ZrB_2-SiC基超高温陶瓷复合材料失效机制的表征与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以高超声速、高机动的远距离精确打击为主要技术特征的高超声速武器已成为世界军事热点,将对未来战争概念和模式带来一场革命,可以毫不夸张地说,高超声速飞行器的出现将给人类生活带来极为深远的影响。比起传统武器,高超声速武器具有极大的效能优势,可以有效减少防御响应时间,增强武器突防和反防御能力,扩大发射平台范围,提高武器生存能力、作战效能和效率。高超声速、长时间的服役特征对武器装备的防热材料和结构提出了严峻的挑战,尤其是对抗氧化材料的耐温极限和耐久性、高温氧化和复杂载荷条件下的轻质强韧化性能提出了苛刻的要求。
     ZrB2-SiC基超高温陶瓷材料具有高熔点、高硬度、高导热率、优异的高温强度和抗氧化性等特点,因此作为新一代热防护材料受到广泛关注,国外较先进的超高声速飞行器上已经对超高温陶瓷材料进行了一定的应用。由于超高温陶瓷材料的研究在国内尚处在起步阶段,对材料在使用过程中的失效机制并不是十分清楚,材料失效过程的表征与评价方法也比较有限。因此,认清材料在使用过程中的失效机制,表征材料在使用过程中的失效过程,预报材料性能与使用温度及使用时间的关系成为提高超高温陶瓷材料可靠性和使用寿命的关键。
     本文针对ZrB2-SiC基超高温陶瓷材料在使用过程中的失效机制进行了理论、实验以及数值模拟等方面的研究,获得了材料在热冲击、氧化以及高温长时使用过程中发生破坏的主要影响因素。为进一步提高材料的性能以及对材料进行设计提供了一定的理论依据。
     首先研究了超高温陶瓷的抗热冲击性能,建立了考虑表面换热条件下材料的热冲击传热模型以及热应力的差分格式,通过计算表明表面换热系数以及材料的特征尺寸是影响材料热冲击性能的主要因素。为了验证这一结论,实验研究了不同尺寸试样的热冲击性能,结果表明超高温陶瓷材料的热冲击性能存在明显的尺寸效应,这种尺寸效应能够通过上述模型很好地表征。在试验的过程中还讨论了不同添加剂对材料的室温破坏模式及热冲击破坏模式的影响,以及残余热应力对材料热冲击性能的影响。
     通过上述计算还可以发现材料的表面换热系数能够显著影响材料的抗热冲击性能,因此对超高温陶瓷材料进行了设计,通过预氧化过程中材料表面形成的氧化膜大幅降低材料表面的换热系数。对预氧化材料进行了热冲击实验表明,预氧化方法确实能够显著提高材料的抗热冲击性能,提高幅度在40%以上。预氧化过程中表面氧化物的成分与形貌是影响预氧化效果的主要因素,而预氧化时间对于效果的影响比较有限。预氧化方法除了能够提高材料的抗热冲击性能以外还能够弥合在加工过程中试样的表面缺陷;同时氧化物层的热辐射性能较高,在材料真实的使用过程中能够减少热量的吸收,因此预氧化方法对于提高材料在真实环境下的热冲击性能有较大的帮助。
     用水淬法测试材料热冲击性能的过程中水槽温度对结果的影响非常明显。通过引入沸腾换热的概念,建立了气泡对材料热冲击性能影响的模型,通过数值模拟很好的解释了实验中出现的现象,并通过材料在液氮中的热冲击实验验证了上述模型的有效性。
     由于氧化破坏是材料的主要破坏模式之一,本文研究了材料的氧化破坏过程,针对氧化过程中出现的SiC耗尽层建立了氧化动力学模型,以氧化过程中质量守恒以及固体相体积守恒为基础,并应用反应速率方程得到了SiC耗尽层孔隙率与氧化时间的关系。孔隙率随着氧化时间的增加先上升后下降,材料内的SiC含量越高SiC耗尽层的孔隙率越高。通过不同SiC含量的ZrB2-SiC材料在1800℃的静态氧化实验以及灰度提取与二值化处理技术验证了上述模型的有效性。考虑氧化过程中的相变以及出现的孔洞,利用细观力学计算了SiC耗尽层的弹性性能的衰减,并建立了二维孔洞演化模型,给出了由于孔洞的出现SiC耗尽层强度的衰减规律。
     针对材料在高温长时使用过程中的性能劣化建立了材料在高温下的晶界相软化流动模型,给出了晶界相受力的影响因素。通过计算表明材料内部颗粒尺寸的不均匀性会导致晶界上的应力集中,颗粒的尺寸越大分布越不均匀应力集中现象越明显;晶界上的杂质同样会导致20~30倍的应力集中,这些由于微结构引起的应力集中是材料在高温长时使用过程中缺陷形核的根本原因。在讨论了材料内部缺陷如何成核的基础上建立了晶界相孔洞扩展以及连通模型,得到了孔洞成核后扩展到完整晶界尺寸的影响因素,给出了材料在长时高温使用过程中内部缺陷的形成与演化规律。
     另外,对于超高温陶瓷材料在高温下的性能以及裂纹扩展模式尝试通过分子动力学方法进行分析,本文针对SiC材料利用Tersoff三体势函数模拟了材料在高温下的性能及破坏过程。结果表明在温度较低时,材料的破坏过程完全符合脆性断裂的特点。当温度高于1200℃后,材料的断裂模式发生了一定的转变,裂纹尖端开始出现损伤区,从完全的脆性解理断裂发展为脆性断裂与子母裂纹传播机制并存的裂纹扩展机制。当温度进一步升高,裂纹扩展过程中裂纹前缘损伤区的出现更加明显,子母传播机制成为裂纹扩展的主要机制。初步研究表明分子动力学方法在模拟材料高温性能方面具有一定的价值。
Hypersonic weapon with main technological character of hypersonic, high mobility and precise strike from long distance has been drawn much attention all over the world. A revolution on conception and mode of future war will bring profound effect on human’s life. Comparing with conventional weapons, hypersonic weapons have a huge advantage of efficiency, which can decrease the response time of defense effectively, reinforce the abilities of break-through and anti defense, enlarge the scope of launch platform and further enhance the survival potential and operational efficiency of weapons. The hypersonic flying vehicles include ballistic missiles, interceptor missiles, hypersonic aerodynamic missiles, re-entry vehicles, cross-atmospherical vehicles and hypersonic airplane and so on. It is a great challenge for the thermal protection materials and structures used in weapon furnish demanding hypersonic (M>5) and long time. Especially, the essential performances of limiting temperature and durability, high temperature oxidation and light-weight strengthening and toughening under complex loadings are exacting.
     ZrB2-SiC have been regarded as promising candidate materials for use in thermal protection systems and propulsion systems in hypersonic aerospace vehicles, as a result of their unique combination of high melting temperature, high strength, thermal stability, and corrosion resistance. As a result of the application environment, the main types of failure were thermal shock destroy due to the temperature increase suddenly, oxidize destroy and property deterioration due to the high temperature during a long time. The failure mechanism and the evaluation method were not clear as a result of the initial step of the research.
     The key of improving the reliability and service life of UHTCs under oxidizing and complex load is to recognize the failure mechanism, to attribute the failure process and predict the relationship between properties and serviceability temperature and time. Therefore, theoretical, experimental and numerical methods have been adopted to investigate the failure mechanism during service process. The main influence factors of UHTCs properties during thermal shock, oxidation and under high temperature for a long time have been obtained. The results give a lot of help for improving the properties of UHTCs.
     The thermal shock properties have been studied first. The model of heat transfer considering surface heat transfer condition has been established. The difference scheme of thermal stress has been built. The surface heat transfer coefficient and characteristic heat transfer length were the main influence factors for thermal shock properties of UHTCs. To approve the conclusion above, the thermal shock behavior of UHTCs in different sizes has been investigated; results showed a strong size effect on thermal shock behavior of UHTCs which can be well described by the heat transfer model. The different room temperature failure mode and thermal shock failure mode of different materials containing different addition agent has been discussed as well as the influence of residual thermal stress on residual thermal shock intensity.
     Through the calculation above we can see that the thermal shock behavior of UHTCs can be strongly influenced by surface heat transfer coefficient. Therefore, a pre-oxidation method has been adopted in order to decrease the surface heat transfer coefficient. Through thermal shock test on pre-oxidized material we can see that the thermal shock behavior has been strongly improved by pre-oxidation, the amplitude is more than 40%. The temperature of pre-oxidation was a main influencing factor in improving the thermal shock behavior of the composites, while the influence of the length of the pre-oxidation time was slight. In addition, the defects on the surface can be closed by pre-oxidation and the radiation factor of oxide is high which can decrease the absorbing of heat quantity. Therefore, pre-oxidation method can improve the thermal shock behavior of UHTCs under true environment.
     The temperature of water bath is a main factor of thermal shock behavior tested by water quenching. Boiling water heat transfer rule has been introduced and the model of the effect of bubbles has been founded. The experimental phenomenon has been well explained by numerical simulation and the availability of the model has been confirmed by thermal shock test in liquid nitrogen.
     Due to the oxidize failure is one of the main failure mode, the oxidize failure process has been investigate. The oxidize model has been established in allusion to the SiC depletion layer. The relationship between porosity and oxidize time has been obtained by Arrhennius equation, mass and solid volume conservation. Results show that the porosity increases first and than decrease vs. oxidize time. The porosity of SiC depletion layer increases as a result of the increment of the content of SiC. The availability of the model has been confirmed by extracting the shade of gray of microphotograph of static oxidize test at 1800℃. Considering the phase change and pores, the elastic behavior of SiC depletion layer has been calculated by Meso-mechanical. The decay of the strength of SiC depletion layer has been calculated by pore evolution model.
     The model of grain boundary softening and flow has been established according to the property deterioration of UHTCs at high temperature during long time. The influencing factor of stress on grain boundary phase has been obtained. The results show that the inhomogeneity of grain size leads to the stress concentration on grain boundary, the stress concentration increase as the increment of the inhomogeneity of grain size. 20~30 doubled stress concentration also can be induced by the impurity on grain boundary. The ultimate reason of the cavity nucleation at high temperature during long time is the stress concentration induced by microstructure. The cavities propagate and confluence model has been established. The influence factor of cavity propagates to a grain size and the propagate time have been obtained. The rule of the cavity nucleation and evolvement has been given.
     In addition, The MD simulation method has been attempted to analyse the high temperature property and crack propagate mode of UHTCs. In this article, Tersoff three-body potential function has been adopted to simulate the high temperature property and failure process of SiC. Results show that the brittle failure was the main failure process when the temperature is low. However, when the temperature rise to 1200℃or more the failure model has been changed, damage zone has been appeared before crack tip. The failure mechanism has been changed from brittle failure to primary-secondary crack propagation. When the temperature rises higher, the primary-secondary crack propagation has been changed to the main failure mechanism. Preliminary study indicates that the MD simulation method has some value in simulating the high temperature property of materials.
引文
1康志敏.高超声速飞行器发展战略研究.现代防御技术. 2000,28(4): 27~33
    2杨亚政,杨嘉陵,方岱宁.高超声速飞行器热防护材料与结构的研究进展.应用数学和力学. 2008, 29(1): 47~53
    3 J. D. Webster, M. E. Westwood, F. H. Hayes, R. J. Day and R. Taylor. Oxidation Propertion Coating for C/SiC based on Yttrium Silicate. Journal of the European Ceramics Society. 1998, 18: 2345~2350
    4 A. Bronson, Y. T. Ma and R. Mutso. Compatibility of Refractory Metal Boride/Oxide Composites at Ultrahigh Temperatures. Journal of Electrochemistry Society. 1992, 139(11): 3183~3196
    5 K. Y. Upadhya and W. P. Hoffmann. Materials for Ultrahigh Temperature Structural Applications. American Ceramics Society Bulletin. 1997, 76(12): 51~56
    6 G. F. William and G. E. Hilmas. NSF-AFOSR Joint Workshop on Future Ultra-High Temperature Materials. NSF Grant DMR-0403004. 2004: 23~27
    7 M. Gasch, D. Ellerby, E. Irby, S. Beckman, M. Gusman and S. Johnson. Processing, Properties and Arc Jet Oxidation of Hafnium Diboride/Silicon Carbide Ultra-high Temperature Ceramics. Journal of Materials Science. 2004, 39: 5925~5937
    8 M. M. Opeka, I. G. Talmy and J. A. Zaykoskl. Oxidation-based Materials Selection for 2000℃Hypersonic Aerosurfaces: Theoretical Considerations and Historical Experience. Journal of Materials Science. 2004, 39: 5887~5904
    9 P. L. Moses, V. L. Rausch, L. T. Nguyen and J. R. Hill. Nasa Hypersonic Flight Demonstrators - Overview, Status, and Future Plans. 54th Congress of the Interantional-Astronautical-Federation (IAF). Bremen, Germany, 2003: 619~630.
    10 M. M. Opeka, I. G. Talmy, E. J. Wuchina, J. A. Zaykoski and S. J. Causey. Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds. Meeting on New Developments in High Temperature Materials. Istanbul, Turkey, 1998: 2405~2414.
    11 C. R. Wang, J. M. Yang and W. Hoffman. Thermal Stability of Refractory Carbide/Boride Composites. Materials Chemistry and Physics. 2002, 74: 272~281
    12 J. W. Hinze, W. C. Tripp and H. C. Graham. High-temperature Oxidation Behavior of a HfB2 Plus 20 v/o SiC Composite. Journal of The Electrochemical Society. 1975, 122 (9): 1249~1254
    13 S. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh and J. A. Salem. Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use. Journal of the European Ceramic Society. 2002, 22: 2757~2767
    14陈正求,李世英.钨铜复合材料的发展.钨铝科技. 1984, (3): 7~18
    15赵稼样.苏联新材料现状与一些特种工艺技术.出国考察报告北京:航天情报研究所,1991, 1: 88~106
    16 Z. D. Zhang and T. X. Hu. High Temperature Erosion of Sintered and Copper Infiltrated Tungsten Materials. Refractory metals: Extraction, Processing and Application. The Minerals, Metals and Materials Society, New York: Elsevier Press, 1990: 349~356
    17黄剑锋,李贺军,熊信柏.碳/碳复合材料高温抗氧化涂层的研究进展.新型炭材料. 2005, 20(4): 373~379
    18 Q. G. Fu, H. J. Li and X. H. Shi. Double-layer Oxidation Protective SiC/Glass Coatings for Carbon/Carbon Composites. Surface and Coatings Technology. 2006, 200: 3473~3477
    19 Q. G. Fu, H. J. Li and X. H. Shi. Silicon Carbide Coating to Protect Carbon/Carbon Composites against Oxidation. Scripta Materialia. 2005, 52: 923~927
    20方勋华,易茂中,黄启忠.一种中温炭/炭复合材料抗氧化涂层的制备及其性能.炭素. 2004, 3: 17~20
    21张中伟,王俊山,许正辉. C/C复合材料1800℃抗氧化涂层探索研究.宇航材料工艺. 2005, 2: 42~46
    22 J. F. Huang, H. J. Li, X. R. Zeng and K. Z. Li. Preparation and Oxidation Kinetics Mechanism of Three-Layer Multi-Layer-Coatings-Coated Carbon/Carbon Composites. Surface and Coatings Technology. 2006, 200: 5379~5385
    23 J. F. Huang, H. J. Li and X. R. Zeng. A New SiC/Yttrium Silicate/Glassmulti-layer Oxidation Protective Coating for Carbon/Carbon Composites. Carbon. 2004, 42: 2329~2366
    24 J. F. Huang, Y. L. Ma and X. R. Zeng. Oxidation Resistance Yttrium Silicates Coating for Carbon/Carbon Composites Prepared by A Novel In-Situ Formation Method. Ceramics International. 2006, 32: 417~421
    25来忠红,朱景川,全在昊. C/C复合材料Mo2Si2N抗氧化涂层的制备.稀有金属材料与工程. 2005, 34(11): 1794~1797
    26 F. Lamouroux, X. Bourrat and R. Naslain. Silicon Carbide Infiltration of Porous Carbon/Carbon Composites for Improving Oxidation Resistance. Carbon. 1995, 33: 525~528
    27 T. L. Dhami, M. T. Upaka. Oxidation-Resistance Carbon-Carbon Composites up to 1700℃. Carbon. 1995, 33: 479~482
    28 O. Yamamoto, T. Sasamoto and M. Inagaki. Anti-Oxidation of Carbon-Carbon Composites by Silicon Carbide Concentration Gradient and Zircon Overcoating.Carbon. 1995, 33: 359~361
    29曾榕,李贺军,张建国.碳/碳复合材料防护涂层的抗氧化性为研究.复合材料学报. 2000, 17(2): 42~45
    30唐欣.碳化硅陶瓷喉衬实验研究.推进技术. 1985, 6(1): 47~53
    31 Y. Baskin, C. A. Arenberg, J. H. Hardwerk. Thoria Reinforced by Metal Fibers. American Ceramics Society Bulletin. 1959, 38(7): 33
    32 I. Fisher, R.L. Hodson. Development of metal fiber-ceramic rocket nozles. Armour Research Foundation of Illinois Institute of Technology. Report 1959, 2: 177~1833
    33 W. M. Sterry. Ceramic and Composite Ceramic-metal Materials Systems Applicable to Reentry Structures. WADD Technical Reports. 1960: 60~58
    34张立同,李贺军,成来飞,徐永东,乔生儒.航空超高温复合材料的现状与发展.第九届全国复合材料论文集(上).世界图书出版公司,北京. 1996: 74~79
    35 H. Grallert and K. Vollmer. Conceptual Design of the Reference Concept Sanger by Means of Advanced Methods. AIAA-93:50~85
    36 F. Monteverde, S. Guicciardi and A. Bellosi. Advances in Microstructure and Mechanical Properties of Zirconium Diboride Based Ceramics. Materials Science and Engineering. 2003, 346: 310~319
    37 F. Monteverde, A. Bellosi and S. Guicciardi. Processing and Properties of Zirconium Diboride-Based Composites. Journal of the European Ceramic Society. 2002, 22: 279~288
    38 F. Monteverde. The Thermal Stability in Air of Hot-Pressed Diboride Matrix Composites for Uses at Ultra-High Temperatures. Corrosion Science. 2005, 47: 2020~2033
    39 F. Monteverde and A. Bellosi. The Resistance to Oxidation of an HfB2-SiC Composite. Journal of the European Ceramic Society. 2005, 25: 1025~1031
    40 F. Monteverde. Progress in the Fabrication of Ultra-High-Temperature Ceramics: "In Situ" Synthesis, Microstructure and Properties of a Reactive Hot-Pressed HfB2-SiC Composite. Composites Science and Technology. 2005, 65: 1869~1879
    41 Y. D. Blum and H. J. Kleebe. Chemical Reactivities of Hafnium and Its Derived Boride, Carbide and Nitride Compounds at Relatively Mild Temperature. Journal of Materials Science. 2004, 39(19): 6023~6042
    42 G. J. Zhang, M. Ando, J. F. Yang, T. Ohji and S. Kanzaki. Boron Carbide and Nitride as Reactants for In Situ Synthesis of Boride-containing Ceramics Composites. Journal of the European Ceramic Society. 2004, 24(2): 171~178
    43 T. K. Roy, C. Subramanian and A. K. Suri. Pressureless Sintering of Boron Carbide. Ceramics International. 2006, 32: 227~233
    44 D. Sciti, M. Brach and A. Bellosi. Long-Term Oxidation Behavior and MechanicalStrength Degradation of a Pressurelessly Sintered ZrB2-MoSi2 Ceramic. Scripta Materialia. 2005, 53: 1297~1302
    45 F. Monteverde and A. Bellosi. On the Comparison of Additive-free HfB2-SiC Ceramics Sintered by Reactive Hot-pressing and Spark Plasma Sintering. Ceramic Engineering and Science Proceedings. 2005, 26(8): 295~302
    46 W. G. Fahrenholtz, G. E. Hilmas, A. L. Chamberlain and J. W. Zimmermann. Processing and Characterization of ZrB2-Based Ultra-High Temperature Monolithic and Fibrous Monolithic Ceramics. Journal of Materials Science. 2004, 39(19): 5951~5957
    47 F. Monteverde. Ultra-High Temperature HfB2-SiC Ceramics Consolidated by Hot-Pressing and Spark Plasma Sintering. Journal of Alloys and Compounds. 2007, 428: 197~205
    48 A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas. Pressureless Sintering of Zirconium Diboride. Journal of American Ceramic Society. 2006, 89 (2): 450~456
    49果世驹,粉末烧结理论.冶金工业出版社,北京. 1998: p19~20
    50 B. L. Wang and N. Noda. Mixed Mode Crack Initiation in Piezoelectric Ceramic Strip. Theoretical and Applied Fracture Mechanics. 2000, 34: 35~47
    51李卫国.热环境对超高温陶瓷材料抗热震性能的影响.力学学报. 2008, 40(1): 40~46
    52 Z. H. Zhou, P. D. Ding, S. H. Tan and J. S. Lan. A New Thermal-Shock-Resistance Model for Ceramics: Establishment and Validation. Materials Science and Engineering. 2005, 405: 272~276
    53 C. Vinet and P. Priou. Micromechanical Damage Model Taking Loading-Induced Anisotropy into Account. Aerospace Science and Technology. 1997, 1: 65~76
    54 L. G. Margolin. Elastic Moduli of a Cracked Body, International Journal of Fracture. 1983, 22(1):65~79
    55 J. F. Maire and J. L. Chaboche. A New Formulation of Continuum Damage Mechanics (CDM) for Composite Materials. Aerospace Science and Technology. 1997, 1: 247~257
    56 N. Schmitt, A. Burr, Y. Berthaud and J. Poirier. Micromechanics Applied to the Thermal Shock Behavior of Refractory Ceramics. Mechanics of Materials. 2002, 34: 725~747
    57 C. M. Sands, R. J. Henderson and H. W. Chandler. A Three Dimensional Computational Model of the Mechanical Response of a Dual-Phase Ceramic. Computational Materials Science. 2007, 39: 862~870
    58 J. Absi and J. C. Glandus. Improved Method for Severe Thermal Shocks Testing of Ceramics by Water Quenching. Journal of the European Ceramic Society. 2004, 24:2835~2838
    59 P. K. Panda, T. S. Kannan, J. Dubois, C. Olagnon and G. Fantozzi. Thermal Shock and Thermal Fatigue Study of Ceramic Materials on a Newly Developed Ascending Thermal Shock Test Equipment. Science and Technology of Advanced Materials. 2002, 3: 327~334
    60 P. Pettersson, M. Johnsson and Z. Shen. Parameters for Measuring the Thermal Shock of Ceramic Materials with an Indentation-Quench Method. Journal of the European Ceramic Society. 2002, 22: 1883~1889
    61 H. W. Chandler, R. J. Henderson, M. N. Alzubaidy, M. Saribiyik and A. Muhaidi. A Fracture Test for Brittle Materials. Journal of the European Ceramic Society. 1997, 17: 759~763
    62 C. S. J. Pickles and J. E. Field. The Laboratory Simulation of Thermal Shock Failure. Journal of Physics D-Applied Physics. 1996, 29: 436~441
    63 B. C. Li, A. Mandelis and Z. Z. Kish. Photothermal Investigation of the Thermal Shock Behavior of Alumina Ceramics for Engine Components. Journal of Applied Physics. 2004, 95: 1042~1049
    64 K. T. Faber and A. G. Evans. Crack Deflection Processes. I- Theory. Acta Metallurgica. 1983, 31: 565~576
    65张国军,金宗哲.颗粒增韧陶瓷的增韧机理.硅酸盐学报. 1994, 22(3): 259~269
    66 P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y. W. Mai and B. J. Hockey. Crack-Interface Grain Bridging as a Fracture Resistance I, Mechanism in Ceramics: I, Experimental Study on Alumina. Journal of the American Ceramic Society. 1987, 70: 279~289
    67 M. Sakai, J. Yoshimura, Y. Goto and M. Inagaki. R-Curve Behavior of a Polycrystalline Graphite: Microcracking and Grain Bridging in the Wake Region. Journal of the American Ceramic Society. 1988, 71: 609~616
    68 J. Llorca, M. Elices and J. A. Celemín. Toughness and Microstructural Degradation at High Temperature in SiC Fiber-Reinforced Ceramics. Acta Materialia. 1998, 46: 2441~2453
    69 L. Kaufman and E. V. Clougherty. Investigation of Boride Compounds for Very High Temperature Applications. RTD-TRD-N63-4096, PartⅢ, Cambridge, MA: ManLabs Inc, March 1966
    70 E. V. Clougherty, D. Kalish and E. T. Peters. Research and Development of Refractory Oxidation Resistant Diborides. AFML-TR-68-190, Cambridge, MA: ManLabs Inc, 1968
    71 X. H. Zhang, P. Hu and J. C. Han. Structure Evolution of ZrB2-SiC During theOxidation in Air. Journal of Materials Research. 2008, 23: 1961~1972
    72 W. C. Tripp and H. C. Graham. The High-Temperature Oxidation Behavior of a HfB2 20vol.%SiC Composite. Journal of the Electrochemical Society. 1971, 118(7): 1195~1199
    73田庭燕,张玉军,孙峰,魏红康. ZrB2-SiC复合材料抗氧化性能研究.陶瓷. 2006, 5: 19~21
    74 S. S. Ordayan, A. I. Dmitriev and E. S. Moroshkina, Reaction of SiC With ZrB2. Itv. Akad. Nauk. USSR, Neorg. Mater. 1989, 25(10): 1752~1755
    75 W. C. Tripp, H. H. Davis and H. C. Graham. Effect of a SiC Addition on the Oxidation of ZrB2. American Ceramic Society Bulletin. 1973, 52(8): 612~616
    76 E. J. Opila and M. C. Halbig. Oxidation of ZrB2–SiC Ceramic Engineering and Science Proceedings. 2001, 22(3): 221~228
    77 J. Bull, M. J. White and L. Kaufman. Ablation Resistant Zirconium and Hafnium Ceramics. 1996, US patent 5750450
    78 A. Mizutani and J. Tsuge. Effects of Metallic Boride Dispersion on Fracture Toughness and Oxidation Resistance in SiC Ceramics. Journal of the Ceramic Society of Japan. 1992, 100(8): 991~997
    79 R. W. Chan and P. Haasen. Materials Science and Technology: Corrosion and Environmental Degradation, Vol. II. Wiley-VCH, 2000: p376
    80 C. Bartuli, T. Valente and M. Tului. Plasma Spray Deposition and High Temperature Characterization of ZrB2-SiC Protective Coatings. Surface and Coatings Technology. 2002, 155, 260~273
    81 A. M. Alper. High Temperature Oxides, Part II: Oxides of Rare Earths, Titanium, Zirconium, Hafnium, and Tantalum, Academic Press, New York, 1970: p1102
    82 Anon. Engineering property data on selected ceramics, Vol.III, Single Oxides, MCIC-HB-07. Battelle, Columbus. 1981: p785
    83 P. T. Shaffer. Handbooks of High Temperature Materials, Materials Index. Plenum Press, New York, 1964: p580
    84 D. R. Lide. Handbook of Chemistry and Physics. CRC Press, New York. 1997: p89
    85 M. Ewaida. Novel Studies on the Thermoelectro-Mechanical Properties of Tantala-Doped Zirconia Refractories. Polym. Degradation Stab. 1988, 21: 227~235
    86 E. J. Wuchina and M. M. Opeka. The Oxidation of HfC, HfN and HfB2. Electrochemical Society Proceedings. 2001, 12: 136~143
    87 I. G. Talmy, J. A. Zayoski, M. M. Opeka and S. Dallek. Oxidation of ZrB2 Ceramics with SiC and Group IV-VI Transition Metal Diborides. Electrochemical Society Proceedings. 2001, 12: 144~158
    88 J. C. Han, P. Hu, X. H. Zhang, S. H. Meng and W. B. Han. Oxidation-ResistantZrB2-SiC Composites at 2200℃. Composites Science and Technology. 2008, 68: 799~806
    89 E. Opila, S. Levine and J. Lorincz. Oxidation of ZrB2- and HfB2- Based Ultra-High Temperature Ceramics: Effect of Ta Additions. Journal of Materials Science. 2004, 39: 5969~5977
    90 S. I. Cha, S. H. Hong and B. K. Kim. Spark Plasma Sintering Behavior of Nanocrystalline WC–10Co Cemented Carbide Powders. Materials Science and Engineering A. 2003, 351: 31~38
    91韩杰才,胡平,张幸红,孟松鹤.超高温材料的研究进展.固体火箭技术. 2005, 28(4):289~294
    92宋学智,李长德.固体火箭发动机喷管用烧蚀隔热材料研究进展.弹箭技术. 1998, 9(4): 11~21
    93殷金其.航天热防护材料的烧蚀特性研究.固体火箭技术. 1993(4): 84~91
    94余惠琴,陈长乐,邹武.活性添加剂B、Cr对C/C-SiC复合材料性能的影响.宇航材料工艺. 2002, 32(4): 36~40
    95田玲,范雪骐,陈来. C/C-B-SiC复合材料的烧蚀性能研究.固体火箭技术. 2007, 30(3): 256~259
    96 M. I. Gusman, M. M. Stackpoole, J. W. Ridge, S. M. Johnson, D. T. Ellerby, M. D. Smith, Composites Processing and Fabrication Methodologies of Nonoxide Ceramic Composites. Ames Research Center, NTRS: 2004-11-03
    97 R. Loehman, D. Zschiesche. Ultrahigh-Temperature Ceramics For Hypersonic Vehicle Applications. Sandia National Laboratories, Ceramic Materials Dept. Albuquerque, N.Mex
    98 A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, D. T. Ellerby. High-strength Zirconium Diboride-based Ceramics. Journal of the American Ceramic Society. 2004, 87 (6): 1170~1172
    99 X. J. Zhou, G. J. Zhang, Y. G. Li, Y. M. Kan. Hot Pressed ZrB2–SiC–C Ultra high Temperature Ceramics with Polycarbosilane as A Precursor. Materials Letters. 2007, 61: 961~963
    100 W. G. Fahrenholtz, G. E. Hilmas, A. L. Chamberlain, J. W. Zimmermann. Processing and Characterization of ZrB2-based Ultra-high Temperature Monolithic and Fibrous Monolithic Ceramics. Journal of Materials Science. 2004, 39: 5951~5957
    101 A. Rezaie, W. G. Fahrenholtz, G. E. Hilmas. Effect of Hot Pressing Time and Temperature on The Microstructure and Mechanical Properties of ZrB2–SiC. Journal of Materials Science. 2007, 42: 2735~2744
    102 X. H. Zhang, P. Hu, J. C. Han, L. Xu, S. H. Meng. The Addition of LanthanumHexaboride to Zirconium Diboride for Improved Oxidation Resistance. Scripta Materialia. 2007, 57: 1036~1039
    103 W. B. Tian, Y. M. Kan, G. J. Zhang. Effect of Carbon Nanotubes on The Properties of ZrB2–SiC Ceramics. Materials Science and Engineering: A. 2008, 487: 568~573
    104 F. Monteverde. Beneficial Effects of an Ultra-fineα-SiC Incorporation on The Sinterability and Mechanical Properties of ZrB2. Applied Physics A: Materials Science & Processing. 2006, A82 (2): 329~337
    105 S. S. Hwang, A. L. Vasiliev, N. P. Padture. Improved Processing and Oxidation-resistance of ZrB2 Ultra-high Temperature Ceramics Containing SiC Nanodispersoids. Materials Science and Engineering: A. 2007, 464: 216~224
    106 X. H. Zhang, L. Xu, S. Y. Du, J. C. Han, P. Hu, W. B. Han. Fabrication and Mechanical Properties of ZrB2–SiCw Ceramic Matrix Composite. Materials Letters. 2008, 62: 1058~1060
    107 X. H. Zhang, L. Xu, W. B. Han, L. Weng, J. C. Han, S. Y. Du. Microstructure and Properties of Silicon Carbide Whisker Reinforced Zirconium Diboride Ultra-high Temperature Ceramics. Solid State Sciences. 2009, 11: 156~161
    108 S. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh, J. A. Salem. Evaluation of Ultra-high Temperature Ceramics for Aeropropulsion Use. Journal of the European Ceramic Society. 2002, 22: 2757~2767
    109 W. B. Han, G. Li, X. H. Zhang, J. C. Han. Effect of AlN as Sintering Aid on Hot-pressed ZrB2–SiC Ceramic Composite. Journal of Alloys and Compounds. 2009, 471: 488~491
    110 Z. Wang, C. Q. Hong, X. H. Zhang, X. Sun, J. C. Han. Microstructure and Thermal Shock Behavior of ZrB2–SiC–graphite Composite. Materials Chemistry and Physics. 2009, 113: 338~341
    111 F. Monteverde, S. Guicciardi, A. Bellosi. Advances in Microstructure and Mechanical Properties of Zirconium Diboride Based Ceramics. Materials Science and Engineering: A. 2003, 346: 310~319
    112 D. G. S. Davies. The Statistical Approach to Engineering Design in Ceramics. Proc. Brit. Ceram. Soc. 1973, 22: 429~452
    113 S. Kakac, Y. Yener. Heat Conduction. Washington: Hemisphere Publishing Corporation. 1985: 190~237
    114伊萨琴科.传热学.王丰,冀守礼等译.高等教育出版社. 1981: 95~156
    115 J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz. Thermal Shock Resistance of ZrB2 and ZrB2–30% SiC. Materials Chemistry and Physics. 2008, 112: 140~145
    116 T. Nishikawa, T. Gao, M. Hibi, M. Takatsu, M. Ogawa. Heat Transmission During Thermal Shock Testing of Ceramics. Journal of Materials Science. 1994, 29:213~217
    117 F. Mignard, C. Olagnon, G. Fantozzi, P. Chantrenne, M. Raynaud. Thermal Shock Behaviour of a Coarse Grain Porous Alumina. Journal of Materials Science. 1996, 31: 2131~2138
    118 M. Ishitsuka, T. Sato, T. Endo, M. Shimada. Thermal Shock Fracture Behaviour of ZrO2 Based Ceramics. Journal of Materials Science. 1989, 24: 4057~4061
    119 X. H. Zhang, L. Xu, S. Y. Du, W. B. Han, J. C. Han. Crack-healing Behavior of Zirconium Diboride Composite Reinforced with Silicon Carbide Whiskers. Scripta Materialia. 2008, 59: 1222~1225
    120 X. H. Zhang, L. Xu, S. Y. Du, W. B. Han, J. C. Han. Preoxidation and Crack-Healing Behavior of ZrB2–SiC Ceramic Composite. Journal of the American Ceramic Society. 2008, 91: 4068~4073
    121杨世铭,陶文铨.传热学.高等教育出版社. 1998: 239~331
    122 J. P. Singh, J. R. Thomas, D. P. H. Hasselman. Analysis of Effect of Heat-transfer Variables on Thermal Stress Resistance of Brittle Ceramics Measured by Quenching Experiments. Journal of the American Ceramic Society. 1980, 63: 140~144
    123 W. B. Han, P. Hu, X. H. Zhang, J. C. Han and S. H. Meng. High-Temperature Oxidation at 1900℃of ZrB2xSiC Ultrahigh-Temperature Ceramic Composites. Journal of the American Ceramic Society. 2008, 91: 3328~3334
    124 S. Arrhenius. On the Reaction Velocity of the Inversion of Cane Sugar by Acids. Zeitschrift für Physikalische Chemie. 1889, 4: 226
    125梁军,易法军.防热材料高温烧蚀-相变特性的细观研究.复合材料学报. 2002, 19(2): 108~112
    126 R. W. Rice. Evaluation and Extension of Physical Property-porosity Models Based on Minimum Solid Area. Journal of Materials Science. 1996, 31:102~118
    127 S. L. Dole and O. Hunter. Elastic Properties of Hafnium and Zirconium Oxides Stabilized with Praseodymium or Terbium Oxide. Journal of the American Ceramic Society. 1983, 66: C47~C49
    128 K. S. Chan and R. A. Page. Creep Damage Development in Structural Ceramics. Journal of the American Ceramic Society. 1993, 76: 803~826
    129 R. Raj. Fracture in Monolithic Ceramics at High Temperature. Advances in Fracture Research. New York: Pergamon Press. 1989, 4: 2769~2785
    130 R. A. Page, J. Lankford, K. S. Chan, K. Hardman-Rhyne and S. Spooner. Creep Cavitation in Liquid-Phase-Sintered Alumina. Journal of the American Ceramic Society. 1987, 70: 137~145
    131 A. G. Evans and A. Rana. High Temperature Failure Mechanisms in Ceramics.Acta Metall. 1980, 28: 129~141
    132 J. E. Marion, A. G. Evans, M. D. Drory and D. R. Clarke. High-Temperature Failure Initiation in Liquid Phase Sintered Materials. Acta Metall. 1983, 31: 1445~1457
    133 P. F. Becher, G. S. Painter, M. J. Lance, S. Ii and Y. Ikuhara. Direct Observations of Debonding of Reinforcing Grains in Silicon Nitride Ceramics Sintered with Yttria Plus Alumina Additives. Journal of the American Ceramic Society. 2005, 88: 1222~1226
    134 R. Becker and W. Doring. Kinetische Behandlung der Keimbildung in Ubersattigten Dampfen. Annalen der Physik. 1935, 416: 719~752
    135 R. Raj and M. F. Ashby. Intergranular Fracture at Elevated Temperature. Acta Metallurgica. 1975, 23: 653~666
    136 M. D. Thouless and A. G. Evans. Nucleation of Cavities During Creep of Liquid-Phase-Sintered Materials. Journal of the American Ceramic Society. 1984, 67: 721~727
    137 D. C. Drucker. In Vf Zackay (Ed.), High Strength Materials. Wiley, New York, 1965, p. 795
    138 J. R. Dryden, D. Kucerovsky, D. S. Wilkinson and D. F. Watt. Creep Deformation Due to a Viscous Grain Boundary Phase. Acta Metallurgica. 1989, 37: 2007~2015
    139 J. C. Jaeger. Elasticity, Fracture and Flow: Chapman and Hall London, 1969, p. 140
    140 K. J. Morrissey and C. B. Carter. Faceted Grain Boundaries in Al2O3. Journal of the American Ceramic Society. 1984, 67: 292~301
    141 R. J. Fields and M. F. Ashby. Finger-Like Crack Growth in Solids and Liquids. Philosophical Magazine. 1976, 33: 33~48
    142赵宏,金宗哲.颗粒增强复相陶瓷残余应力和增韧机制分析.硅酸盐学报. 1996, 24: 491~497
    143 L. Verlet. Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159: 98~103
    144 R. W. Hockney. The Potential Calculation and Some Applications. Methods in Computational Physics. 1970, 9: 136~211
    145 W. C. Swope, H. C. Andersen, P. H. Berens and K. R. Wilson. A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters. The Journal of Chemical Physics. 1982, 76: 637~649
    146 D. Beeman. Some Multistep Methods for Use in Molecular Dynamics Calculations. Journal of Computational Physics. 1976, 20: 130~139
    147 C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations: Prentice Hall PTR Upper Saddle River, NJ, USA, 1971
    148 F. H. Stillinger and T. A. Weber. Computer Simulation of Local Order in Condensed Phases of Silicon. Physical Review B. 1985, 31: 5262~5271
    149 J. Tersoff. New Empirical Approach for the Structure and Energy of Covalent Systems. Physical Review B. 1988, 37: 6991~7000
    150 O. H. Nielsen and R. M. Martin. Quantum-Mechanical Theory of Stress and Force. Physical Review B. 1985, 32: 3780~3791

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700