延性金属材料动态损伤演化的微细观表征与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
延性金属材料在强冲击载荷作用下的拉伸型损伤与力学失效是许多工程技术领域中的重要科学问题。层裂(spallation)是这类问题相关的一种典型破坏现象,它是在冲击波作用下,由于相向稀疏波相互作用产生的拉伸应力引起材料内部微损伤成核、长大以及贯通,最后导致材料发生灾变式断裂的一种物理、力学现象。
     国内宁波大学的王永刚等人(中国工程物理研究院博士学位论文,2006年)在Curran等人(Physics Reports,147(5 & 6),253-388,1987)的实验研究和封加坡等人(J.Appl.Phys.,81(6),2575-8,1997)的模型基础上,提出一个逾渗软化函数,用于描述损伤演化后期到灾变断裂之前由于微孔洞聚集导致的材料快速软化过程,并据此引入两个损伤特征物理量:孔洞聚集临界损伤度和断裂临界损伤度,用于表征微孔洞之间发生聚集的临界点和微孔洞聚集后期诱发灾变式断裂的临界点。但是要想进一步建立能够真实反映材料损伤演化过程外在表现和内在规律的物理模型,必须关注材料内部损伤演化的微观特征,从材料学的角度来对这些演化特征进行系统的描述。
     祁美兰等人(武汉理工大学博士学位论文,2006年)通过建立损伤分布统计方法,对同一发实验的自由面速度剖面信号和“软回收”样品损伤分布的实验和计算结果分别做了比对,验证了模型的合理性。但是这些学者的大部分工作都是建立在完全层裂或是接近断裂临界损伤度的情形下,对于在较低的聚集临界损伤度附近,损伤演化模型及参数的适用性还没有的到很好的证明。
     本文以高纯铝(99.999%)作为延性金属的模拟材料,在一级气体炮上开展了一维应变平面冲击波加载实验,采用了不同成型的铝型材加工成实验样品(包括棒材和退火处理的板材),分析了高纯铝在较低损伤度下的损伤演化规律,定量统计了微孔洞的尺寸和损伤分布特征,进一步验证了损伤演化模型的普适性,同时,使用高分辨透射电镜对样品进行了分析与表征,获得孔洞周围亚微米及纳米尺度的结构特征信息。论文的主要工作和创新点归纳如下:
     1.通过改变飞片厚度(2.0mm-3mm),控制不同的加载条件,获得了未完全层裂的低损伤度下的实验样品。基于层裂损伤样品的定量金相分析方法,对历经了冲击加载的高纯铝受损样品进行了细观统计分析,并与损伤演化模型计算的结果进行了比较,证明该模型及模型参数在高纯铝材料动态损伤演化初期行为预测上的普适性。
     2.使用金相分析的方法,分析了高纯铝材料在动态损伤演化发生的初期,材料中孔洞成核与生长行为。结果表明,在高纯铝中,在拉伸载荷作用下,孔洞的成核,生长主要在晶界上发生,沿晶界断裂是最主要的断裂模式。
     3.完成了高纯铝动态拉伸损伤试样的透射电镜分析,基于高分辨透射电镜的微观观察,揭示出微孔洞成核可能存在一种新的机制,即熔融成核机制。在冲击加载过程中,首先高纯铝试样在压缩波的作用下,发生塑性变形,在较高的应变率下,能量局域于试样中的某些区域,在高压作用下,局部升温熔化。而在应力波拉伸作用时,熔融区域首先出现微孔洞,产生了新的自由面,使熔融区域物质快速卸压、淬火凝固析出纳米晶在损伤演化中,成核区微孔洞内侧析出纳米晶,纳米晶粒尺寸约数纳米到数十纳米,且可能受到拉伸应力的作用而存在一定的晶体取向。基于对冲击波压缩和拉伸两个作用阶段的物理分析,熔融成核机制将为延性金属材料层裂的物理过程提供新的认识,为进一步建立能够真实反映材料损伤演化过程外在表现和内在规律的物理模型提供了依据。
The dynamic tensile failure and fracture in ductile metals is of scientific importance for many engineering projects, about which spallation is one of the typical fracture phenomena concerned. Under dynamic loading, the nucleation, growth and coalescence of microscopic voids inside the specimen will be induced due to the interaction of rarefaction waves from both free-surfaces of the impactor and the specimen, and ultimately the catastrophic fracture occurs.
     A critical damage parameter is introduced by Wang Yonggang(Ph.D thesis, China Academy of Engineering Physics,2006) to describe the intrinsic characteristic of the dynamic tensile fracture in the ductile metals, based on experimental studies performed by Curran et al. (Physics Reports,147(5 & 6),253-388,1987) and the damage function model proposed by Feng Jiapo et al. (J. Appl. Phys.,81(6),2575-8, 1997). A Percolation-Softening (P-S) function is proposed to describe the material's rapid softening during the void-coalescence processand and two physical parameters, named as the critical linking damage Dl and the critical fracturing damage Df, are proposed. Dl indicates the critical value of damage for the onset of void coalescence, and Df the critical value for the occurrence of catastrophic fracture. But to establish a physical model that really reflects the contact the characteristics and microstructure, the microstructure of the material damage evolution must be studied and described In the field of materials science.
     Qi Meilan(Ph.D thesis, Wuhan University of Technology,2006) investigate the critical behavior in dynamic tensile fracture. Using a method for accounting the micro-voids of the shock damaged HPA samples, Qi validate the reasonableness and feasibility of the model constructed by way of comparing the free surface velocity profile, sample damage distribution of the "soft-recovery" of the shocked specimen and the calculated results. But almost all scholars' works are based on complete spallation or close to the critical fracturing damage Dfo The damage evolution model has not be validated under the conditions of very low damage.
     In this thesis, one-dimensional strain impact experiments were performed for the High Purity Aluminum (99.999%, Different molding of aluminium bar,including aluminium bar and aluminium plate after annealing process). A quantitative analysis method for accounting the micro-voids of the shock damaged HPA samples has been used. The universality of damage evolution model was be verified. And the microstructure of the HPA samples were characterized by a transmission electron microscope (TEM) and a high-resolution TEM. The main and /or innovative points of the thesis are summarized as follows:
     1. With an thickness of the flying from 2.0mm to 3mm the shock compressed HPA samples have been prepared. A quantitative analysis method for accounting the micro-voids of the shock damaged HPA samples has been used. The size distribution of micro-voids and the damage evolution of the spalled samples have been analyzed. Comparing the results of experiment and calculation, the Damage evolution model and the critical damage parameters for describing the tensile fracture has been validated under the conditions of very low damage, and they are independent on the dynamic loading conditions.
     2. Based on metallographic method, a series of shocked samples were analyzed for understanding the evolution law of ductile metal under dynamic shock. Result indicates that under tensile loading, nucleation, growth and coalescence of voids occur on the grain boundary primarily. The fracture of along grain boundary is the uppermost fracture mode. These analysis results are helpful to understand the evolution process of ductile metal dynamic fracture and establish the damage evolution model.
     3. The microstructures of microvoid, which result from dynamic tensile loading in high pure aluminum (99.999%), were characterized by a transmission electron microscope (TEM) and a high-resolution TEM. It was found that there may be a new nucleation mechanism of damage evolution in a ductile metal, which was called melt nucleation. During shock compression, shock energy gives rise to local melting in high pure aluminum, and then a new free surface is generated under the tensile stress in the melting areas. Nanocrystalline amorphous metal is produced by rapid quenching a molten aluminum. In our experimental observations, the grain size of Nanocrystalline amorphous aluminum is 5-20 nm. This will increase understanding of the physical processes of dynamic tensile fracture of materials under high strain rate deformation.
引文
[1]. Hopkinson, B., A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character,1914.213:p.437-456.
    [2]. Rinehart, J.S., Some Quantitative Data Bearing on the Scabbing of Metals under Explosive Attack. Journal of Applied Physics,1951.22:p.555.
    [3]. Rinehart, J.S. and J. Pearson, Behavior of metals under impulsive loads.1954: American Society for Metals.
    [4]. Keller, D.V. and J.G. Trulio, Mechanism of Spall in Lucite. Journal of Applied Physics, 1963.34:p.172.
    [5]. Smith, J.H., Dynamic Behavior of Materials. ASTM, Philadelphia, PA,1963:p.264.
    [6]. Breed, B.R., C.L. Mader and D. Venable, Technique for the Determination of Dynamic-Tensile-Strength Characteristics. Journal of Applied Physics,1967.38:p.3271.
    [7]. Butcher, B.M. and J.R. Canon, Influence of work-hardening on the dynamic stress-strain curves of 4340 steel(Dynamic stress-strain curves of fully hardened 4340 steel, comparing dynamic and quasi-static work hardening properties). AIAA JOURNAL,1964.2:p. 2174-2179.
    [8]. Tuler, F.R. and B.M. Butcher, A criterion for the time dependence of dynamic fracture. International Journal of Fracture,1968.4(4):p.431-437.
    [9]. Davison, L. and A.L. Stevens, Continuum Measures of Spall Damage. Journal of Applied Physics,1972.43:p.988.
    [10]. Antoun, T., L. Seaman and D.R. Curran, et al., Spall fracture.2003.
    [11]. Kanel, G.I., S.V. Razorenov and A.V. Utkin, Spallation in solids under shock-wave loading-Analysis of dynamic flow, methodology of measurements, and constitutive factors. High-pressure shock compression of solids Ⅱ-Dynamic fracture and fragmentation(A 96-30376 07-31), New York, Springer-Verlag,1996,1996:p.1-24.
    [12]. Curran, D.R., L. Seaman and D.A. Shockey, Dynamic failure of solids. Physics Reports, 1987.147(5-6):p.253-388.
    [13]. Meyers, M.A. and C.T. Aimone, Dynamic failure (spalling) of metals. Prog. Mater. Sci, 1983.28:p.1-96.
    [14]. Williams, C., Dynamic Failure of Materials:A Review.2010, ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD WEAPONS AND MATERIALS RESEARCH DIRECTORATE.
    [15]. Christy, S., H.R. Pak and M. Meyers. Effect of Metallurgical Parameters on Dynamic Fracture by Spalling of Copper.1985.
    [16]. Belak, J., J.U. Cazamias and M. Fivel, et al., Microstructural Origins of Dynamic Fracture in Ductile Metals.2004, UCRL-TR-202447, Lawrence Livermore National Laboratory (LLNL), Livermore, CA.
    [17]. Huang, Y., A. Chandra and N.Y. Li, Void-nucleation vs void-growth controlled plastic flow localization in materials with nonuniform particle distributions. International Journal of Solids and Structures,1998.35(19):p.2475-2486.
    [18]. Carroll, M.M. and A.C. Holt, Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials. Journal of Applied Physics,1972.43:p.1626.
    [19]. Johnson, J.N., Dynamic fracture and spallation in ductile solids. Journal of Applied Physics,1981.52:p.2812.
    [20]. Ortiz, M. and A. Molinari, Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material. Journal of Applied Mechanics,1992.59:p.48.
    [21]. Cortes, R., The growth of microvoids under intense dynamic loading. International journal of solids and structures,1992.29(11):p.1339-1350.
    [22]. 王泽平,郑坚,延性介质动态损伤模型.爆炸与冲击,1992.12(002):第136-144页.
    [23]. Zheng, J. and Z.P. Wang, Spall damage in aluminum alloy. International journal of solids and structures,1995.32(8-9):p.1135-1148.
    [24]. BELAK, J. and R. MINICH. SIMULATION OF VOID GROWTH AT HIGH STRAIN-RATE.1999:Materials Research Society.
    [25]. Seppala, E.T., J. Belak and R.E. Rudd, Molecular Dynamics Study of Void Growth and Dislocations in Dynamic Fracture of FCC and BCC Metals.2003, Lawrence Livermore National Laboratory (LLNL), Livermore, CA.
    [26]. 崔新林,李英骏,祝文军等,冲击加载下铝中孔洞长大的微观机理分析.高压物理学报,2009(01):第37-41页.
    [27]. 邓小良,祝文军,贺红亮等,沿晶向冲击加载下铜中纳米孔洞增长的塑性机制研究.高压物理学报,2007(01):第59-65页.
    [28]. 邓小良,祝文军,贺红亮等,<111>晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为.物理学报,2006(09):第4767-4773页.
    [29]. Traiviratana, S., E.M. Bringa and D.J. Benson, et al. VOID GROWTH IN SINGLE AND BICRYSTALLINE METALS:ATOMISTIC CALCULATIONS.2007.
    [30]. 罗晋,祝文军,林理彬等,单晶铜在动态加载下空洞增长的分子动力学研究.物理学报,2005(06):第2791-2798页.
    [31]. 陈开果,祝文军,马文等,冲击波在纳米金属铜中传播的分子动力学模拟.物理学报,2010(02):第1225-1232页.
    [32]. 邓小良,祝文军,宋振飞等,冲击加载下孔洞贯通的微观机理研究.物理学报, 2009(07):第4772-4778页.
    [33]. Wagner, N.J., B.L. Holian and A.F. Voter, Molecular-dynamics simulations of two-dimensional materials at high strain rates. Physical Review A,1992.45(12):p.8457.
    [34]. Leveugle, E., D.S. Ivanov and L.V. Zhigilei, Photomechanical spallation of molecular and metal targets:molecular dynamics study. Applied Physics A:Materials Science & Processing, 2004.79(7):p.1643-1655.
    [35]. Sepp L, E.T., J. Belak and R.E. Rudd, Effect of stress triaxiality on void growth in dynamic fracture of metals:A molecular dynamics study. Physical Review B,2004.69(13):p. 134101.
    [36]. Sepp L, E.T., J. Belak and R.E. Rudd, Onset of void coalescence during dynamic fracture of ductile metals. Physical review letters,2004.93(24):p.245503.
    [37]. FORTOV, V.E., V.V. KOSTIN and S. ELIEZER, Spallation of metals under laser irradiation. Journal of Applied Physics,1991.70:p.4524-4531.
    [38]. Vidal, F., T.W. Johnston and J.C. Kieffer, et al., Spallation induced by ultrashort laser pulses at critical tension. Physical Review B,2004.70(18):p.184125.
    [39]. Moshe, E., S. Eliezer and E. Dekel, et al., Measurements of laser driven spallation in tin and zinc using an optical recording velocity interferometer system. Journal of Applied Physics, 1999.86:p.4242.
    [40]. Dalton, D.A., J.L. Brewer and A.C. Bernstein, et al., Laser-induced spallation of aluminum and A1 alloys at strain rates above 2× 106 s-1. Journal of Applied Physics,2008.104(1): p.3526.
    [41]. Tamura, H., T. Kohama and K. Kondo, et al., Femtosecond-laser-induced spallation in aluminum. Journal of Applied Physics,2001.89:p.3520.
    [42]. De Resseguier, T., S. Couturier and J. David, et al., Spallation of metal targets subjected to intense laser shocks. Journal of Applied Physics,1997.82:p.2617.
    [43]. Holtkamp, D.B., D.A. Clark and E.N. Ferm, et al. A survey of high explosive-induced damage and spall in selected metals using proton radiography.2004.
    [44]. Bontaz-Carion, J. and Y.P. Pellegrini, X-ray microtomography analysis of dynamic damage in tantalum. Advanced Engineering Materials,2006.8(6):p.480-486.
    [45]. Zurek, A., W. Thissell and D. Tonks, et al., Quantification of damage evolution for a micromechanical model of ductile fracture in spallation of tantalum.1997.
    [46]. Curran, D.R., L. Seaman and D.A. Shockey, Dynamic failure of solids.1987.147(5-6): p.253-388.
    [47]. Seaman, L., D.R. Curran and D.A. Shockey, Computational models for ductile and brittle fracture. Journal of Applied Physics,1976.47:p.4814.
    [48]. Johnson, J.N. and F.L. Addessio, Tensile plasticity and ductile fracture. Journal of Applied Physics,1988.64:p.6699.
    [49]. Tonks, D.L., A.K. Zurek and W.R. Thissell. Coalescence rate model for ductile damage in metals.2003:edpsciences. org.
    [50]. Tonks, D.L., W.R. Thissell and D.S. Schwartz. Modeling incipient copper damage data from the tensile hopkinson bar and gas gun.2004.
    [51]. Tonks, D.L., B.L. Henrie and C.P. Trujillo, et al. Roughness of Ductile Damage Paths in Shock Loaded Tantalum.2006.
    [52]. TONKS, D., Modeling Incipient Spallation in Commercially Pure Tantalum.2000, Los Alamos National Lab., Los Alamos, NM (US).
    [53]. Tonks, D., W. Thissell and A. Zurek, et al., Quantitative analysis of damage clustering and void linking for spallation modeling in tantalum.1997.
    [54]. Thakkar, B.K. and P.C. Pandey, A High-order Isotropic Continuum Damage Evolution Model. International Journal of Damage Mechanics,2007.16(4):p.403.
    [55]. Jacques, N., C. Czarnota and S. Mercier, et al., A micromechanical constitutive model for dynamic damage and fracture of ductile materials. International Journal of Fracture:p.1-17.
    [56]. 白以龙,余同希,李永池,冲击动力学进展.1992,合肥:中国科学技术大学出版社.34—57.
    [57]. 封加波,金属动态延性破坏损伤函数模型,1992,北京:北京理工大学.
    [58]. Feng, J.B., F.Q. Jing and G.R. Zhang, Dynamic ductile fragmentation and the damage function model. Journal of Applied Physics,1997.81:p.2575.
    [59]. 李永池,曹结东,董杰等,45^#钢的损伤演化方程和层裂准则研究.力学季刊,2006.27(002):第329-334页.
    [60]. Chen, D., Y. Yu and Z. Yin, et al., On the validity of the traditional measurement of spall strength. International Journal of Impact Engineering,2005.31(7):p.811-824.
    [61]. Huang, Z. and Sun, L., A New Void Growth Model for Dynamically Loaded Ductile Materials~*. Science in China,Ser.A,1993(4):p.437-448.
    [62]. Eftis, J., C. Carrasco and R.A. Osegueda, A constitutive-microdamage model to simulate hypervelocity projectile-target impact, material damage and fracture* 1. international Journal of Plasticity,2003.19(9):p.1321-1354.
    [63]. Klepaczko, J.R. and P. Chevrier, A meso-model of spalling with thermal coupling for hard metallic materials. Engineering fracture mechanics,2003.70(18):p.2543-2558.
    [64]. Lin, Z., C. Lingcang and L. Yinglei, et al., Simplified model for prediction of dynamic damage and fracture of ductile materials. International journal of solids and structures,2004. 41(24-25):p.7063-7074.
    [65]. Molinari, A. and T.W. Wright, A physical model for nucleation and early growth of voids in ductile materials under dynamic loading. Journal of the Mechanics and Physics of Solids, 2005.53(7):p.1476-1504.
    [66]. Campagne, L., L.I. Daridon and S.I. Ahzi, A physically based model for dynamic failure in ductile metals. Mechanics of materials,2005.37(8):p.869-886.
    [67]. Clayton, J.D., Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys. International journal of solids and structures,2005.42(16-17):p. 4613-4640.
    [68]. Chen, D., H. Tan and Y. Yu, et al., A void coalescence-based spall model. International journal of impact engineering,2006.32(11):p.1752-1767.
    [69]. Hiroe, T., H. Matsuo and K. Fujiwara, et al., Dynamic behavior of materials induced by explosive loadings initiated using wire explosion techniques. Journal of Materials Processing Technology,1999.85(1-3):p.56-59.
    [70]. Hanim, S. and J.R. Klepaczko, Numerical study of spalling in an aluminum alloy 7020-T6. International journal of impact engineering,1999.22(7):p.649-673.
    [71]. Hanim, S. and J.R. Klepaczko, Effects of initial temperature on spalling of metals. Le Journal de Physique Ⅳ,2000.10(PR9).
    [72]. 王永刚,延性金属动态拉伸断裂及其临界损伤度研究,2006.
    [73]. 王永刚,刘宏伟,贺红亮,强冲击载荷下纯铝中微孔洞长大行为.兵工学报,2009:第125-129页.
    [74]. 王永刚,刘宏伟,强冲击载荷下含杂质的纯铝中微孔洞长大的动力学行为.高压物理学报,2010(4):第248-254页.
    [75]. 王永刚,M. Boustie,贺红亮等,强激光辐照下纯铝动力学响应和层裂的数值模拟.强激光与粒子束,2005(9):第1281-1285页.
    [76]. 封加波,金属动态延性破坏的损伤度函数模型,1992,北京理工大学:北京.
    [77]. 李雪梅,内爆加载下钢圆管的变形,损伤及层裂研究[D],2003.
    [78]. 汤铁钢,谷岩,李庆忠等,爆轰加载下金属柱壳膨胀破裂过程研究.爆炸与冲击,2003.23(006):第529-533页.
    [79]. Wright, T.W., The physics and mathematics of adiabatic shear bands.2002:Cambridge Univ Pr.
    [80]. Yi-long, B., Adiabatic shear banding. Res. Mechanics,1990.31:p.133-203.
    [81]. 徐永波,白以龙,动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展.力学进展,2007(04):第496-516页.
    [82]. Xu, Y.B., W.L. Zhong and Y.J. Chen, et al., Shear localization and recrystallization in dynamic deformation of 8090 Al-Li alloy. Materials Science and Engineering A,2001.299(1-2): p.287-295.
    [83]. Xu, Y.B., Z.G. Wang and X.L. Huang, et al., Microstructure of shear localization in low carbon ferrite-pearlite steel. Materials Science and Engineering: A,1989.114:p.81-87.
    [84]. Xu, Y.B., Y.L. Bai and Q. Xue, et al., Formation, microstructure and development of the localized shear deformation in low-carbon steels. Acta Materialia,1996.44(5):p.1917-1926.
    [85]. Xu, Y.B., L. Wang and Z.G. Wang, et al., Localized shear deformation of an aluminum-lithium 8090 alloy during low cycle fatigue. Scripta Metallurgica et Materialia,1991. 25(5):p.1149-1154.
    [86]. Xu, Y.B., X. Wang and Z.G. Wang, et al., Formation and microstructure of localized shear band in a low carbon steel. Scripta Metallurgica et Materialia,1990.24(3):p.571-576.
    [87]. Meyers, M.A., Y.B. Xu and Q. Xue, et al., Microstructural evolution in adiabatic shear localization in stainless steel. Acta Materialia,2003.51(5):p.1307-1325.
    [88]. Meyers, M.A., G. Subhash and B.K. Kad, et al., Evolution of microstructure and shear-band formation in [alpha]-hcp titanium. Mechanics of Materials,1994.17(2-3):p.175-193.
    [89]. Meyers, M.A. and H. Pak, Observation of an adiabatic shear band in titanium by high-voltage transmission electron microscopy. Acta Metallurgica,1986.34(12):p.2493-2499.
    [90]. Meyers, M.A., L. Yu and K.S. Vecchio, Shock synthesis of silicides--Ⅱ. Thermodynamics and kinetics. Acta Metallurgica et Materialia,1994.42(3):p.715-729.
    [91]. Thomason, P.F., Ductile spallation fracture and the mechanics of void growth and coalescence under shock-loading conditions. Acta materialia,1999.47(13):p.3633-3646.
    [92]. Sepp L, E.T., J. Belak and R.E. Rudd, Effect of stress triaxiality on void growth in dynamic fracture of metals:A molecular dynamics study. Physical Review B,2004.69(13):p. 134101.
    [93]. Sepp L, E.T., J. Belak and R.E. Rudd, Onset of void coalescence during dynamic fracture of ductile metals. Physical review letters,2004.93(24):p.245503.
    [94]. Seppala, E.T., J. Belak and R.E. Rudd, Molecular dynamics study of void growth and dislocations in dynamic fracture of FCC and BCC metals. Dislocations, Plasticity and Metal Forming, Maryland,2003.
    [95]. Groh, S., E.B. Marin and M.F. Horstemeyer, Nanoscale Void Growth in Magnesium:a Molecular Dynamics Study. International Journal of Applied,2010.2(1):p.191-205.
    [96]. Hu, L., P. Miller and J. Wang, High strain-rate spallation and fracture of tungsten by laser-induced stress waves. Materials Science and Engineering: A,2009.504(1-2):p.73-80.
    [97]. 祁美兰,贺红亮,延性金属材料中损伤分布的统计方法.武汉理工大学学报,2008(08).
    [98]. 祁美兰,高纯铝拉伸型动态破坏的临界行为研究,2006,武汉理工大学:武汉.
    [99]. Chen, M.W., J.W. McCauley and D.P. Dandekar, et al., Dynamic plasticity and failure of high-purity alumina under shock loading. Nature Materials,2006.5(8):p.614-618.
    [100]. 辛建婷,祝文军,刘仓理,飞秒激光辐照铝材料的分子动力学数值模拟.爆炸与冲击,2004(03):第207-211页.
    [101]. Lubarda, V.A., M.S. Schneider and D.H. Kalantar, et al., Void growth by dislocation emission. Acta Materialia,2004.52(6):p.1397-1408.
    [102]. Gray III, G.T., N.K. Bourne and M.A. Zocher, et al. Influence of crystallographic anisotropy on the Hopkinson fracture "spallation" of zirconium.2000.
    [103]. Llorca, F., G. Roy and P. Antoine, Ductile damage of tantalum under spalling effects. Experimental and metallurgical analysis. Le Journal de Physique Ⅳ,2000.10(PR9).
    [104]. Belak, J., Multi-scale applications to high strain-rate dynamic fracture. Journal of computer-aided materials design,2002.9(2):p.165-172.
    [105]. Zhang, Y., S.S. Babu and P. Zhang, et al., Microstructure characterisation of magnetic pulse welded AA6061-T6 by electron backscattered diffraction. Science and Technology of Welding &# 38; Joining,2008.13(5):p.467-471.
    [106]. Tvergaard, V., Effect of void size difference on growth and cavitation instabilities. Journal of the Mechanics and Physics of Solids,1996.44(8):p.1237-1253.
    [107]. Liu, B., X. Qiu and Y. Huang, et al., The size effect on void growth in ductile materials. Journal of the Mechanics and Physics of Solids,2003.51(7):p.1171-1187.
    [108]. Benson, D.J., An analysis of void distribution effects on the dynamic growth and coalescence of voids in ductile metals. Journal of the Mechanics and Physics of Solids,1993. 41(8):p.1285-1308.
    [109]. Wu, X.Y., K.T. Ramesh and T.W. Wright, The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. Journal of the Mechanics and Physics of Solids,2003.51(1):p.1-26.
    [110]. 王金贵,气体炮原理及技术.2001:国防工业出版社.
    [111]. 白以龙,柯孚久,固体中微裂纹系统统计演化的基本描述.力学学报,1991.23(003):第290-298页.
    [112]. Dremov, V., A. Petrovtsev and P. Sapozhnikov, et al., Molecular dynamics simulations of the initial stages of spall in nanocrystalline copper. Physical Review B,2006.74(14):p. 144110.
    [113]. Srinivasan, S.G., M.I. Baskes and G.J. Wagner, Atomistic simulations of shock induced microstructural evolution and spallation in single crystal nickel. Journal of applied physics,2007. 101:p.043504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700