钨及钨合金的选择性激光熔化过程中微观组织演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
难熔金属及其合金具有熔点高、高温强度高、低蒸汽压、低的膨胀系数以及在许多介质中的耐蚀性好等一系列优良特性,广泛应用于武器装备、医疗器械和通讯发射装备等领域。但是难熔金属的成形性能差,限制了其应用范围的扩大。目前,难熔金属大多采用粉末冶金成形,这种成形工艺需要昂贵的工装模具、工艺过程复杂,难以成形三维结构复杂的零件。因此,开发难熔金属的先进成形技术已成为研究热点之一。选择性激光熔化成形作为一种新型的成形技术具有制造过程柔性程度高、所制造的零件具有优异的力学性能和化学性能、可实现组分连续变化的梯度功能材料的制造、产品的尺寸大小和复杂程度对加工难度影响很小等特点,因此,选择性激光熔化成形技术在难熔金属成形中具有广阔的应用前景。
     本文以难熔金属钨及钨合金为研究对象,采用选择性激光熔化成形技术制备钨及钨合金试样,系统地研究了工艺参数(激光功率、扫描层厚、扫描速度、扫描间隔等)对钨及钨合金成形性和微观组织的影响;探讨了激光熔凝过程中的组织转变和生长机理。通过强化烧结改善钨及钨合金的成形性能,研究了添加稀土氧化物对钨合金微观组织的影响及其作用机制。此外,探索了难熔金属Mo和Nb的选择性激光熔化成形工艺。取得了如下研究结果:
     采用选择性激光熔化成形了纯W的试样,成形过程在高能量密度的激光束作用下发生了部分颗粒的熔化,其成形机制为液相烧结机制。激光熔化-凝固成形纯W试样表面烧结道出现了择优取向生长的针状组织,随着激光功率的增加针状组织尺寸逐渐减小。烧结试样的显微硬度值随扫描层数的增加呈下降趋势,当扫描层厚由第一层增加至第六层时,试样的显微硬度由826HV降低为353HV。
     研究了添加Ni对W基金属粉末激光熔化成形的影响规律。结果表明,选择性激光熔化W-Ni合金的成形机制为激光能量输入引起Ni颗粒及部分W颗粒熔化-凝固粘结未熔W颗粒的液相烧结过程。在相同激光作用条件下,Ni含量为10wt.%、20wt.%、40wt.%的烧结试样的微观组织分别为条状、枝晶状和蜂窝状,Ni含量的增加能有效降低熔体粘度,提高烧结体组织的均匀性。
     在分析W-Ni合金烧结试样显微硬度变化的基础上,考虑由于松散粉末收缩引起的实际粉层变化,建立了粉层收缩模型。基于该模型的分析发现,成形过程中实际粉层厚度随加工层数的变化在开始5层内的变化剧烈;随着加工层数的增加,粉末的实际厚度趋于定值,这个值可以由切片厚度和相对松装密度的比值来确定。
     基于实验数据建立W-Ni-Cu合金选择性激光熔化成形的工艺窗口。基于该工艺窗口选择工艺参数,成形的W-Ni-Cu合金零件表面平整、没有明显的裂纹与孔洞缺陷。在较高的激光能量输入时,W-Ni-Cu合金的成形机制由传统的液相烧结转变为液相烧结与W颗粒熔化/凝固的综合作用机制。
     研究了稀土氧化物对钨基合金的选择性激光熔化成形的影响。结果表明,在W-Ni-Cu合金中添加1.0wt.%La2O3,具有改善固液润湿性、提高形核率、细化晶粒和净化晶界的作用,并能抑制微裂纹的形成,显著改善W-Ni-Cu合金粉体激光熔化成形性能、提高烧结体的显微硬度。
     采用有限元法建立了选择性激光熔化成形过程温度场的三维模型。以90W-7Ni-3Fe合金体系为例,结合实验研究获得了不同工艺参数下温度场的变化及烧结体的组织演变规律与成形机制。在激光功率一定时,当扫描速度较高(110mm/s)时,W-Ni-Fe合金的组织为液相凝固粘结未熔化颗粒,其成形机制为液相烧结。随着扫描速度的减小,组织中的枝品逐渐增加,说明熔池温度升高,钨颗粒发生了熔化。当扫描速度为20mm/s,扫描间隔为0.05mm时,合金的组织为柱状品,其成形机制为合金粉末熔化-凝固的成形机制。
     研究了难熔金属Mo和Nb的选择性激光熔化成形工艺及组织演化过程。研究发现,成形试样中出现了Mo-Ni固溶体相,Mo-Ni固溶相有利于促进烧结的致密化过程,成形试样显微组织中粉末颗粒和粘结相分布较均匀。相对于纯Mo的成形试样,90Mo-Ni成形试样的表面孔隙率明显下降。选择性激光熔化Nb粉末形成的显微组织为呈方向性、规则排列的层片状组织。
Because of its good performances such as high melting point, high temperature strength, low vapor pressures, low expansion coefficient and outstanding corrosion resistance, refractory alloys has been one of the irreplaceable materials which can be widely used in industry fabrication, military field, medical device and communication equipment. However, due to refractory alloy's bad forming characteristics, the scope of its application was limited. Until now, refractory alloys were usually fabricated through powder metallurgy technology which needs expensive and dedicated tools. Therefore, the developments on new forming methods for refractory alloys become one of the most important focuses. Selective laser melting (SLM), as a new forming method, can directly fabricate parts with complex shapes by melting loose metal powder. The SLMed final components are excellent in mechanical and chemical property which can meet the requirements for direct usage. Due to its flexibility in materials and shapes, SLM method exhibits a great potential for processing refractory alloys'parts with complex shapes.
     In this paper, selective melting technique was chosen to fabricate refractory alloys (tungsten and its alloys). The effects of processing parameters (such as laser power, layer thickness, scan velocity, scan interval) on forming characteristics and microstructure were systematically investigated. The microstructure transformation and forming mechanism in laser melting-solidification process were also studied. Enhanced sintering technology was applied to optimize the forming property rare earth oxide was added in order to obtain the optimal performance of final parts. Further more, the forming process of refractory alloys (Mo, Nb) was also addressed. The overall results were as follows.
     Using W as raw material, SLM method was applied to forming three dimensional specimens. Part of W metal particles melted under large energy density of laser beam with the mechanism of liquid phase sintering. The microstructure of SLMed W specimens appeared the acicular dendrite growing along the preferred growth direction. With the enlargement of laser power import, the dimension of acicular dendrite reduced accordingly. When the layer number increased from one to six, the micro hardness of SLMed specimens was decreased from 826HV to 353HV.
     The effective principle of adding Ni element during SLM process was studied. The forming mechanisms of W-Ni alloys are coexisted liquid phase sintering and melting/solidification of part W particles by laser energy input. Under the equal laser condition, the microstructure of SLMed specimens with the Ni element content of 10wt.%, 20wt.%,40wt.% showed bar shape, dendrites and alveolar, separately. Adding Ni element can decrease the melt viscosity and increase the homogenize microstructure.
     On the basis of the variation of W-Ni hardness value, a powder shrinkage model can be established according to the thickness of powder layer shrinkage and forming layer number. The variation of real layer thickness and the relevant mathematical explanations are discussed. The results show that the total shrinkage of metal powder layer sharply increases in the initial five layers, and then reaches to a plateau value with the increased processing layers. This value is defined by the ratio of sliced layer thickness (h) to relative density (k) during selective laser melting process.
     The processing window was established according to experiments of W-Ni-Cu alloys Based on the processing window, final parts was fabricated showing harmonious sintering surface with no cracking and obvious porosity. The sintering metallurgical mechanism transform from LPS to melting/solidification of W particles with the enhancement of laser energy input.
     To further optimize the microstructure and forming property, rare earth oxide La2O3 was added to W-Ni-Cu alloy powder. Suitable content of La2O3(0.5wt.%-1.0wt.%) can enlarge the laser absorption of powder system, refine the microstructure, decrease roughness of SLMed specimens, reduce microcrack, leading to a better forming characteristics and a higher micro hardness value.
     Using 90W-7Ni-3Fe as raw material, finite element analysis method was applied to analysis the three dimension temperature field of powder bed under different forming parameters. Experiments on different processing parameters were carried out, and the change of temperature field and microstructure evolution was investigated. Fixing the laser power as a constant value, with a high laser scan velocity(110mm/s), the microstructure of W-Ni-Fe alloys showed un-melted W particles bonding of melting Ni, Fe powder through LPS. Decreasing the laser scan velocity, an increase of dendrites can be obtained, showing an enlargement of molten pool temperature with melting of W particles. Under the laser scan velocity of 20mm/s combined with scan interval of 0.05mm, the microstructure of specimens showed columnar grains with the melting-solidification forming mechanism.
     The SLM forming process and microstructure evolution of Mo, Nb was investigated. Mo-Ni solid solutions appeared in SLMed specimens with homogenized particulate dispersion and bonding coherence, which were benefit for the density of sintering specimens. Compared to SLMed Mo metal powder, the SLMed mixture 90Mo-Ni powder can fabricate higher relative density and lower surface porosity under the equal laser condition. The microstructure of SLMed Nb specimens showed layered structure with regular arrangement.
引文
[1]Wu X, Mei J. Near net shape manufacturing of components using direct laser fabrication technology. Journal of Materials Processing Technology 2003,135(2-3): 266-270.
    [2]Santos EC, Shiomi M, Osakada K. Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture 2006, 46(12-13):1459-1468.
    [3]Liu JH, Shi YS, Lu ZL, Huang SH. Manufacturing near dense metal parts via indirect selective laser sintering combined with isostatic pressing. Applied Physics a-Materials Science and Processing,2007,89(3):743-748.
    [4]Liu ZH, Nolte JJ, Packard JI, Hilmas G, et al. Selective laser sintering of high-density alumina ceramic parts. Proceedings of the 35th International MATADOR Conference,2007:351-354.
    [5]Kruth JP. Material Increase Manufacturing by Rapid Prototyping Techniques. Annual of the CIRP,1991,2(40):603-614.
    [6]Santos E, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture,2006, 46(12-13):1459-1468.
    [7]Rombouts M, Kruth JP, Froyen L. Impact of Physical Phenomena during Selective Laser Melting of Iron Powders. Materials Processing and Properties,2009,1: 397-404.
    [8]Fischer P. Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Materialia,2003,51(6):1651-1662.
    [9]Gu DD, Shen YF. Processing conditions and microstructural features of porous 316L stainless steel components by DMLS. Appllied Surface Science,2008,255(5): 1880-1887.
    [10]Childs THC, Hauser C, Badrossamay M. Selective laser sintering (melting) of stainless and tool steel powders:experiments and modelling. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2005,219(4):339-357.
    [11]Wang XC, Laoui T, Bonse J, et al. Direct selective laser sintering of hard metal powders:Experimental study and simulation. International Journal of Advanced Manufacturing Tecnology,2002,19(5):351-357.
    [12]Niu HJ, Chang ITH. Selective laser sintering of gas and water atomized high speed steel powders. Scripta Materialia,1999,41(1):25-30.
    [13]Akbari Mousavi SAA, Sufizadeh AR. Metallurgical investigations of pulsed Nd:YAG laser welding of AISI 321 and AISI 630 stainless steels. Materials and Design,2009,30(8):3150-3157.
    [14]Benyounis K, Fakron O, Abboud J. Rapid solidification of M2 high-speed steel by laser melting. Materials and Design,2009,30(3):674-678.
    [15]Mumtaz K, Hopkinson N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyping Journal,2009,15(2): 96-103.
    [16]Gu DD, Shen YF. Direct laser sintered WC-10Co/Cu nanocomposites. Appllied Surface Science,2008,254(13):3971-3978.
    [17]Gusarov AV, Smurov I. Two-dimensional numerical modelling of radiation transfer in powder beds at selective laser melting. Appllied Surface Science,2009,255(10): 5595-5599.
    [18]Gu DD, Shen YF. Microstructure of the WC-10%Co particulate reinforced Cu matrix composites fabricated by selective laser sintering. Rare Metal Material Engineering,2006,35:276-279.
    [19]Liu JH, Shi YS, Chen KH, et al. Research on manufacturing Cu matrix Fe-Cu-Ni-C alloy composite parts by indirect selective laser sintering. International Journal of Advanced Manufacturing Tecnology,2007,33(7-8):693-697.
    [20]Chalker PR, Clare A, Davies S, et al. Selective laser melting of high aspect ratio 3D nickel-titanium structures for MEMS applications. Surface Engineering for Manufacturing Applications,2006,890:93-98.
    [21]Li RD, Liu JH, Shi YS, et al.316L stainless steel with gradient porosity fabricated by selective laser melting. Journal of Material Engineering and Performance,2009, 19(5):666-671.
    [22]Zhong ML, Liu WJ, Ning GQ, et al. Laser direct manufacturing of tungsten nickel collimation component. Journal of Materials Processing Technology,2004,147(2): 167-173.
    [23]王茂才,段绪海.激光熔敷(焊)技术在航空发动机生产中的应用.机械工人(第十二届北京·埃森焊接与切割展览会专辑),2007,6:45-47.
    [24]Xiao K, Dyson JA, Dalgarno KW, et al. Manufacture and characterisation of bioceramic tissue engineering scaffolds produced by selective laser sintering. Proceedings of the Asme International Conference on Manufacturing Science and Engineering,2007:83-90.
    [25]Wiria FE, Leong KF, Chua CK, et al. Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia,2007,3(1):1-12.
    [26]Hao L, Savalani MM, Zhang Y, et al. Characterization of selective laser-sintered hydroxyapatite-based biocomposite structures for bone replacement, Proceedings of The Royal Society A-Mathematical Physical and Engineering Sciences,2007, 463(2084):1857-1869.
    [27]Yadroitsev I, Bertrand P, Laget B, et al. Selective Laser Melting for Medical Applications.19th International Symposium of the Danube-Adria-Association-for-Automation-and-Manufacturing,2008:1535-1536.
    [28]Douglas T, Warnke PH, Temel B, et al. Rapid Prototyping:Porous Titanium Alloy Scaffolds Produced by Selective Laser Melting (SLM) for Bone Tissue Engineering. Tissue Engineering Part C:Methods,2009,15(2):115-124.
    [29]Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal,2007,13(4): 196-203.
    [30]Murr L, Quinones S, Gaytan S, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials,2009,2(1):20-32.
    [31]Li YM, Yang HO, Xin L, Huang WD, et al. Laser direct forming of metal components:technical characterizations. Lasers in Material Processing and Manufacturing,2002,4915:395-402.
    [32]Brandner JJ, Hansjosten E, Anurjew E,et al. Microstructure devices generation by selective laser melting. Laser-based Micro-and Nanopackaging and Assembly,2007, 6459:645911.1-645911.9.
    [33]Osakada K, Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder. International Journal of Machine Tools and Manufacture, 2006,46(11):1188-1193.
    [34]Jeng JY, Peng SC, Chou CJ. Metal rapid prototype fabrication using selective laser cladding technology. International Journal of Advanced Manufacturing Tecnology, 2000,16(9):681-687.
    [35]Hao L, Dadbakhsh S, Seaman O, et al. Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. Journal of Materials Processing Technology,2009,209(17):5793-5801.
    [36]Alemohammad H, Toyserkani E, Paul CP. Fabrication of smart cutting tools with embedded optical fiber sensors using combined laser solid freeform fabrication and moulding techniques. Optics and Lasers in Engineering,2007,45(10):1010-1017.
    [37]Sercombe TB, Schaffer GB. Rapid Manufacturing of Aluminum Components. Science,2003,301(5637):1225-1227.
    [38]葛启录,肖振声,韩欢庆.高性能难熔材料在尖端领域的应用与发展趋势.粉末冶金工业,2000,10(1):8-13.
    [39]张勇,何新波,曲选辉,等.超高温材料的研究进展及应用.材料导报,2007,21(12):60-64.
    [40]Amado JM, Tobar MJ, Alvarez JC, et al. Laser cladding of tungsten carbides (Spherotene(?)) hardfacing alloys for the mining and mineral industry. Applied Surface Science,2009,255(10):5553-5556.
    [41]李小强,辛红伟,胡可,等.高密度W-Ni-Fe合金的研究进展.材料导报:综述篇,2009,23(8):66-69.
    [42]马运柱,黄伯云,刘文胜.钨基合会材料的研究现状及其发展趋势.粉末冶会工 业,2005,15(5):46-54.
    [43]范景莲,黄伯云,曲选辉,等W-Ni-Fe系高密度合金的研究与发展.稀有金属与硬质合金,1998,135:47-50.
    [44]王伏生,赵慕岳.高密度钨合金及其在军事工业中的应用.粉末冶金材料科学与工程,1997,2(2):114-120.
    [45]Xu J, Li Z, Zhu W, Liu Z, et al. The comparative study of thermal fatigue behavior of laser deep penetration spot cladding coating and brush plating Ni-W-Co coating. Applied Surface Science,2006,253(5):2618-2624.
    [46]叶方伟.钽及其合金.材料导报,1997,11(2):13-15.
    [47]Dacosta F, Dasilvajr J, Dasilva A. Sintering under plasma of a Ta-20%Cu composite powder prepared by high energy milling. International Journal of Refractory Metals and Hard Materials,2008,26(3):207-211.
    [48]胡保全,白培康,程军.选择性激光烧结钼基复合粉末(TZM)制造金属零件.铸造设备研究,2008,5:17-20.
    [49]范景莲,汪登龙,黄伯云,等.难熔钨基合金的研究开发及其产业化方向.有色冶炼,2002,12(6):12-15.
    [50]J L Fan, BYH, X H Qu. Low temperature thermal debinding behavior of wax-based multi-component binder for tungsten heavy alloy. Transactions of Nonferrous Metals Society of China,1999,9(1):93-98.
    [51]Manna I, Majumdar JD, Chandra BR, et al. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel. Surface Coating Technology, 2006,201(1-2):434-440.
    [52]Gu DD, Shen YF. Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS. Journal of Alloys and Compounds, 2009,473(1-2):107-115.
    [53]Gu DD, Shen YF, Wu XJ. Formation of a novel W-rim/Cu-core structure during direct laser sintering of W-Cu composite system. Materials Letters,2008,62(12-13): 1765-1768.
    [54]Li RD, Shi YS, Liu JH, et al. Selective laser melting W-10.% Cu composite powders. International Journal of Advanced Manufacturing Technology,2009,48:597-605.
    [55]Li RD, Liu JH, Shi YS, Zhang L, et al. Effects of processing parameters on rapid manufacturing 90W-7Ni-3Fe parts via selective laser melting. Powder Metallurgy, 2010,53(4):310-317.
    [56]Rehme O. Rapid manufacturing of lattice structures with selective laser melting, Laser-based Micropackaging,2006,6107:192-203.
    [57]Kruth JP, Wang X, Laoui T, et al. Lasers and materials in selective laser sintering. Assembly Automation,2003,23(4):357-371.
    [58]Jones DP, Richey PA, Alpert BS, et al. Serum uric acid and ambulatory blood pressure in children with primary hypertension. Pediatric Research,2008,64(5): 556-561.
    [59]陈静,姜国政,林鑫,等.激光立体成形Ti2AlNb基合金的组织和相结构.中国激光,2010,37(2):593-598.
    [60]陈静,谭华,杨海鸥,等.激光快速成型过程中熔池形态的演化.中国激光,2007,34(3):442-446.
    [61]Hua T, Jing C, Xin L, et al. Research on molten pool temperature in the process of laser rapid forming. Journal of Materials Processing Technology,2008,198(1-3): 454-462.
    [62]Lin X, Yue TM, Yang HO, et al. Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy. Acta Materialia,2006,54(7): 1901-1915.
    [63]Wang W, Lin X, Huang W. The optical properties of benzophenone crystal grown from undercooled melt with oriented growth method. Optical Materials,2007,29(8): 1063-1065.
    [64]Li Y, Yang H, Lin X, et al. The influences of processing parameters on forming characterizations during laser rapid forming. Materials Science and Engineering A, 2003,360(1-2):18-25.
    [65]Xu X. Microstructure evolution in laser solid forming of Ti-50wt% Ni alloy. Journal of Alloys and Compounds,2009,480(2):782-787.
    [66]郑启光,辜建辉.激光与物质相互作用.武汉:华中理工大学出版社,1996.
    [67]Gusarov AV, Yadroitsev I, Bertrand P, et al. Heat transfer modelling and stability analysis of selective laser melting. Appllied Surface Science,2007,254(4):975-979.
    [68]Sustarsic B, Godec M, Jenko M, et al. Bulk and surface characterisation of metal powders for direct laser sintering. Vacuum,2005,80(1-3):29-34.
    [69]Yue C. A model for the microfabrication with selective laser sintering metal powders, The International Society for Optical Engineering,2004,5641:354-361.
    [70]沈以赴,顾冬冬,余承业.直接金属粉末激光烧结成形过程温度场模拟.中国机械工程,2005,16(1):67-73.
    [71]Siu W W M, K. LSH. Effective conductivity computation of a packed bed using construction resistance and contact angle effects. International Journal of Heat and Mass Transfer,2000,43(21):3917-3924.
    [72]Kolossov S, Boillat E, et al.3D FE simulation for temperature evolution in the selective laser sintering process. International Machanical Tools and Manufacturing,2004,44:117-123.
    [73]Neal K Vail, Joel W Barlow, Marcus. HL. A thermal modal of polymer degradation during selective laser sintering of polymer coated ceramic powders Rapid Prototyping Journal,1996,2(3):24-40.
    [74]Childs THC, Hauser C. Raster scan selective laser melting of the surface layer of a tool steel powder bed. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2005,219(4):379-384.
    [75]Abe F, Osakada K, Shiomi M, et al. The manufacturing of hard tools from metallic powders by selective laser melting. Journal of Materials Processing Technology, 2001,111(1-3):210-213.
    [76]Badrossamay M, Childs THC. Further studies in selective laser melting of stainless and tool steel powders. International Journal of Machine Tools and Manufacture, 2007,47(5):779-784.
    [77]Simchi A. Direct laser sintering of metal powders:Mechanism, kinetics and microstructural features. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2006,428(1-2):148-158.
    [78]Childs THC, Hauser C, Badrossamay M. Mapping and modelling single scan track formation in direct metal selective laser melting. Cirp Annals-Manufacturing Technology,2004,53(1):191-194.
    [79]Li RD, Shi YS, Liu JH, et al. Effects of processing parameters on the temperature field of selective laser melting metal powder. Powder Metallurgy and Metal Ceramics,2009,48(3-4):186-195.
    [80]姚化山,史玉升,章文献,等.金属粉末选区熔化成形过程温度场模拟.应用激光,2007,27(6):456-460.
    [81]Yang J, Wang F.3D finite element temperature field modelling for direct laser fabrication. International Journal of Advanced Manufacturing Tecnology,2008,43: 1060-1068.
    [82]Qian J M, Liang J, Xinhua W. The influence of position and laser power on the thermal history and microsturture of direct laser fabricated Ti-6A1-4V samples. Material Science and Technology,2005,21(5):597-605.
    [83]Stamp R, Fox P, O'Neill W, et al. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. Journal of Materials Science:Materials in Medicine,2009,20(9):1839-1848.
    [84]李守卫,沈以赴,顾冬冬,等.选择性激光烧结金属件翘曲和开裂问题的研究进展.激光杂志,2005,26(5):4-6.
    [85]D.拉达伊.焊接热效应-温度场、残余应力、变形.北京:机械工业出版社,1997.
    [86]Matsumoto M, Shiomi M, Osakada K, et al. Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. International Journal of Machine Tools and Manufacture,2002,42:61-67.
    [87]Suwat Jira thea ranat, et al. Virtual processing-application of rapid prototyping for visualization of metal forming processes. Journal of Materials Processing Technology,2000,98:116-124.
    [88]Labudivic M, Hu D, R. K. A three dimensional model for direct laser metal powder deposition and rapid prototyping. Journal of Materials Sciences and Technology, 2003,38:35-49.
    [89]Gabriel Bugeda, et al. Numerical prediction of temperature and density distribution in selective laser sintering process. Rapid Prototyping Journal,1999,5(1):21-26.
    [90]Shiomi M, Osakada K, Nakamura K, et al. Residual stress within metallic model made by selective laser melting process. Cirp Annals-Manufacturing Technology, 2004,53(1):195-198.
    [91]Wang GL, Chen YX, Zhang H. Effects of scanning path on the deposition process in rapid plasma spray tooling:Modeling by homogenization theory. Thin Solid Films, 2003,435:124-130.
    [92]Casavola C, Carnpanelli SL, Pappalettere C. Preliminary investigation on distribution of residual stress generated by the selective laser melting process. Journal of Strain Analysis for Engineering Design,2009,44(1):93-104.
    [93]Ajovalasit A. Rassegna del metodo del foro pertensioni costanti-studi per una proposta diraccomandazione sull'analisi sperimentale delle tensioni residue conil metodo del foro. Quaderno AIAS 1997,3:3-11.
    [94]ASTM E. Standard method for determining residual stresses by the hole-drilling strain gage method. West Conshohocker, Pennsylvania:ASTM International; 2001.
    [95]Jovalasit A. A Measurement of residual stresses by the holedrilling method: Influence of hole eccentricity. Journal of Strain Analysis,1979,14(4):171-178.
    [96]殷为宏.世纪之交的我国难熔金属加工业.第九届全国难熔金属学术交流会,1998.
    [97]黄卫东.激光立体成形-高性能致密技术零件的快速自由成形.西安:西北工业出版社,2007.
    [98]吴树森,柳玉起,等.材料成形原理.北京:机械工业出版社,2008.
    [99]王盘鑫.粉末冶金学.北京:冶金工业出版社,2000.
    [100]Li RD, Zhou ZP. Numerical modelling of microstructure forming process for Al-Al3Fe eutectic alloy. Transactions of Nonferrous Metals Society of China,2003, 13(4):849-854.
    [101]Gu DD, Shen YF. Development and characterisation of direct laser sintering multicomponent Cu based metal powder. Powder Metallurgy,2006,49(3):258-264.
    [102]Gusarov AV, Yadroitsev I, Bertrand P, et al. Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting. Journal of Heat Transfer-Transactions of the Asme,2009,131(7):168-177.
    [103]Shen YF, Gu DD, Wu P. Development of porous 316L stainless steel with controllable microcellular features using selective laser melting. Materials Science and Technology,2008,24(12):1501-1505.
    [104]Niu HJ, Chang ITH. Instability of scan tracks of selective laser sintering of high speed steel powder. Scripta Materialia,1999,41:1229-1234.
    [105]Simchi A, Pohl H. Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2003,359(1-2): 119-128.
    [106]He WZ, Suo QL, Hong HL, et al. Supercritical antisolvent micronization of natural carotene by the SEDS process through prefilming atomization. Industrial and Engineering Chemistry Research,2006,45(6):2108-2115.
    [107]Gu DD, Shen YF. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. Journal of Alloys and Compounds,2007, 432(1-2):163-166.
    [108]Shen J, Campbell L, Suri P, et al. Quantitave microstructure analysis of tungsten heavy alloys(W-Ni-Cu) during initial stage liquid phase sintering. International Journal of Refractory Metals and Hard Materials,2005,23:99-108.
    [109]Triantafyllidis D, Li L, Stott F. Mechanisms of porosity formation along the solid/liquid interfacace during laser melting of ceramics. Appllied Surface Science, 2003,208-209:458-462.
    [110]袁章福,柯家俊,李晶.金属及合金的表面张力.北京:科学出版社,2006.
    [111]Yang H, Yang K, Zhang B. Pitting corrosion resistance of La added 316L stainless steel in simulated body fluids. Materials Letters,2007,61(4-5):1154-1157.
    [112]Eom D, No SY, Hwang CS, et al. Deposition characteristics and annealing effect of La2O3 films prepared using La(iPrCp)(3) precursor. Journal of The Electrochemical Society,2007,154(3):49-53.
    [113]Gu DD, Shen YF. Influence of phosphorus element on direct laser sintering of multicomponent Cu-based metal powder. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2006,37(6):967-977.
    [114]Gu DD, Shen YF. Microstructures and properties of direct laser sintered tungsten carbide (WC) particle reinforced Cu matrix composites with RE-Si-Fe addition:A comparative study. Journal of Materials Research,2009,24(11):3397-3406.
    [115]Liu X, Yu R. Effects of La2O3 on microstructure and wear properties of laser clad y/Cr7C3/TiC composite coatings on TiAl intermatallic alloy. Materials Chemistry Physics,2007,101(2-3):448-454.
    [116]Wang K. Microstructural characteristics of laser clad coatings with rare earth metal elements. Journal of Materials Processing Technology,2003,139(1-3):448-452.
    [117]Yang X, Liang S, Wang X, et al. Effect of WC and CeO2 on microstructure and properties of W-Cu electrical contact material. International Journal of Refractory Metals and Hard Materials,2010,28(2):305-311.
    [118]Yang Z, Lu W, Zhao L, et al. Microstructure and mechanical property of in situ synthesized multiple-reinforced (TiB+TiC+La2O3)/Ti composites. Journal of Alloys and Compounds,2008,455(1-2):210-214.
    [119]Zhang L, Sun D, Yu H. Characteristics of plasma cladding Fe-based alloy coatings with rare earth metal elements. Materials Science and Engineering:A,2007, 452-453:619-624.
    [120]Zhang X, Zhan Y, Mo H, et al. Microstructure and compressive properties of in situ synthesized Ti-Si alloy composites reinforced with La2O3 particles. Materials Science and Engineering:A,2009,526(1-2):185-189.
    [121]Zhang K, Shen W, Ge C. Properties of W/Cu FGMs containing 1%TiC or 1%La2O3 prepared using GSUHP. Acta Metallurgica Sinica,2007,20(1):59-64.
    [122]赵高敏,王昆林,刘家浚.La2O3对激光熔覆铁基合金层硬度及其分布的影响.金属学报,2004,40(10):1115-1120.
    [123]Samanta S, Mitra S, Pal T. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel. Materials Science and Engineering:A,2006,430(1-2):242-247.
    [124]Gu DD, Shen YF. Effects of La2O3 addition on structure and forming property of laser sintered (WC-Co)(p)/Cu metal matrix composites. Acta Metallurgica Sinica, 2007,43(9):968-976.
    [125]Gu DD, Shen YF. The role of La2O3 in direct laser sintering of submicrometre WC-Cop/Cu MMCs. Journal of Physics D-Applied Physics,2008,41(9):095308.
    [126]Mahmoudi M, Simchi A, Imani M. Recent Advances in Surface Engineering of Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications. Journal of the Iranian Chemical Society,2010,7:1-27.
    [127]Balluffi R W, Allen S M, Craig Carter W. Kinetics of Materials. New Jersey:John Wiley and Sons,2005.
    [128]Li RD, Liu JH, Shi YS, Zhang L. Effects of processing parameters on rapid manufacturing 90W-7Ni-3Fe parts via selective laser melting. Powder Metallurgy, 2010,53(4):310-317.
    [129]Akhtar F. An investigation on the solid state sintering of mechanically alloyed nano-structured 90W-Ni-Fe tungsten heavy alloy. International Journal of Refractory Metals and Hard Materials,2008,26(3):145-151.
    [130]Dai K, L S. Thermal and mechanical finite element modeling of laser forming. Acta Materialia,2004,52:69-80.
    [131]Kieback B, Brand K, W S. Densification and alloy formation during sintering of heterogeneous systems. Powder Metallurgy World Congress,1994,2:1473-1476.
    [132]Ye WH, Wang CJ. Tungsten:resources, metallurgy, performances and the applications. Beijing:Metallurgical industry publishing house,1983.
    [133]Kolossov S, Boillat E, Glardon R, al el.3D FE simulation for temperature evolution in the selective laser sintering process. International Journal of Machine Tools and Manufacture,2004,44:117-123.
    [134]Han L, Liu FW. Microstructure and Thermal History in Direct-Laser Fabricated Ti-6A1-4V Samples. International Journal of Heat and Mass Transfer,2004,19(4): 214-224.
    [135]McVey RW, Melnychuk RM. Absorption of laser irradiation in a porous powder layer. Journal of Laser Applications,2007,19(4):214-224.
    [136]Tolochko NK, Laoui T, Khlopkov YV, al el. Absorptance of powder materials suitable for laser sintering. Rapid Prototyping Journal 2000,6(3):155-160.
    [137]Mullins WW, F SR. Morphological Stability of a Particle Growing by Diffusion or Heat Flow. Journal of Applied Physics,1963,34:323-328.
    [138]Mullins WW, F SR. Stability of a Planar Intehface During Solidification of a Dilute Binary Alloy. Journal of Applied Physics,1964,35(2):444-451.
    [139]Ivantsov GP. Temperature field around spherical cylindrical and needleshaped crystals which grow in supercooled melt. Dokl Akad Nauk SSSR(Doklady Akademii Nauk SSSR),1947,58:567-569.
    [140]刘文胜,马运柱,黄伯云.钨基合金的断裂失效和强韧化研究现状.粉末冶金工业,2007,17(4):26-31.
    [141]Sun J. Strength for decohesion of spheroidal carbide particle-matrix interface. International Journal of Fracture,1990,44:51-56.
    [142]Sun J, Deng ZJ, Li ZH. Fracture strength of spheroidal carbide particle. International Journal of Fracture,1990,42(2):39-42.
    [143]谭兆强,李昆,侯海涛,等.注射成形W-Cu及Mo-Cu研究进展.材料导报,2007,11(21):207-209.
    [144]Lu X, Wang H. Effect of MoO2 on high-temperature wear resistance of a laser melting deposited y/NiMo alloy. Journal of Alloys and Compounds,2009,469(1-2): 472-477.
    [145]Simchi A, Danninger H. Microstructural changes in Mo steels during sintering and effect on electrical conductivity. Powder Metallurgy,2002,45(4):307-314.
    [146]雷若姗,汪明朴,郭明星,等.形变复合法制备高强高导纳米Cu-Nb合金的研究进展.材料导报,2008,22(2):42-45.
    [147]Chen Z, Yan Y. Influence of sintering temperature on microstructures of Nb/NbsSi3 in situ composites synthesized by spark plasma sintering. Journal of Alloys and Compounds,2006,413(1-2):73-76.
    [148]Sercombe T, Jones N, Day R, et al. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting. Rapid Prototyping Journal,2008,14(5): 300-304.
    [149]陈程,尹海清,曲选辉.高纯钼板断口形貌和组织分析.稀有金属,2007,31(1):10-13.
    [150]杨松涛,李继文,魏世忠,等.纯钼及钼合会板材轧制加工工艺概述.中国钼业,2010,34(2):42-45.
    [151]Asgharzadeh H, Simchi A, Kim HS. In situ synthesis of nanocrystalline A16063 matrix nanocompositc powder via reactive mechanical alloying. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010,527(18-19):4897-4905.
    [152]Almeida A, Carvalho F, Carvalho PA, et al. Laser developed Al-Mo surface alloys: Microstructure, mechanical and wear behaviour. Surface and Coatings Technology, 2006(200):4782-4790.
    [153]Mahmoudi M, Simchi A, Imani M, et al. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloid Surface B,2010,75(1):300-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700