallel Manipulators:Kinamatics,Singular Configurations and Compliance.Pro.3~(rd).Conf on Advanced Robotics.1987:126-135P
    [37]Raghavan M.The Stewart Platform of General Geometry Has 40 Configurations.Trans.ASME J.Mechanical Design.1993,115:277-282P
    [38]Husty M.L.An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms.Mechanism and Machine Theory.1996,31(4):365-379P
    [39]Boudreau R.,Turkkan N.Solving the Forward Kinematics of Parallel Manipulators with a Genetic Algorithm.Journal of Robotic Systems.1996,13(9):111-125P
    [40]Z.Huang.Modeling Formulation of 6-DOF Multi-loop Parallel
    Manipulators Part 2-Dynamic Modeling and Example.Romania:Proc.of 4th IFTOMM of on Mechanisms and CAD.1985:40-49P
    [41]曲义远,黄真.空间六自由度并联机构位置的三维搜索方法.机器人.1989,11(5):25-29页
    [42]李维嘉.六自由度并联运动机构正向解的研究.华中理工大学学报.1997,25(4):38-40页
    [43]Griffts M.,Duffy J.A Forward Displacement Analysis of a Class of Stewart Platforms.J.Robot.Sys..1989,6(6):703-720P
    [44]Lin W.,Griffs M.,and Duffy J.Forward Displacement Analysis of the 4-4 Stewart Platforms.Trans.ASME,J.Mech.Des..1992,114:444-450P
    [45]Lin W.,Crane C.D.and Duffy J.Close-Form Forward Displacement Analysis of the 4-5 In-Parallel Platforms.Traps.ASME,J.Mech.Des..1994,116:47-53P
    [46]Innocenti C,Parenti-Castelli V.Direct Position Analysis of the Stewart Platform Mechanism.Mech.Mach.Theory.1990,25(6):611-621P
    [47]Nanua P,Waldron K.J.,and Murthy V.Direct Kinematic Solution of a Stewart Platform.IEEE Traps.Robot.Automn.1990,6(4):438-444P
    [48]Merlet J.P.Direct Kinematics and Assembly Modes of Parallel Manipulators Int.J.Robot.Res..1992,11(2):150-162P
    [49]Chen N.X.,Song S.M.Direct Position Analysis of the 4-6 Stewart Platforms.Traps.ASME,J.Mech.Des..1994,116:61-66P
    [50]Innocenti C.Direct Kinematics in Analytical Form of the 6-4 Fully Parallel Mechanism.Traps.ASME,J.Mech.Des.1995,117:89-95P
    [51]Innocenti C.,Parenti-Castelli V.Direct Kinematics of the Reverse Stewart Platform Mechanism.Ninth C1SM-IFToMM Symposium on Theory and Practice of Robots and Manipulators,Udine,Italy.1992,112-116P
    [52]Innocenti C.,Parenti-Castelli V.Closed-Form Direct Position Analysis of a 5-5 Parallel Mechanism.Traps.ASME,J.Mech.Des..1993,115:515-521P
    [53]Innocenti C.,Parenti-Castelli V.Forward Displacement Analysis of Parallel Mechanisms.Mech.Mach.Theory.1993,28(4):553-561P
    [54]Husain M,Waldron K.J.Position Kinematics of a 3-Limbed Mixed Mechanism.Traps.ASME,J.Mech.Des..1994,116(3):924-929P
    [55]Wohlhart K.Displacement Analysis of the General Spherical Stewart Platform.Mech.Mach.Theory.1994,29(4):581-589P
    [56]C-de Zhang,Song S.M.Forward Kinematics of a Class of Parallel(Stewart)Platforms with Closed-Form Solutions.Proc.IEEE lnt.Conf.Robot.Automn.1991,2676-2681P
    [57]Guozhen W.Robotics,Spatial Mechanisms and Mechanical Systems ASME.1992(45):113-117P
    [58]Yin J.P,Liang C.G.The Forward Displacement Analysis of a Kind of Special Platform Manipulator Mechanism.Mech.Mach.Theory.1994,29(1):1-9P
    [59]Sreenivasan S.V.,Waldron K J.,and Nanua P.Closed-Form Direct Displacement Analysis of a 6-6 Stewart Platform.Mech.Mach.Theory.1994,29(6):855-864P
    [60]文福安,李静宜,梁崇高.一般6-6型平台并联机器人机构位置正解.机械科学与技术.1993,45(1):41-47页
    [61]梁崇高,荣辉.一种Stewart平台机械手位移正解.机械工程学报.1991,27(2):26-30页
    [62]文福安,梁崇高,廖启征.并联机器人机构位置正解.中国机械工程.1999, 10(9):1011-1013页
    [63]Wen Fuan,Liang C.G..Displacement Analysis of the 6-6 Stewart Platform Mechanisms.Mechanism and Machine Theory.1994,29(4):547-557P
    [64]饶青,陈宁新,白师贤.6-6型Stewart并联机器人的正向位移分析.机械科学与技术.1994(3):46-52页
    [65]王玉新,王仪明,柳杨等.对称结构Stewart并联机器人的位置正解及构型分析.中国机械工程.2002,13(9):734-737页
    [66]董滨,张祥德.同伦算法在并联机器人运动学中的应用.应用数学和力学.2001,22(12):1278-1284页
    [67]孔宪文.用连续法进行6-SPS并联机器人机构的位置正解.机械科学与技术.1998,17(6):878-880页
    [68]刘敏杰,李从心.3-6 Stewart平台机械手运动学正问题的解析方法.上海交通大学学报.2000,34(3):423-425页
    [69]王齐志,徐心和.基于符号计算研究一类6-SPS并联机器器人运动学正解问题.机器人.1999,21(2):117-121页
    [70]Geng Z.,Haynes L.Neural Network Solution for the Forward Kinematics Problem of a Stewart Platform.IEEE International Conference on Robotics and Automation,1991,3:2650-2655 P
    [71]陈学生,陈在礼,孔民秀.基于神经网络的6-SPS并联机器人正运动学精确求解.哈尔滨工业大学学报.2002,34(1):120-124页
    [72]郝轶宁,王军政,汪首坤等.基于神经网络的六自由度摇摆台位置正解.北京理工大学学报.2003,12(6):737-739页
    [73]贺利乐,刘宏昭.基于遗传算法和神经网络的六自由度并联平台位置正解.机械科学与技术.2004,23(11):1348-1355页
    [74]Cheok,K.C,Overholt,J.L,Beck,R.R.Exact Methods for Determining the Kinematics of a Stewart Platform Using Additional.Journal of Robotic Systems.1993,10(5):689-707P
    [75]Baron L.,Angeles J.The Decoupling of the Direct Kinematics of Parallel Manipulators Using Redundant Sensors.Proc.IEEE Int.Conf.Robot. Automn. 1994: 974-979P
    [76] Baron L., Angeles J. The On-Line Direct Kinematics of Parallel Manipulators under Joint-Sensor Redundancy. Advances in Design Automation ASME. 1994 (69): 467-474 P
    [77] Baron L, Angeles J. The Isotropic Decoupling of the Direct Kinematics of Parallel Manipulators under Sensor Redundancy. Proc. IEEE Int. Conf. Robot.Automn. 1995:1541-1546 P
    [78] Han K., Chung W, Youm Y. New Resolution Scheme of the Forward Kinematics of Parallel Manipulators Using Extra Sensors. Trans. ASME, J.Meeh. Des.. 1996, 118: 214-219P
    [79] Chen C. T. A Lagrangian Formulation in Terms of Quasi-Coordinates for the Inverse Dynamics of the General 6-6 Stewart Platform Manipulator. JSME International Journal Series C: Mechanical Systems Machine Elements and Manufacturing. 2003,46(3):1084-1090P
    [80] Nguyen C. C and Pooran F. J. Dynamic Analysis of a 6 DOF CKCM Robot End-Effector for Dual-Ann Telerobot Systems. Journal of Robotics and Autonomous Systems. 1989,5:377-394P
    [81] Xi F. F, Sinatra R. and Han W. Z, Effect of Leg Inertia on Dynamics of Sliding-Leg Hexapods. Journal of Dynamic Systems, Measurements, and Control. 2001,123:265-271P
    [82] Lee J.D and Geng Z. A Dynamic Model of a Flexible Stewart Platform. Computers & Structure. 1993, 48(3):367-374P
    [83] Codourey A and Burdet E. A Body-oriented Method for Finding a Linear Form of the Dynamic Equation of Fully Parallel Robots. Proceedings of 1997 IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico.l997:1612-1618P
    [84] Geng Z, Haynes L. S, Lee J. D and carroll R. L. On the Dynamic Model and Kinematic Analysis of a Class of Stewart Platforms. Robotics and Autonomous Systems. 1992,9:237-254P
    [85] Lebret G, Liu K., and Lewis F. L. Dynamic Analysis and Control of a Stewart Platform Manipulator.Journal of Robotics Systems.1993,10(5):629-655P
    [86]Guo H.B.,Li H.R.Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator.Journal of Mechanical Engineering Science.Proceedings of the Institution of Mechanical Engineers:2006,220(C1):61-72P
    [87]Lebret G.,Liu K.,Lewis F.L..Dynamic analysis and control of a stewart platform manipulator.Journal of Robotic Systems.1993,10(5):629-655P
    [88]Fichter E.F.A Stewart Platform-Based manipulator:General Theory and Practical Construction.International Journal Robotics Research.1986,5(2):157-182P
    [89]Melet J.P.Parallel Manipulators Part I:Theory Design,Kinematics,Dynamics and Control.INRIA.Research Report No.646,1987:1-10P
    [90]Do W.Q.D.and Yang D.C.H.Inverse Dynamic Analysis and Simulation of a Platform Type of Robot.Journal of Robotic System.1988,5(3):209-227P
    [91]Ji Z.M.Dynamics Decomposition for Stewart Platforms.ASME Journal of Mechanical Design.1994,116:67-69P
    [92]Dasgupta B.and Mruthyunjaya T.S.A Newton-Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator.Mechanism and Machine Theory.1998,33(8):1135-1152P
    [93]Harib K.and Srinivasan K.Kinematics and Dynamic Analysis of Stewart Platform-Based Machine Tool Structures.Robotica.2003,21:541-554P
    [94]Gosselin C.M.Parallel Computational Algorithms for the Kinematics and Dynamics of Planar and Spatial Parallel Manipulators.ASME Journal of Dynamic Systems Measurement and Control.1996,118:22-28P
    [95]孔令富,张世辉,肖文辉等.基于牛顿-欧拉方法的6PUS并联机构刚体动力学模型.机器人.2004,26(5):395-399页
    [96]Koekebakker S.H.,Teerhuis P.C.and van der Weiden A.J.J.Alternative Parameterization in Modeling and Analysis of Stewart Platform.Selected Topics in Identification.Modeling and Control.1996,9:59-68P
    [97]Liu M.J.,Li C.X.and Li C.N.Dynamics Analysis of Gough-Stewart Platform Manipulator.IEEE Transactions on Robotics and Automation.2000,16(1):94-98P
    [98]孔宪文.六自山度并联机器人动力学方程.机器人.1991,13(5):42-45页
    [99]杨灏泉,吴盛林,曹健等.考虑驱动分支惯量影响的Stewart平台动力学研究.中国机械工程.2002,13(12):1009-1012页
    [100]Martinez J.M.R.and Duffy J.Forward and Inverse Acceleration Analyses of In-Parallel Manipulators.ASME Journal of Mechanical Design.2000,122:299-303P
    [101]Sugimoto K.Kinematic and Dynamic Analysis of Parallel Manipulators by Means of Motor Algebra.ASME Journal of Mechanisms,Transmissions,and Automation in Design.1987,109(1):3-7P
    [102]王洪波,赵永生,黄真.空间机构受力分析的旋量法.力学与实践.1992,4:39-42页
    [103]林端麟,蒋少茵,林碧.旋量法在机器人动力学分析中的应用.应用数学和力学.1996,17(1):75-80页
    [104]Tsai L.W.Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work.Journal of Mechanical Design.2000,122:3-9P
    [105]Wang L.T.and Chen C.C.On the Dynamic Analysis of General Parallel Robotic Manipulators.International Journal of Robotics and Automation.1994,9(2):81-87P
    [106]Wang J.G.and Gosselin C.M.ANew Approach for the Dynamic Analysis
    of Parallel Manipulators.Multibody System Dynamics.1998,2:317-334P
    [107]Gallardo J.,Rico J.M.,Frisoli A.Dynamics of Parallel Manipulators by Means of Screw Theory.Mechanism and Machine Theory.2003,38(11):1113-1131P
    [108]Z.Huang,H.B.Wang.Dynamic Force Analysis of 6-DOF Parallel Multiloop Robot Manipulators ASME Paper.1986:86-168P
    [109]王洪波,黄真.六自由度并联机器人拉格朗日动力学方程.机器人.1990,12(1):23-26页
    [110]周爱国,施光林,钟廷修等.气动人工肌肉并联驱动多自由度平台的系统设计.2004,5:41-43页
    [111]范伟,彭光正,高建英等.气动人工肌肉驱动球面并联机器人的位置控制研究.2004,24(6):516-519页
    [112]杨灏泉,赵克定,吴盛林.飞行模拟器六自由度运动系统的关键技术及研究现状.系统仿真学报.2002,14(1):84-87页
    [113]Schneider M,Hiller M.Nonlinear Motion Control of Hydraulically Driven Large Redundant Manipulators.IFAC Proc.On Motion Control.1995:269-278P
    [114]Luo A.,Hun H.Intelligent Control for Electro-hydraulic Proportinoal Position Servo System.Proceedings of the 4th International Conference on Fluid Power Transmission and Control.China:Hangzhou.1997:246-250P
    [115]Jen Y.& Lee C.Robust Speed Control of A Pump Controlled Motor System.IEE Proceeding-D.1992,139(6):503-510P
    [116]Zhang H.,Nikiforuk P.N.& Ukrainetz P.R..A Network Approach for MIMO Electro-hydraulic Servosystem Control.Proceedings of the 3rd International Conference on Fluid Power Transmission and Control.China:Shanghai.1995:80-94P
    [117]Takegaki M.and Arimoto S.A New Feedback Method for Dynamic Control of Manipulator.Journal of Dynamic Systems,Measurement,and Control.1981,103:119-125P
    [118]Arimoto S.and Miyazaki F.Stability and Robustness of PID Feedback Control for Robot Manipulators of Sensory Capability.First International Symposium on Robotics Research.1984:783-799P
    [119]Tomei P.Adaptive PD Controller for Robot Manipulators.IEEE Transactions on Robotics and Automation.1991,7(4):565-570P
    [120]Wen J.T.and Bayard D.S.New Class of Control Laws for Robotic Manipulators.Part I:Non-Adaptive Case.International Journal of Control.1988,47(5):1387-1406P
    [121]Pervozvanski A.A.and Freidovich L.B.Robust Stabilization of Robotic Manipulators by PID Controllers.Dynamics and Control.1999,9:203-222 P
    [122]Sedegh N.and Horowitz R.Stability and Robustness Analysis of a Class of Adaptive Controllers for Robotic Manipulators.The International Journal of Robotics Research.1990,9(3):74-92 P
    [123]Slotine J-J.E.and Li W.P.Applied Nonlinear Control.New Jersey:Prentice-Hall International Inc..1991:35-67 P
    [124]Burdet E.,Honegger M.and Codourey A.Controllers with Desired Dynamic Compensation and Their Implementation on a 6 DOF Parallel Manipulator.Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.2000,39-45P
    [125]Nguyen C.C.,Antrazi S.S.,Zhou Z.L.Adaptive Control of a Stewart Platform-Based Manipulator.Journal of Robotic Systems.1993,10(5):657-687P
    [126]Craig J.J.,Hsu P.and Sastry S.S.Adaptive Control of Mechanical Manipulators.The International Journal of Robotics Research.1987,6(2):16-28 P
    [127]Sirouspour M.R.and Salcudean S.E.Nonlinear Control of Hydraulic Robots.IEEE Transactions on Robotics and Automation.2001,17(2):173-182 P
    [128]Berghuis H.and Nijmeijer H.A Passivity Approach to Controller Observer Design for Robots.IEEE Transactions on Robotics and Automation.1993,9(6):740-754P
    [129]De Wit C.C and Slotine J-J.E.Sliding Observers for Robot Manipulators.Automatica.1991,27(5):859-864P
    [130]徐东光,董彦良,吴盛林等.液压驱动Stewart平台非线性自适应控制其设计.机械工程学报.2007,43(3):223-227,234页
    [131]郭洪波,李洪人.基于Backstepping的阀控非对称缸电液伺服系统非线性控制.液压与气动.2004,10:38-40页
    [132]焦晓红,耿秋实,方一鸣等.并联机器人的鲁棒自适应控制.机器人技术与应用.2002,4:22-24页
    [133]Kim N.and Lee C.W.High Speed Tracking Control of Stewart Platform Manipulator via Enhanced Sliding Mode Control.Pro.of the IEEE International Conference on Robotics and Automation.1998:2716-2721P
    [134]郭洪波,李洪人.液压驱动6自由度运动模拟器动力机构控制策略研究.机械工程学报.2005,4 1(2):199-204页
    [135]焦晓红,方一鸣.液压伺服驱动的井联机器人离散滑模变结构控制.自动化与仪器仪表.2001,1:25-27页
    [136]焦晓红,方一鸣,王洪瑞.并联机器人轨迹跟踪离散变结构鲁棒控制器设计.工业仪表与自动化装置.2001,5:3-5页
    [137]Lee S.H.,Song J.B.,Choi W.C.and Hong D.Position Control of a Stewart Platform Using Inverse Dynamics Control with Approximate Dynamics.Mechatronics.2003,13(6):605-619P
    [138]Kim H.S.,Cho Y.M.and Lee K.I.Robust Nonlinear Task Space Control for a 6 DOF Parallel Manipulator.Proceedings of the 41~(st)IEEE Conference on Decision and Control.Las Vegas,Nevada,USA.2002:2062-2067P
    [139]Ting Y.,Chen Y.S.and Wang S.M.Task-Space Control Algorithm for Stewart Platform.Proceedings of the 38~(th)Conference on Decision and Control,Phoenix,Arizona,USA.1999:3857-3862P
    [140]Kim H.S.,Shim Y.Robust Nonlinear Control of a DOF Parallel Manipulator:Task Space Approach.KSME International Journal.2001,16(8):1053-1063P
    [141]Kim D.H.,Kang J.Y and Lee K.I.Robust Tracking Control Design for a 6 DOF Parallel Manipulator.Journal of Robotic Systems.2000,17(10):527-547P
    [142]Becker O.,Pietsch I.and Hesselbach J.Robust Task-Space Control of Hydraulic Robots.Proceedings of IEEE International Conference on Robotics and Automation.Taipei,China.2003:4360-4365P
    [143]Beji L.,Abichou A.and Pascal M.Tracking Control of a Parallel Robot in the Task Space.Proceedings of IEEE International Conference on Robotics and Automation.Leuven,Belgium.1998:2309-2314P
    [144]傅绍文,姚郁.带有逆向力补偿Stewart平台自适应鲁棒控制.电机与控制学报.2006,10(6):88-92页
    [145]I-Fang Chung,Hung-Hsiang Chang,Chin-Teng Lin.Fuzzy Control of a Six-degree Motion platform Stability Analysis.IEEE SMC'99 Conference Proceedings.IEEE International Conference on Systems,Man,and Cybernetics.1999,1:325-330P
    [146]万亚民,王孙安,杜海峰.液压并联机器人的动态神经网络控制研究.西安交通大学学报.2004,38(9):955-958页
    [147]杨灏泉,赵克定,吴盛林.液压六自由度并联机器人控制策略的研究.机器人.2004,26(3):263-266,271页
    [148]袁立鹏,董彦良,赵克定等.基于动力补偿的液压并联运动平台控制策略.北京航空航天大学学报.2006,32(8):941-945页
    [149]王洪瑞.液压6-DOF并联机器人操作手运动和力控制的研究.保定:河北大学出版社.2001:151-173页
    [150]翟传润,战兴群,张炎华等.六自由度并联平台特性分析及其电液位置伺服系统的CMAC神经网络控制.中国工程科学.2001,3(10):36-40页
    [151]方浩,周冰,冯祖仁.基于层迭CMAC网络的6-DOF机器人自适应控制.机器人.2001,23(4):294-299页
    [152]吴军,李铁民,关立文.飞机模拟器运动平台的计算力矩控制.清华大学学报.2006,4.6(8):1405-1408,1413页
    [153]何景峰,谢文建,韩俊伟.六自由度并联机器人输出解耦控制.哈尔滨工业大学学报.2006,38(3):395-398页
    [154]李磊,朱齐丹,安百超.六自由度并联转台计算机控制系统的设计.测控技术.2008,27(2):48-50页
    [155]J.Angeless.机器人机械系统原理-理论、方法和算法.机械工业出版社.2004:34-54页
    [156]宋伟刚.机器人学-运动学、动力学与控制.科学出版社.2007:130-135页
    [157]摩雷.理查德,李泽湘.机器人操作的数学导论.北京:机械工业出版社.1998:112-125页
    [158]郭洪波,刘永光,李洪人.六自由度Stewart平台动力学模型的特性分析北京航空航天大学学报.2007,33(8):940-944页
    [159]宋志安.基于MATLAB的液压伺服控制系统分析与设计.国防工业出版社.2007:105-155页
    [160]杨灏泉.飞行模拟器六自由度运动系统及其液压伺服系统的研究.哈尔滨工业大学博士学位论文.2002:43-55页
    [161]陈学生.并联机器人位置正解工作空间及尺度综合问题的研究.哈尔滨工业大学博士学位论文.2002:27-28页
    [162]Ku D.M..Direct Displacement Analysis of a Stewart Platform Mechanism.Mechanism and Machine Theory.1999,34:453-465P
    [163]王岁花,冯乃勤,李爱国.基于粒子群优化的BP网络学习算法.计算机应用与软件.2003,8:74-76页
    [164]李博.粒子群优化算法及其在神经网络中的应用.大连理工大学硕士论文.2005:43-61页
    [165]曾建潮,介婧,崔志华.微粒群算法.北京:科学出版社.2004:66-92页
    [166]Kennedy J.,Eberhart R.C.,Particle Swarm Optimization.In Proc.IEEE Int'l.Conf.on Neural Networks,Ⅳ.Piscataway,NJ:IEEE Service Center.1995:1942-1948P
    [167]徐宗本.计算智能(第一册)-模拟进化计算.北京:高等教育出版社.2004:114-116页
    [168]Clerc M,J.Kennedy.The particle swarm-explosion,stability,and convergence in a multidimensional complex space.IEEE Transactions on Evolutionary Computation.2002,6(1):58-73P
    [169]Ioan Cristian Trelea.The particle swarm optimization algorithm:convergence analysis and parameter selection.Information Processing Letters.2003,85(6):317-325P
    [170]Lay,D.著,刘深泉译.线性代数及其应用(第三版).北京:机械工业出版社.2005:244-253页
    [171]张丽平.粒子群优化算法的理论及实践.浙江大学博士论文.2005:25-33页
    [172]王涛,李歧强.基于空间收缩的并行演化算法.中国工程科学.2003,5(3):57-61页
    [173]许丽艳,沈继红,毕晓君.基于空间收缩的新颖粒子群优化算法.哈尔滨工程大学学报.2006,27(B07):542-546页
    [174]杨维.现代优化算法及其应用研究.山东大学硕士学位论文.2004:38-50页
    [175]王凌.智能优化算法及其应用.北京:清华大学出版社.2001:1-14页
    [176]H Shi,Eberhart R.C..A modified particle swarm optimizer.Proceedings of the IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press.1998:69-73P
    [177]Y H Shi,Eberhart R.C..Parameter selection in particle swarm optimization.In:Evolutionary Programming Ⅶ:Proceedings of the Seventh Annual Conference on Evolutionary Programming,New York.1998:591-600P
    [178]Y H Shi,Eberhart R.C..Empirical study of particle swarm optimization.Proceedings of the IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Service Center.1999:1945-1950P
    [179]Clerc M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization.Proceedings of the IEEE Congress on Evolutionary Computation.1999:1951-1957P
    [180]Clerc M,J.Kennedy.The particle swarm-explosion,stability,and convergence in a multidimensional complex space.IEEE Transactions on Evolutionary Computation.2002,6(1):58-73 P
    [181]Carlisle A,Doziert G.An off-the-shelf PSO.Proceedings of the Workshop on Particle Swarm Optimization.Indianapolis,USA.2001:1-6P
    [182]Lei Li,Qidan Zhu,Liyan Xu.Solution for Forward Kinematics of 6-DOF Parallel Robot Based on Particle Swarm Optimization.IEEE International Conference on Mechatronics and Automation.China,Harbin.2007, 2968-2973P
    [183]徐春梅,尔联洁.飞行仿真转台模糊神经网络补偿的复合控制.系统仿真学报.2008,20(1):139-142页
    [184]Ohnishi K.A new servo method in mechatronics.Trans.Jpn.Soc.Elect.Eng.1987,1:83-86P
    [185]Bong K,Choi H.Analysis and design of robust motion controllers in the unified framework.Journal of Dynamic Systems,Measurement and Control.2002,124(6):313-321P
    [186]刘强,尔联洁.飞行仿真转台基于干扰观测器的鲁棒跟踪控制.北京航空航天大学学报.2003,29(2):181-184页
    [187]方强,姚郁.电动负载模拟器扰动观测器系统化设计.哈尔滨工业大学学报.2007,39(3):349-353页
    [188]王本永,董彦良,赵克定.高精度液压仿真转台鲁棒控制.航空学报.2007,28(5):1252-1256页
    [189]Tomizuka M.Zero phase error tracking algorithm for digital control.ASME Journal of Dynamic Systems Measurement and Control.1987,109(1):65-68P
    [190]Lee H S,Tomizuka M.Robust motion controller design for high-accuracy position systems.IEEE Transactions on Industrial Electronics.1996,43(1):48-55P
    [191]Narendra K.S.and K.Parthasarathy.Identification and control of dynamic systems using neural networks.IEEE Traps.Neural Netw..1990,1(1):4-27P
    [192]Karakasoglu A.,Sudharsanan S.I.,and Sundareshan M.K..Identification and decentralized adaptive control using dynamical neural networks with application to robotic manipulators.IEEE Trans.Neural Netw..1993,4(6):919-930P
    [193]Astrom K.,McAvoy T..Intelligent ontrol,J.of Process Control.1992,2(3):115-127P
    [194]王耀南.机器人智能控制工程.北京:科学出版社.2004:45-82页
    [195]Chen Y C,Teng C C.A model reference control structure using a fuzzy neural network.Fuzzy Sets and Systems.1995,73(2):291-312P
    [196]Buckley J.J,Yoichi H.Can Neural Nets Be Universal Approximators for fuzzy functions.Fuzzy Sets and Systems.1999,101(3):323-330P
    [197]Liu P.Y.Universal Approximations of Continious Fuzzy Valued Functions by Multi-layer Regular Fuzzy Neural Network.Fuzzy Sets and Systems.2001,119(2):313-320P
    [198]徐春梅,尔联洁,刘金琨.动态模糊神经网络及其自调整学习算法.控制与决策.2005,20(2):226-229页
    [199]丛爽,李泽湘.实用运动控制技术.北京:电子工业出版社.2006:269-285页
    [200]霍伟.机器人动力学与控制.北京:高等教育出版社.2005:123-149页
    [201]陈启军,王月娟,陈辉堂.基于PD控制的机器人轨迹跟踪性能研究与比较.控制与决策.2003,18(1):53-56页
    [202]谭民,徐德,侯增广等.先进机器人控制.北京:高等教育出版社.2007:190-227页
    [203]刘胜,李晚龙,杜延春等.并联机器人动力学与控制仿真研究.弹箭与制导学报.2005,25(4):928-930页
    [204]梅生伟,申铁龙,刘康志.现代鲁棒控制理论和应用.北京:清华大学出版社.2003:61-81页
    [205]申铁龙.机器人鲁棒控制基础.北京:清华大学出版社.1999:8-17页
    [206]杨志永,黄田,倪雁冰.3-HSS并联机床动力学建模及鲁棒轨迹跟踪控制. 机械工程学报.2004,40(11):75-81页
    [207]吴军,李铁民,唐晓强.平面并联机构的鲁棒轨迹跟踪控制.清华大学学报.2005,45(5):642-646页
    [208]曲中英,翁正新.基于Simulink的Stewart平台仿真研究.计算机仿真.2005,22(4):264-268页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700