小学数学解决问题方法多样化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
问题是数学科学本身的内在组成部分,解决问题方法多样化有助于学生的数学思维发展、具有重要的教育价值。我国现行义务教育数学课程标准提出了“解决问题方法多样性”的要求,数学教材和数学教学实践中也普遍存在着解决问题方法多样化教学的事实。但是10多年来,还没有见到关于数学解决问题方法多样化的系统研究,还未建立起解决问题方法多样化的相关理论。数学解决问题方法多样化教学的普遍存在与其相关研究的匮乏,形成了一个现实的矛盾。本研究尝试探索小学数学解决问题方法多样化的相关认识、考量其教学实践成效(学生在数学解决问题方法多样化方面的发展状况),为更好的实践解决问题方法多样化教学提出一些数学课程与教学的建议与对策。
     本研究采用文献研究法、测试调查法、学生作品分析法、统计分析法等,从定性和定量两个方面对小学数学课程与教学中的解决问题方法多样化进行探讨。由于目前还没有关于“数学问题的解决方法”以及“数学解决问题方法多样化”的明确概念,所以,研究内容主要有:(1)通过文献研究,尝试探索数学解决问题方法多样化的相关理论、形成一些初步的认识。(2)通过测试调查研究学生在解决问题方法多样化方面的认知发展,考量数学解决问题方法多样化教学的成效问题,并检验本文所获得的相关认识和结论。(3)基于这两个方面的研究,本文为如何提高解决问题方法多样化教学以及数学课程的发展提出了一些建议与对策。
     本研究的主要发现与结论是:
     “数学问题的解决方法”是指解决数学问题的具体方法,是用以解决数学问题的那些产生式系统及问题情境的内在规定性的综合体,它由两个部分构成:(1)用以解决数学问题的产生式系统(即基本数量关系的组合),这是可以显性地写在纸上的部分;(2)问题解决方法的“算理”,即问题情境对这个产生式系的内在规定性,这是隐藏在背后的部分。其中,产生式系统的直接结果就是用以获取问题解答的得数的数学算法。“数学问题的解决方法”概念包括了通常所说的“解法”(“数学解题方法”)及其背后隐含的“算理”,这是一种扩充。而“数学问题的解决方法”与“算法”是不同的概念。
     “数学解决问题方法多样化”是指构造多种用以解决数学问题的产生式系统。本文中“数学解决问题方法多样化”也指用多种方法解决问题来教学数学的手法。判断一个解决方法与另一个解决方法不同的依据就是两个解决方法所体现的问题情境的规定性不同,最终就体现为两种解决方法当中所体现的基本数量关系的结合方式不同,或者说是两种解决方法的数学结构不同。“数学解决问题方法多样化”与“一题多解”、“数学解决问题方法多样化”与“算法多样化”等概念并不完全等同。
     数学解决问题方法多样化的根源在于符合问题情境的基本数量关系的组合具有可变性,而开发多种解决方法的依据则是问题情境的内在规定性。
     数学解决问题方法多样化的价值和必要性。由于用多种方法解决问题的过程充满变化(变通),所以,用多种方法解决数学问题并不是一种可以自动化的技能,解决问题方法多样化对培养学生数学创造能力具有重要价值;数学解决问题方法多样化教学是必要且合理的。“学生数学解决问题方法多样化的发展”是指经过日常的数学解决问题方法多样化教学、学生所获得的对多种解决方法的理解、掌握、运用方面的发展(认知结果)。它包括学生在解决问题时能支配的解决方法的量多(多样化)和质高(对该问题整个解决方法集合的感知或认识)两个方面的综合。
     影响学生解决数学问题方法多样化的内部认知因素主要有:知识基础、问题的表征、数量关系组合三个方面。
     尝试界定的学生数学解决问题方法多样化发展的认知水平层级:水平1,不能正确解决给定的问题;水平2,能够正确解决给定的问题;水平3,能够用2种方法解决给定的问题;水平4,能够在找到的2种解决方法的基础上对这两种方法进行概括和表达它们的联系;水平5,能够用3种方法解决给定的问题。根据这个水平层级模型,本研究编制了学生解决问题方法多样化发展测试卷及相应的编码规则。
     测试调查研究的结果说明了,经过数学课程的学习、学生在数学解决问题方法多样化方而能够获得一定的认知发展,现行的数学解决问题方法多样化教学并非完全无效,但是效果也不是很高;学生数学解决问题方法多样化的发展在单纯算法多样化维度、数与代数领域基本数量关系多重组合维度、几何领域基本数量关系多重组合维度三个维度上的发展并不均衡;同时也验证了影响学生数学解决问题方法多样化的三个认知因素的作用,也验证了“数学问题的解决方法”概念的合理性。
     综合本研究的理论探索和实证研究结论,本文对小学数学课程与教学提出了这样的建议与对策:
     (1)数学解决问题方法多样化教学应注重学生的综合建构。(2)合理安排数学课程与教学的内容编排、引导学生数学能力发展的进程。计算技能的培养重点应放在四年级及以前;五六年级宜以代数和几何发展为要务;五六年级的教学要更注重知识内化、整体建构和对学习自我反思,促进知识内部建构。(3)基于问题情境的规定性来开发不同的解决方法。(4)重在引导学生自主开发多种解决方法。(5)重在开发新方法的过程和对多种解决方法的认识。(6)注意数学解决问题方法多样化教学的“度”。(7)从三个方面抓数学解决问题方法多样化教学:夯实知识基础、提高观察能力促问题表征、增强对多个基本数量关系的自觉跟踪和调控。
     本研究立图创新的地方:由于本研究是首次探索数学解决问题方法多样化的相关理论、形成一些初步的认识,辅以测查学生在解决问题方法多样化方面的认知发展,初步尝试界定“学生数学解决问题方法多样化发展的认知水平层级”和编制相应的测试卷,这些方面都是本研究的原创,具有一定的探索性。希望所获得的结论和建议能够为今后我国的小学数学课程与教学的进一步发展提供一定的参考。
     本研究的不足之处:(1)本研究的探索仅仅是初步的,所获得的结论也仅仅是初步的和肤浅的,还没有能够形成体系。(2)限于实际条件,本研究仅对特定区域的学生进行调查,所获得的学生数学解决问题方法多样化发展的结论、以及对小学数学课程与教学的建议,有待进行更大范围的研究验证、包括开展系列实验研究。
Questions to be solved function as the internal component of the mathematical science itself, in which the diversified ways for resolving the mathematical problems are of great educational value for its contribution to the thought development of students. Under the requirements of the present compulsory education in China, the mathematics curriculum standards aim to realize the mathematical problem solving in diversified ways. In practice, the application of the diversified ways for solving mathematical problems is the general ways in the mathematics teaching praxis and the textbooks in usage. Nowadays, it has been more than ten years since the implementation of the mathematics curriculum standards. Some scholars, however, point out that it remains be a vulnerable area for students'development of solving mathematical problems in diversified ways. Besides, there are lack of the systematic theory guidance for diversified ways for the mathematical problems solution in the present teaching praxis. The mathematics teachers therefore rely on individual understanding and temporary performance. Thus the realistic contradiction sticks out between the general teaching practices and the research deficiency on the diversified ways for resolving mathematical problems.This study try to explore the theory on diversified ways for solving mathematical problems in primary school and think about the assessment on the effectiveness of the teaching practice and the empirical analysis in particular. Hence, it's necessary to assess the students'development of solving mathematical problems in diversified ways. Aiming for the improvements to the universal application of the diversified ways for solving mathematical problems in mathematical teaching, it is the urgent need to carry out the concerning studies on diversified ways for resolving the mathematical problems.
     This dissertation, including the theory exploration and the empirical analysis, studies the diversified ways for resolving the mathematical problems in the primary school by adopting the qualitative research methods and quantitative research methods. The studies contents are stated as following:1) Through the exploration on the theoretical foundation on the mathematical problem solving in diversified ways, the dissertation attempts to reach the elementary rational cognition. After the collation process of the relevant reference, the dissertation gives the exact definition for the mathematical problem solution, the diversified ways for solving mathematical problems as well as the students'development of solving mathematical problems in diversified ways, which would help to clarify the chaos caused by the confusion among the definition, relative concepts and mutual relations. The dissertation also achieves in the new interpretation on the education value of the creative thinking ability that students acquired by settling the mathematical problem in diversified ways. Besides, the classification, which reveals the mechanism and influencing factors behind the diversified ways for solving mathematical problems, contributes to probe the precautions and attention points concerning its teaching praxis.2) In order to assess the effectiveness of the present teaching praxis on the diversified mathematical solutions which would in turn helps the exploration of the theoretical foundation for the subject, the dissertation attempts to invent the assessment tools for estimating the students' cognitive development after the acquisition of the mathematical problem solving in diversified ways. At the same time, the Empirical Analysis(the test survey) are applied to detect the current situation of the students'abilities on the diversified mathematical solutions, to research the rules and characteristics for training students'competence on the mathematical problem solving in diversified ways, which would further confirms the theory exploration that was stated in the previous part the dissertation.3)and to obtain the implications on the compilation of the mathematics courses and teaching arrangements.
     The main findings and conclusions of this study:
     "The ways of mathematical problem solving" refers to the specific way for solving mathematical problems (the way closely related to problem situations and specific knowledge) and it is a complex used to solve a mathematical problem which involves production system and internal stipulation of problem situations. It consists of two parts:(1) the production system to solve mathematical problems (the combinations of basic quantitative relation), which can be written on dissertation explicitly.(2)"Algorithm" of the solutions to mathematical problem solving, a part lurking in the background, which means problem situation's inherent regulation of production systems. Among them, the direct result of production system is the mathematical algorithms used to get questions answered. The concept of "the solutions to mathematical problem solving" commonly includes "solution"("mathematical problem-solving approach") and "algorithm" lurking behind, which is an expansion. According to the structure analysis on the ways of mathematical problem solving, this research clearly identified the relationship about "diversification of the ways of mathematical problem solving" and "one problem with multiple solutions","the ways of mathematical problem solving" and "algorithm", and "diversification of solutions to problems" and "algorithm diversification" to clarify chaos phenomenon about the teaching of "one problem with multiple solutions", reinterpret the function to cultivate student's creative ability in mathematics by using a variety of ways to solve mathematical problems, also have a discussion about mechanism and influencing factors to develop multiple solution ways, and even to help people identify whether the students really have understood or really have solved the problem, which is often so-called "true understanding" or "acting understanding".
     The nature of "diversification of the solutions to mathematical problem solving" is to construct a variety of production systems used to solve mathematical problems."Diversification of the solutions to mathematical problem solving" is also on behalf of the teaching mathod that using different ways to solve mathematical problems. The basis to judge whether a solution is different from another solution is that the regularity of problem situation the two solutions embodied is different, and ultimately the combinations of basic quantitative relation the two solutions embodied is different, or the mathematical structure of the two solutions is different. The origin of "diversification of the solutions to mathematical problem solving" is the variability of the combinations of basic quantitative relation of problem situation, while the development of various solutions is based on the inherent regularity in problem situation. Due to the change(flexibility) in a variety of ways to solve problems, therefore, to solve math problems in a variety of ways is not a skill can be automated, which highlights the value of "diversification of the solutions to mathematical problem solving" on cultivating students'creative ability in mathematics."Diversification of the solutions to mathematical problem solving" not only can be used as a teaching form to develop thinking and promote creativity, but also can be used to drill down a specific topic, or as a new technique to inspire new topic and expand the field of knowledge. The teaching of "diversification of the solutions to mathematical problem solving" is necessary and reasonable.
     "The students'development in diversification of the solutions to mathematical problem solving" refers to student's understanding, mastering and application (cognitive outcomes) of various solutions they obtained after the teaching of "diversification of the solutions to mathematical problem solving" and the application of it to solve mathematics problems. It includes the composition of the solutions'quantity (diversification) and quality (perception or understanding of the entire solutions to the problem, which means the complete collection of solutions) when students dominate them to solve problems. In teaching process of "diversification of the solutions to mathematical problem solving", whether "group diversity" form or "individual diversity" form is adopted, the ultimate goal is to make students understand and experience the nature, difference and characteristic of each way so as to improve and enhance students'cognitive level.
     This study tries to divide students'development in "diversification of the solutions to mathematical problem solving" into five levels:level1, students cannot correctly solve the problem given; level2, students can correctly solve the problem given; level3, students can correctly solve the problem given in2ways; level4, students can summarize the2ways and express their connection between based on the2ways they find; level5, students can correctly solve the problem given in3ways.
     The result of empirical research illustrates that students can obtain certain cognitive development in "diversification of the solutions to mathematical problem solving" after the learning of mathematics courses, and although the effect is not very obvious, and the current teaching of "diversification of t the solutions to mathematical problem solving" is not entirely valid. There is no significant gender difference in students'development in "diversification of the solutions to mathematical problem solving"; while there is significant difference between grade, and significant difference exists in each dimension for different grade.
     To sum up the study conclusions, this dissertation makes such recommendations on mathematics curriculum and instruction to elementary school:
     (1) To pay attention to students'overall construction in the teaching of "diversification of the solutions to mathematical problem solving";(2) to arrange for mathematics curriculum and content layout reasonably and plan students'development processes in the teaching of mathematics ability. Students of grade four and before should focus on the numeracy skills development; while grade five or six on algebra and geometry for priority development; meanwhile, the teaching for grade five or six should focus more on internalization and overall construction of knowledge and self-reflection on learning so as to promote the internal construction of knowledge;(3) to develop different solutions based on the problem situations;(4) to guide students to develop a variety of solutions independently;(5) to focus on the process of developing new ways and understanding of multiple resolutions;(6) to pay a attention to the "degree" in the teaching of "diversification of the solutions to mathematical problem solving";(7) to implement the teaching of "diversification of the solutions to mathematical problem solving" in three ways.
     The legislation Figure innovation in this dissertation is:To explore the theory on diversified ways for solving mathematical problems in primary school for the first time,and Supplement the test survey on students'cognitive development in the problem-solving method diversifying.So, this dissertation give an rudimentary definition on the levels of the students'development in "diversification of the solutions to mathematical problem solving", and preparation of the corresponding rudimentary test volume These are original researches with certain exploratory and pioneering. Hope that the conclusions and recommendations can provide some theoretical and practical reference for the further development of the elementary school mathematics curriculum and it's teaching。
     The areas for improvement:1) The exploration of the theory on diversified ways for solving mathematical problems in primary school is only at the early-stage. There are many problems to be studied further to get a systerm theory on diversified ways for solving mathematical problems, including the teaching principles for apply diversified ways for solving mathematical problems, and the corresponding teaching mode and so on.2) Since the example came from a specific region only, The result of empirical research might not represent the full conclusion.
引文
① 教育部基础教育司,走进新课程:与课程实施者对话[M],北京:北京师范大学出版社,2002.3:8
    ② 中华人民共和国教育部.全日制义务教育数学课程标准(实验稿)[M].北京:北京师范大学出版社,2001:10.
    ③ 中华人民共和国教育部.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012:8-10.
    ① 顾继玲,新教材中数学观之分析及思考[J],数学教育学报,2003(2):99-103.
    ② 苏兴震,陆钧,例谈多解问题的教学误区[J],江苏教育研究,2012.(5C):55;黄岩,变式训练是激活学生思维的有效途径[J],大连教育学院学报,2010(2):49-50;;冯育强,李德宜,从一题多解到多题一解,高师理科学刊,2011(4):71-72;徐光辉,多角度利用典型题[J],教育教学论坛,2011(8):108.
    ① 胡作玄,第三次数学危机[M],成都:四川人民出版社,1985:69.
    ② 张奠宙,20世纪数学经纬[M],上海:华东师范大学出版社,2002:87.
    ③ Kilpatrick, A..(1982).Retrospective account of the past 25 years of research on teaching mathematical problem solving. In E.A. Silvee (Eds.).(1985).Teaching and learning mathematical problem solving:Multiple research perspectives. Lawrence Erlbaum Associates. p2.
    "Douglas A. Grouws..(1992). Handbook of research on mathematics teaching and learning. By National Council of Teachers of Mathematics. New York:Simon & Schuster and Prentice Hall International三个主题是:将问题解决当作实现其他课程目标的手段;将问题解决当作一种技能;将问题解决看作一种解决实际问题的技艺。
    ⑤ Halmos, P. (1980). The heart of mathematics. American. Mathematical Monthly,87,519-524.
    ⑥ [美]加涅.皮连生等译.学习的条件和教学论[M].上海:华东师范大学出版社,1999:175-177.
    ⑦ 王甦,汪安圣.认知心理学[M].北京:北京大学出版社,1992:276-289.
    ① J. P. Guilford,(1965). Fundamental statistics in psychology and education. New York, NY:McGraw-Hill.
    ② [美]波利亚.数学的发现[M](一、二),刘景麟等译,内蒙古人民出版社,1979-1981;欧阳绎译.北京:科学出版社,1982:序言.
    ③ 全美数学教师理事会.美国学校数学教育的原则和标准[S].蔡金法,等,译.北京:人民教育出版社,2003.:6.
    ④ 张奠宙,数学教育研究导引M],南京:江苏教育出版社,1994:52.
    ⑤ 王金战等,教你玩转数学——数学是怎样学好的(魅力与方法篇)[M].北京:北京大学出版社,2010:178.
    ⑥ 李文斌,从初中数学的一题多解谈培养中学生创新思维能力[J],中国校外教育(中旬刊),2010(1):54-57;周洪伟,“一题多解”对培养小学生发散思维作用的思考[J]、中国校外教育(上旬刊),2012(7):117.
    ⑦ 袁永超,从一题多解感悟学生数学思维发展的层次性[J],数学教学研究,2007(12):7.
    ① 殷霞,初中生数学问题解决观的现状及其分析[J],无锡教育学院学报,2006(3):86-89.
    ② 杨豫辉,小学数学教材“问题解决”专题教学实践调查分析[J],数学教育学报,2004(3):58-59.
    ③ 张辉蓉,数学解题教学是非之争及思考[J],中国教育学刊,2010(5):38.
    ① 刘春艳,应用类比实现“特殊与一般”的相互转化[J],数学通报,2009(12):15.
    ② 鲍建生.周超.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.:269.
    ③ 孙旭花等,“一题多解”之再升华螺旋变式课程设计理论介绍——以三角形中位线定理推导为例[J],数学教育学报,2008(6):21-29.
    ① 喻平,2002,数学问题解决认知模式及教学理论研究[博士学位论文],南京师范大学:1-5.
    ② Newell, A. & Simon, H. (1972). Human problem solving. Englewood Cliffs, NJ:Prentice Hall.
    ③ [美]格劳斯,D.A..陈昌平等译.数学教与学研究手册[M].上海:上海教育出版社,1999:369。
    ④ J. R. Anderson..(1980).Cognitive psychology and it's implications. New York:Freeman.; Andesron, J. R., & Schunn, C. D.(2000). Implication of the ACT-R leaning theory:No magic bullets. In Glaser,R.(Ed.). Advance in instructional psychology. Vol.5.Mahwah,NJ:Erlbaum..1-27.
    ① 喻平,数学教育心理学[M],南宁:广西教育出版社.2004:55-60.
    ② 苗天志,苗天慧,数学问题解决的心理分析[J],上饶师范学院学报,2006(3):84-88.
    ③ 朱新明等,通过样例和问题解决建立产生式[J],心理学报1987(2):176-183;喻平等,中国数学教育心理研究30年[M],北京:科学出版社,2011:111.
    ④ 喻平,数学教育心理学,南宁:广西教育出版社,2004:55-67.
    ⑤ [美]加涅.皮连生等译.学习的条件和教学论[M].上海:华东师范大学出版社,1999:175-196.
    ⑥ 罗增儒,数学解题学引论[M],西安:山西师范大学出版社,1997:16.
    ① Alan H. Scoenfeld..(1985).Mathematical problem solving. New York:Academic Press, INC.
    ② 喻平,2002,数学问题解决认知模式及教学理论研究[博士学位论文],南京师范大学:20.
    ① [苏]弗里德曼著,丁家泰,赵素兰译.怎样解数学题[M],北京:北京师范大学出版社,1988:231.
    ② 朱德全.数学问题系统的构建与解决程式[J].中国教育学刊,1999(5):41-44.
    ③ 施良方,学习论(第2版)[M],北京:人民教育出版社,2001:178.
    ④ 何小亚,解决数学问题的心理过程分析[J],数学教育学报,2004(3):33.
    ⑤ 张桂凤,谈小学数学教学中的“问题解决”[J],科教文汇下半月刊,2006(1):113.
    ⑥ 李胜平,论数学问题解决中知识、策略、元认知三者关系的实证研究[J],上海教育科研,2007(11):73-75.
    ⑦ 鲍建生.周超著.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.: 172.
    ① Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In Rosch, E.& Lloyd, B. (Eds.). Cognition and Categorization (pp.259-303). Hillsdale New Jersey:Lawrence Erlbaum Associates, Publishers.
    ② 李静,基于多元表征的初中代数变式教学研究[博士学位论文],西南大学,2011:8-10.
    ③ 鲍建生周超.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.:184-185.
    ④ 喻平,数学教育心理学[M],南宁:广西教育出版社,2004:95.
    ① Mayer, R. E. (1987).Educational Psychology:A cognitive approach:Little Brown.
    ② Lewis, A. B..(1989). Training students to representation arithmetic word problem. Journal of Educational Psychology. 81(4).521-531.
    ③ Conney, J.B., et al.. (1990).Individual differences in memory for mathematical story problems:memory span and problem perception. Journal of Educational Psychology,82(3):570-577.
    ④ Anand, P. G, et al.(1987).Vising computer-assisted instruction to personalize arithmetic materials for elementary school children. Journal of Educational Psychology.,(2):72-78.
    ⑤ 傅小兰,何海东.问题表征过程的一项研究[J].心理学报,1995(1):204-210.
    ⑥ 鲍建生.周超.数学学习的心理基础与过程fM].上海:上海教育出版社,2009.:185.
    ⑦ Lesh,R., Post, T. & Behr, M. (1987).Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics..33-40. Hillsdale, NJ:Lawrence Erlbaum Associates.
    ⑧ Choike, J. R...(2000). Teaching strategies for "Algebra for all" Mathematics Teachers.93(7),556-563.
    ⑨ 聂必凯.数学变式教学的探索性研究[博士学位论文].华东师范大学,2004.:11.
    ⑩ 李善良著.现代认知观下的数学概念学习与教学M].南京:江苏教育出版社,2005.:55.
    11 Goldin, G. & Shteingold, N..(2001). Systems of representations and the development of mathematical concepts. In A. A. Cuoco & F. R. Curcio.(Eds.).The roles of representation in school mathematics.1-23.
    12 胥兴春,刘电芝,问题表征方式与数学问题解决的研究[J],心理科学,2002(3):264-270.
    13 [美]格劳斯,D.A..陈昌平等译.数学教与学研究手册[M].上海:上海教育出版社,1999:133.
    ① [苏]奥加涅相等著,刘远图等译,中小学数学教学法[M],北京:测绘出版社,1983:110-176.
    ② 戴再平..数学习题理论[M].上海:上海教育出版社,1996:20.
    ③ 罗增儒,数学解题学引论[M],西安:山西师范大学出版社,1997:481-553.
    ④ 倪明,关于数学应用问题编制的原则[J],数学教育学报,1998(2):51-53.
    ⑤ Sweller, J. & Cooper, G. A..(1985).The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, (2):59-89.
    Balfanz R., Ginsburg P. H, Greenes C..(2003). The big math for little kids early childhood mathematics program. Teaching Children Mathematics.9:264-276.
    ① 鲁志鲲,申继亮,结构不良问题解决及其教学意义[J].中国教育学刊,2004(1):44-49.
    ② [美]波利亚.数学的发现[M](一、二),刘景麟等译,内蒙古人民出版社,1979-1981;欧阳绛译,北京:科学出版社,1982:187.
    ③ Wenke, D. & Frensrrensch, P.. (2003). Is success or failure at solving complex problems related to intellectual ability? In J. Davidson & R. Sternberg (Eds.), The psychology of problem solving,.87-126. New York:Cambridge University press.
    ④ Newell, A. & Simon, H. (1972). Human problem solving. Englewood Cliffs, NJ:Prentice Hall.; Simon, H.. (1980). Problem solving and education. In D. Tuma & E. Reif (Eds.). Problem solving and education:Issues in teaching and research. Hillsdale. New York, NY:Knopf.; Hinsley, D. A.,Hayes, J. R.. & Simon, H. A. (1977). From words to equation:meaning and representation in algebra word problems. In M. A. Just &P. A. Carpenter (Eds.),Cognitive processes in comprehensions.89-106. Hillsdale,NJ:Erlbaum.; Greeno, J. G (1987), Instructional representations based on research about understanding. In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp.61-88). Hillsdale, NJ:Lawrence Erlbaum.
    ⑤ 戴再平,中小学数学开放题丛书(五卷集),上海:上海教育出版社,2000-2002:78,298.
    ⑥ 喻平等,中国数学教育心理研究30年[M],北京:科学出版社,2011:44-45.
    ⑦ 周世桢,谈谈数学教育中的“问题解决”[J],南平师专学报,1996(04):23-28.
    ⑧ 方金秋,数学问题解决的认知定义[J],数学通报,1995(1):22-25.
    ① 于克芳,马静如,数学问题解决的含义及问题解决能力的构成成分[J],云南教育学院学报,1994(5):76-79.
    ② 沈光中,开展“问题解决”研究深化小学数学教改实验[J],课程.教材.教法,1999(12):32-34.
    ③ 赵继强,吴建华,“问题解决”在数学教学中的一个探讨[J].达县师范高等专科学校学报,2005(S1):117-118.
    ④ 喻平,2002,数学问题解决认知模式及教学理论研究[博士学位论文],南京师范大学:8.
    ⑤ 鲍建生.周超.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.:259-260.
    ⑥ Riley, M S., Greeno, J. G, & Heller, J.1. (1983). Development of children's problem solving ability in arithmetic. In H. Ginsburg (Ed.), The developmeru of mathematical thinking(PP.153-196). New York:Academic Press.
    ⑦ Carpenter, T. P. (1985). Toward a theory of construction:Review of Children's counting types:Philosophy, theory, and application. Journal for Research in Mathematics Education,16.70-76.; Carpenter, T. P. (1985). Learning to add and subtract:An exercise in problem solving. In E. A. Silver (Ed.). Teaching and learning mathematical problem solving:Multiple research perspectives (pp.17-40). Hillsdale,NJ:Lawrence Erlbaum.
    ① Fuson, K, C. (1992). Research on learning and teaching addition and subtraction of whole numbers. In G Leinhardt, R. T. Putnam, & R. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (PP.53-187). Hillsdale, NJ:Lawrence Erlbaum.
    ② Brian Greer. (1992).Multiplication and division as models of situations.In Douglas A. Grouws,(Ed.).Handbook of Research on mathematics Teaching and Learning. New York,:Simon & Schuster and Prentice Hall International.276-278.
    ① Douglas A. Grouws..(1992). Handbook of research on mathematics teaching and learning. By National Council of Teachers of Mathematics., New York:Simon & Schuster and Prentice Hall International.
    ② Hinsley, D. A., Hayes, J. R.. & Simon, H. A. (1977). From words to equation:Meaning and representation in algebra word problems. In M. A. Just &P. A. Carpenter (Eds.),Cognitive Processes in Comprehension.89-106. Hillsdale.NJ:Erlbaum
    ③ Heller, J.& Hungate, H.(1985). Implications for mathematics instruction of research on scientific problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem sobving:Multiple research perspectives (pp.83-112). Hillsdale, NJ:Lawrence Erlbaum.
    ④ 鲍建生.周超.数学学习的心理基础与过程[M].上海:上海教育出版社,2009:172.
    ⑤ 施铁如.解代数应用题的认知模式[J].心理学报,1985(3):296-303.
    ⑥ 朱新明.解决几何问题的思维过程[J].心理学报,1985(1):9-18.
    ⑦ Douglas A. Grouws..(1992). Handbook of research on mathematics teaching and learning. By National Council of Teachers of Mathematics., New York:Simon & Schuster and Prentice Hall International.
    ⑧ 王延文等.数学能力研究导论[M].天津:天津教育出版社,1999:289-297.
    ① 张庆林,管鹏.小学生表征应用题的元认知分析[J].心理发展与教育,1997(3):11-14.
    ② 邵光华.几何解题策略的实验研究[J].数学通报,1997(1):10-15.③ 王延文等.数学能力研究导论.天津:天津教育出版社,1999:289-297.
    ④ 喻平,2002,数学问题解决认知模式及教学理论研究[博士学位论文],南京师范大学:26.
    ⑤ 戴再平..数学习题理论[M].上海:上海教育出版社,1996:93-130
    ⑥ 罗增儒,数学解题学引论[M],西安:陕西师范大学出版社,1997:7.
    ⑦ 李明振,数学问题解决策略及其训练研究[J],贵州师范大学学报(自然科学版),1998(2):72-76.
    ⑧ 喻平,2002,数学问题解决认知模式及教学理论研究[博士学位论文],南京师范大学:26.
    ⑨ 鲍建生.周超.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.:191.
    ① 徐利治.数学方法论选讲[M].武汉:华中工学院出版社,1983:24-29.
    ② 张奠宙,过伯祥.数学方法论稿[M].上海:上海教育出版社,1996:109.
    ③ 喻平,2002,数学问题解决认知模式及教学理论研究[博士学位论文],南京师范大学:22.
    ④ 罗增儒,数学解题学引论[M],西安:山西师范大学出版社,1997:256-266.
    ① 罗增儒,数学解题学引论[M],西安:山西师范大学出版社,1997:256-266.
    ② 同上
    ③ 同上,P148.
    ① 涂荣豹,数学解题的有意义学习[J],数学教育学报,2001(4):15-20.
    ② 王刚,从欧拉解决七桥问题看数学问题解决方法[J],新乡师范高等专科学校学报,2005(2):121-122.
    ③ 王刚,从一个运筹学案例看数学问题解决方法[J],教育科学论坛,2006(4):46-48.
    ④ 顾继玲,新教材中数学观之分析及思考[J],数学教育学报,2003(2):90-93.
    ⑤ 喻平等,中国数学教育心理研究30年[M],北京:科学出版社,2011:47.
    ⑥ 赵小云,沈陆娟,美国数学教育中的问题解决及其评价[J],比较教育研究,2003(10):35-40.
    ⑦ 喻平等,中国数学教育心理研究30年[M],北京:科学出版社,2011:47
    ① [美]加涅.皮连生等译.学习的条件和教学论[M].上海:华东师范大学出版社,1999:49.
    ② 同上
    ① 喻平等,中国数学教育心理研究30年[M],北京:科学出版社,2011: 51.
    ② 喻平,现代心理学关于解决数学应用题的研究述评[J],上海师范大学学报(教育版),2000(1):13-15.
    ③ 曹培英,谈小学数学学习中的问题解决[J],课程.教材.教法,1999(9):44-48.
    ① 鲍建生.周超.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.: 177.
    ② 郑毓信,问题解决与数学教育[M],南京:江苏教育出版社,1994:78.
    ③ Schoenfeld A.. (1994) Mathematical thinking and problem solving. Hillsdale,NJ:Lawrence Erldbaum Associates.: 132-156.
    ④ 张忠旺,在数学复习中进行一题多解的教学探讨[J],数学通报,1992(10):16-20.;傅建华,任伟芳,高考数学复习要注重一题多解[J],宁波教育学院学报,2008(5):123-125;刘建华,小学数学应用题复习教学的技巧[J],甘肃教育,2005(9):49;陈启桂,应用题复习的一点做法[J],小学数学教学参考,2005(6):31-32.
    ⑤ 许正华,溶数学思想于一题多解之中,[J],数学通报,1997(8):45-46.
    ⑥ 孟德酉,李为杰,浅议开发智力培养能力的一题多解教学[J],数学通报,1988(6):4-9.
    ⑦ 钱铭,从一题多解见“再发现”式教育之效果[J],数学教育学报,2000(3):81-83.
    ⑧ 苏志清,发挥一题多解对培养思维品质的作用[J],数学通报,2000(2):27-28.
    ① 徐光辉,多角度利用典型题[J],教育教学论坛,2011(8):108.
    ② 陈迪军,变式教学诱发一题多解[J],数学通报,2006(1):44-45.
    ③ 尹汶, 晓峰,在“多解优化”中提升学生思维品质[J],辽宁教育,2007.(4):53-55.
    ④ 韩春见,一题多解,多解归一[J],中学教研(数学),2007(10):34-36.
    ⑤ 李鹏,刘春房,数学解题应该怎样教——由一个教学片断谈起[J],数学通报,2008(1):39-41.;陶幼明,刘涛,一题多解培养学生创新思维能力[J],继续教育研究,2011(4):122-123.
    ⑥ 刘幸舒,小议一题多解教学[J],长春师院学报(自然科学版),1993(2):47-55.;蔡桂荣,妙用一题多解培养创新思维[J],黄冈职业技术学院学报,2011(3):69-71;韩飞,“一题多解”与高职学生发散思维的培养[J],高等数学研究,2012(4);99-101.
    ⑦ 叶忠国,职业教育中充分调动学生学习数学的主动性[J],中南民族大学学报(人文社会科学版),2005(5):348-349.
    ⑧ 董晓荣李荣登,初中数学综合复习中的“变式训练”[J],教学与管理,2002(4):59.
    ⑨ 金钟植,论一题多解的根源[J],数学通报,1998(9):34-35.
    ① 张远等,对数学开放性问题的几点认识[J],数学教育学报,2000(4):22-27.
    ② 杨建华,应用题解法的比较分析[J],中学数学,2003(3):18-19.
    ③ 吕学琴,由平行四边形的一堂习题课所想到的[J],上海中学数学,2006(10):4-5.
    ④ 杨春花,数学建模与一题多解[J],数学学习,2005(3):4-6.
    ⑤ 陈海霞,一道试题错解访谈后的启示[J],江苏教育,2007.7-8:71.
    ⑥ 任真,在解题教学中发展和完善学生CPFS结构[J],齐齐哈尔师范高等专科学校学报,2008(6):105-106.
    ⑦ 鲍明彦,“一题多解”的反思[J],林区教学,2003(2):39-40;于琴,“一题多解”与“一题多变”浅谈高三数学复习精讲策略[J],文教资料,2005(1):8.
    ⑧ 徐朋,在数学教学中培养学生的思维能力[J],大连教育学院学报,2007(3):74.
    ① 郑善弘,杜云峰,略论小学数学教学中的一题多解与学生发散思维的培养[J],辽宁教育学院学报,1992(4):76-80.
    ② 喻平,数学问题解决认知模式及教学理论研究[D],南京师范大学,2002:20-23.
    ③ 张绍英,应重视发挥一题多解在数学教学中的作用[J],福建中学数学,2005(2):2-3.
    ④ 江凤祥,培养学生的发散思维能力浅见[J],中学教学研究,2004(7):36-37.
    ⑤ 王千,如何认识一题多解的教育功能[J],数学通报,数学通报,2004(9):10-12.
    ⑥ 孙树相,从数学问题的变化中培养学生的发散思稚[J],通化师范学院学报,2004(5):90-92.
    ⑦ 李万道,培养数学创造性思维的最基本途径[J],中学数学教学,2005(2):21-23.
    ⑧ 杨春花,数学建模与一题多解[J],数学学习,2005(3):4-6.
    ⑨ 陈积贵,从一题多解及多变谈创造性思维[Jl,甘肃教育,2007.9(B):49.
    ⑩ 赵振国,新课标下学生创新能力的培养[J],中学月刊。中学版,2007(5):12-14.
    11 王继兴,一题多解及评判指数[J],云南大学学报(自然科学版),2008,30(S2):433-436.
    ① 徐娟,通过一题多解培养学生的数学思维能力[J],江苏教育学院学报(自然科学),2010(12):80-82.
    ② 周超,数学高层次思维的界定与评价研究[硕士学位论文],苏州大学,2003:23.
    ① 李鹏,刘春房,数学解题应该怎样教——由一个教学片断谈起[J],数学通报,2008(1):39-41;王胜林,
    一道奥林匹克赛题的多解与思考[J],数学教学,2007(5):48-50.
    ② 张俭福,数学教学中一题多解的调控机制[J],数学通报,1997(11):28-31.
    ③ 王千,如何认识一题多解的教育功能[J],数学通报,数学通报,2004(9):10-12.
    ④ 唐绍友,也谈一题多解教学[J],数学通报,2005(8):50-51.
    ① 唐绍友,也谈一题多解教学[J],数学通报,2005(8):50-51.
    ② 廖晓芳,科学理解新课标,提高课堂教学的有效性[J],四川职业技术学院学报,2009(3):96-98.
    ③ 苏兴震、陆钧,例谈多解问题的教学误区[J],江苏教育研究,2012(5c):55-57.
    ④ 刘天英,从一题多解中培养学生的数学能力[J].科技信息,2009(4):567.
    ① 刘丽娟,让思维得到提升——从一题多解到多题一解[J],江苏教育研究,2011.(4B):44-45.
    ② 张永昌,李斌,读懂数学教材的三个维度[J],教学与管理,2010(11):35-36.
    ③ 廖晓芳,科学理解新课标,提高课堂教学的有效性[J],四川职业技术学院学报,2009(3):96-98.
    ④ 苏兴震、陆钧,例谈多解问题的教学误区[J],江苏教育研究,2012(5c):55-57.
    ⑤ 黄坪,一题多解问题的解法特性与思维训练[J],数学通报,1998(7):22-24.
    ⑥ 王九伦,一题多解的又一例证[J],数学通报,2003(7):34-25.
    ① 杨耀南,与圆有关的多解问题分类解析[J],数学学习,2005(1):13-24.
    ② 王继兴,一题多解及评判指数fJ],云南大学学报(自然科学版),2008,30(S2):433-436.
    ③ 杜继渠,对一题多解教学的反思[J],中学数学研究(江西师大),2006(5):9-13.
    ④ 喻平等,中国数学教育心理研究30年[M],北京:科学出版社,2011:91.
    ① 徐辉,关于新课程改革中教学问题的观察与思考——兼论小学数学算法优化与多样化的关系[J],课程·教材·教法,2003(10):11-14.
    ② 朱文芳.对数学教学中提倡“算法多样化”的几点认识[J].数学通报,2003,(4):18.
    ③ 李明振,“算法多样化”教学:内涵、问题与策略[J],中国教育学刊,2006(12):54-56.
    ① 胡松林,孔企平,从重视运算技能到倡导数学的思考——浅谈小学数学“数与代数“教学目标的演变过程[J],小学青年教师,2004(6):9.
    ② 刘飞现,算法多样化并非一题多解[J],小学教学参考(数学),2004(1):44.
    ③ 周子太,常盛,对于算法多样化的几点看法[J],小学数学教学参考,2004(11):39-41.
    ④ 王艳,小学数学“算法多样化”教学研究[J],教育与教学研究,2009(z):89-92.
    ① 王艳,小学数学“算法多样化”教学研究[J],教育与教学研究,2009(z):89-92.
    ② 和邓平,提倡算法多样化别冷落了一题多解[J],小学教学研究,2006(3):28.
    ① 张永昌,李斌,读懂数学教材的三个维度[J],教学与管理,2010(11):35-36.
    ② 张奠宙,中国数学双基教学[M].上海:上海教育出版社,2009.:66.
    ③ Bowden, J., & Marton, F.(1998).The university of Learning.London:Kogan Page.105-108.; Huang, Ringjin.(2002). Mathematics teaching in Hong Kong and Shanghai---A classroom analysis from the perspective of variation. Doctoral thesis, University of Hong Kong.; Marton, F. & Booth, S.(1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.; Marton, F., & Pang, M. F. (1999, August). Two faces of variation. Paper presented at 8th EARLI conference, Gotegorg, Sweden.; Rovio-Johansson, A.(1999). Being good at teaching: Exploring different ways of handling the same subject in higher education. Sweden:ACTA Universitatis Gothoburgensis.
    ④ Marton, F. (2008). Building your strength:Chinese pedagogy and necessary conditions of learning. Available at http://www.ied.edu.hk/wvals/conference08/programl.htm,The World Association of Lesson Studies(WALS).Accessed 28 February 2009.
    ⑤ Copper G., Sweller J. (1987).Effect of schema acquisition and rule automation on mathematics problem-solving transfer Journal of Education Psychology,79(4):347362.
    "Variation problems" and their roles in the topic of fraction division in Chinese mathematics textbook examples, Xuhua Sun, Educ Stud Math(2011)76:65-85.
    ⑦ Marton, F.,& Pang, M. F. (2006). On some necessary conditions of learning. Journal of Learning Sciences,15. 193-220.
    ① Sun, X.H.,(2007).Spiral variation (Bianshi) curriculum design in mathematics:Theory and practice. Doctoral Dissertation. Hong Kong:The Chinese University of Hong Kong (in Chinese).
    ② 鲍建生等,变式教学研究[J],数学教学,2003(1-3):11-12.
    ③ 鲍建生.周超著.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.:221.
    ④ 郑毓信.变式教学理论的必要发展[J].中学数学月刊,2006(1):1-3.
    ⑤ Marton F., Booth S.(1997). Learning and awareness. Mahwah, NJ:Lawrence Erlbaum Associates.; Runesson U.(1999). Variationens pedagogik:Skilda Satt att Behandla ett Matematiskt Innehall (the pedagogy of variation: Different ways of handling a mathematical topic). Goteborg:Acta Univertsitatis Gothoburgensis.
    ① 孙旭花等,“一题多解”之再升华螺旋变式课程设计理论介绍——以三角形中位线定理推导为例[J],数学教育学报,2008(6):21-29.
    ① 喻平,2002,数学问题解决认知模式及教学理论研究[博士学位论文],南京师范大学:7.
    ② 郑君文,张恩华.数学学习论[M].南宁:广西教育出版社,1998:77-80.
    ③ 罗增儒.数学解题学引论[M].西安:陕西师范大学出版社,1997:18-33.
    ④ [美]加涅.皮连生等译.学习的条件和教学论[M].上海:华东师范大学出版社,1999:45-49,175-196.
    ⑤ 宋俊浩,影响高中生数学应用问题解决的因素的调查与研究[硕士学位论文],华东师范大学,2007:15.
    ⑥ 但琦,高一学生数学应用能力的调查与分析[J],数学教育学报,2007(1):66-69.
    ⑦ 鲍建生.周超著.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.:221
    ⑧ 鲍建生.周超著.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.:226
    ① 孙瑞清,关于发展学生数学能力的几个问题[J],数学通报,2002(4):57-58.
    ② 喻平,2002,数学问题解决认知模式及教学理论研究[博士学位论文],南京师范大学:24-26.
    ③ 鲍建生.周超著.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.:187-199.
    ④ Alan H. Scoenfeld..(1985)Mathematical problem solving. New York:Academic Press, INC.
    ⑤ Jonassen, D. H., Beissner, K. & Yacci, M. A. (1993). Structural knowledge:Techniques for representing, assessing, and acquiring structural knowledge. Hillsdale, NJ:Lawrence Erlbaum Associates.
    ⑥ Mayer, R. E. (1992). Thinking, problem solving. cognition. New York:W. H. Freeman and Company Press.
    ① 廖运章,数学应用问题解决心理机制的调查与认知分析[J],数学教育学报,2001(1):72-74.
    ② 孙瑞清,关于发展学生数学能力的几个问题[J],数学通报,2002(4):57-58.
    ③ Alan H. Scoenfeld..(1985).Mathematical problem solving. New York:Academic Press, INC.
    ④ 鲍建生.周超著.数学学习的心理基础与过程[M].上海:上海教育出版社.2009.: 189
    ⑤ Davis, R. B. (1984). Learning mathematics:The cognitive science approach to mathematics education. London: Croom Helm.
    ① Sternberg, R. (1999). Handbook of creatiuity. Cambridge:Cambridge University Press.
    ② [美]加涅.皮连生等译.学习的条件和教学论[M].上海:华东师范大学出版社,1999:175-196.
    ③ 喻平等,中国数学教育心理研究30年[M],北京:科学出版社,2011:10,44-46.
    ④ Newell, A. & Simon, H. (1972). Human problem solving. Englewood Cliffs, NJ:Prentice Hall.
    ⑤ 张传伟,数学的“问题表征”在“问题解决”中的意义[J],数学通报,2003(12):3-6.
    ⑥ 陈英和等,小学2~4年级儿童数学应用题表征策略差异的研究[J],心理发展与教育,2004(4):19-25.
    ⑦ 喻平等,中国数学教育心理研究30年[M],北京:科学出版社,2011:60.
    ⑧ 张小乔等,问题解决及其教学的信息加工理论[J],教育研究与实验,1990(3):46-50.
    ⑨ Markman, A.& Dietrich, E.(2000).In defense of representation.Trends in Cognitive Sciences.4.470-475.
    ① Zhang J.(1997). The nature of external representations in problem solving. Cognitive Science,21(2):179-217.
    ② Janvier, C.(1987). Representation and understanding:The notion of function as an example. Problems of Representation in the teaching and learning of mathematics. Lawrence Erlbaum,Hillsdale,NJ,67-89.
    ③ 管鹏,张庆林,小学生解答复杂应用题的困难原因分析[J],现代中小学教育,1997(1):41-43.
    ④ Alan H. Scoenfeld..(1985).Mathematicalproblem solving. New York:Academic Press, INC.
    ⑤ Lampert, M. (1990).When the problem is not the question and the solution is not the answer:Mathematical knowing and teaching. American Educational Research Journal,27.29-63.
    ⑥ Thompson, P.W. (1985). Experience, problem solving, and learning mathematics:Considerations in developing mathematics curricula. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving:Multiple research perspectives (pp.189-236). Hillsdale, NJ:Lawrence Erlbaum.; Cooney, T. A.(1985).Beginning teacher's view of problem solving. Journal for Research in Mathematics Education,.16.324-336.
    ⑦ 金钟植,论一题多解的根源fJ],数学通报,1998(9):34-35;张远等,对数学开放性问题的几点认识[J],数学教育学报,2000(4):22-27.
    ⑧ 吕学琴,由平行四边形的一堂习题课所想到的[J],上海中学数学,2006(10):4-5.
    ① 杨建华,应用题解法的比较分析[J],中学数学,2003(3):18-19.
    ② Markman, A.& Dietrich, E. (2000).In defense of representation[J].Trends in Cognitive Sciences..4:470-475.
    ③ 张传伟,数学的“问题表征”在“问题解决”中的意义[J],数学通报,2003(12):3-6.
    ④ 陈英和等,小学2-4年级儿童数学应用题表征策略差异的研究[J],心理发展与教育,2004(4):19-25.
    ⑥ 陈海霞, 一道试题错解访谈后的启示[J],江苏教育,2007.7-8:71.
    ⑦ 任真,在解题教学中发展和完善学生CPFS结构[J],齐齐哈尔师范高等专科学校学报,2008(6),:105-106.
    ⑧ 喻平,2002,数学问题解决认知模式及教学理论研究[博士学位论文],南京师范大学:24-26.
    ⑨ 喻平,个体CPFS结构与数学问题表征的相关性研究[J],数学教育学报,2003(3):10-13.
    ⑩ 傅小兰,何海东.问题表征过程的一项研究.心理学报,1995(1):204-210.
    ① 辛自强,问题解决与知识建构[M],北京:教育科学出版社,2005.2:113-123.
    ② [苏]奥加涅相等著,刘远图等译,中小学数学教学法[M],北京:测绘出版社,1983::113-114.
    ① [瑞士]皮亚杰.著,王宪钿等译.发生认识论原理[M].北京:商务印书馆,1996.:27.
    ② 林崇德,发展心理学[M],杭州:浙江教育出版社,2002:311.
    ① 任樟辉,数学思维论[M],南宁:广西教育出版社,1996;236.
    ② Dubinsky, F. & McDonald, M. A..(2001). APOS:A constructivist theory of learning in undergraduate mathematics education research,in "The Teaching and Learning of Mathematics at University Level:An 1CMI Study"(Ed.).D. Holton,Kluwer Academic Publishers,275-282.; Dubinsky, F., Weller, K, McDonald, M. & Brown, A.(2005). Some historical issues and paradoxes regarding, the concept of infinity:an APOS analysis:part2. Educational Studies in Mathematics.60.253-266.
    ③ 孙宏安,数学能力新探[J],课程·教材·教法,1996(7):54-57.
    ④ 冯忠良.结构——定向教学的理论与实践[M].北京:北京师范大学出版社,1992:291-300.
    ⑤ 刘广珠.小学生解决分式应用题认知加工过程的实验研究.心理发展与教育[J],1997(3):7-10.
    ⑥ Kieran, C.(1992). The learning and teaching of school algebra. In Grouws, D. A.(Eds.),.Handbook of research on mathematics teaching and learning:A project of the NCTM. New York:Macmillan Publishing Company.;Knuth,Eric.(2000). "Understanding Connections between Equations and Graphs." The Mathematics Teacher..93.(1).48-53; Hoch, M. & Dreyfus, M.(2004).Structure sense in high school algebra:The effect of brackets. In M. J. Homes & A. B. Fuglestad (Eds.),Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education,.3,49-56.Bergen,Norway:Bergen University College.
    ⑦ Lawson, M. J. Chinnappan, M. (2000).Knowledge connectedness in geometry problem solving. Journal for Research in Mathematics Education,31.26-43.
    ① [美]G.波利亚著,涂泓,冯承天译,怎样解题:数学教学法的新面貌[M], 上海:上海科技教育出版社,2002:1.
    ② 同上
    ③ 刘云章,赵雄辉,数学解题思维策略——波利亚著作选讲[M],长沙:湖南教育出版社,1992:83.
    ④ Alan H. Scoenfeld..(1985).Mathematicalproblem solving. New York:Academic Press, INC.
    ⑤ [苏]克鲁捷茨基著,李伯季等译,中小学生数学能力心理学[M],上海:上海教育出版社,1983:341-390.
    ① 林祟德.学习与发展[M].北京:北京师范大学出版社,1999:290-299.
    ② [美]斯腾伯格,俞晓琳,吴国宏译.超越IQ——人类智力的三元理论[M],上海:华东师范大学出版社,2000:41-123.
    ③ [法]阿达玛.陈植荫,冉奚安译.数学领域中的发明心理学[M].南京:江苏教育出版社,1989:28.
    ④ 喻平等,中国数学教育心理研究30年[M],北京:科学出版社,2011:291.
    ⑤ 同上,P294.
    ⑥ 郭思乐,思维与数学教学[M],北京:人民教育出版社,1991:95.
    ① 罗增儒,数学解题学引论[M],西安:陕西师范大学出版社,1997:131-134.
    ② 任樟辉,数学思维论[M],南宁:广西教育出版社,1996:236.
    ③ [美]波利亚.数学的发现[M](一、二),刘景麟等译,内蒙古人民出版社,1979-1981;欧阳绛译,北京:科学出版社,1982:105.
    ④ 徐敏毅,儿童解决算术应用题时认知加工过程的实验研究[J],心理发展与教育,1994(3):33-39.
    ⑤ 刘广珠,小学生解决分数应用题认知加工过程的实验研究[J],心理发展与教育,1997(3):7-10.
    ⑥ 郑雪静等,中小学生提出数学问题能力评价探究[J],数学教育学报,2007(3):49-53.
    ① Bigge,M. L. & Shermis,S. S. (1997). Learning theories for teachers. New York:Harper Collins.
    ② [美]Mary Kay Stein等著;李忠如,陈静译译.实施初中数学课程标准的教学案例[M],上海:上海教育出版社,2001.142.
    ③ Kieran, C.(1992).The learning and teaching of school algebra. In Grouws, D. A.(Eds.),Handbook of Research on Mathematics Teaching and Learning:A project of the NCTM. New York:Macmillan Publishing Company. Knuth, Eric.(2000). "Understanding Connections between Equations and Graphs." The Mathematics Teacher..93.(1). 48-53.
    ④ Hart, K (1981). Children' understanding of mathematics:11-16. London:Murray。 In Grouws,D.A.(Eds.), Handbook of research on mathematics teaching and learning:A project of the National Council of Teachers of Mathmatics.1992.312.
    ⑤ 鲍建生.周超著.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.:263.
    ⑥ 顾泠沅,教学任务的变革[J],上海:上海教育,2003(1):26-27.
    ⑦ 高文君,鲍建生,中美教材习题的数学认知水平比较——以二次方程及函数为例[M],数学教育学报,2009(4): 57:60.
    ① 鲍建生.中英两国初中数学期望课程综合难度的比较[J].全球教育展望,2002(9):48-52.
    ② 鲍建生.周超著.数学学习的心理基础与过程[M].上海:上海教育出版社.2009.:203.
    ③ 同上,P4.
    ① 袁永超,从一题多解感悟学生数学思维发展的层次性[J],数学教学研究,2007,(12):7.
    ② [苏]克鲁捷茨基著,李伯季等译,中小学生数学能力心理学[M],上海:上海教育出版社,1987,:237.
    ① Kentucky Department of Education. (2001). Demographic reports. Retrieved March 15,2004, http: //kdemaxport2. kde. State. Ky. Us.
    ② Niss. M. (2003).Mathematical competencies and the learning of mathematics:The Danish KOM project.http://www.nationalacademics.org/mseb/Mathematical Competencis and the Learning of Mathematics.pdf.
    ③ 郭民,小学生数感的发展与特征研究[博士学位论文],华东师范大学,2009:26.
    ④ John B.Biggs, Kevin F. Collis.(1982).The SOLO Taxonomy[M].New York:Academic Press.
    ① 李俊(2003).中小学概率的教与学.上海:华东师范大学出版社.27-29.
    ② 学习质量评价SOLO分类理论(可观察的学习成果结构)/[澳]彼格斯(Biggs, J. B.),[澳]科利斯(Collis, K. F.)著:高凌飚,张洪岩主译.—北京:人民教育出版社,2010:95,239.
    ③ Biggs,J., & Tang, C.(2007).Teachingfor learning at university.Maikenhead, UK:Open University Press/McGraw Hill Educational.
    ④ 涂冬波,项目自动生成的小学儿童数学问题解决认知诊断CAT编制[博士学位论文],江西师范大学,2009:50-60
    ⑤ Neshe,r P. (1982).Levels of description in the analysis of addition and subtraction word problems.ln:T. P. Carpenter, J. M. Moser, T. A. Romberg (Eds). Addition and subtraction:A cognitive perspective. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.,1982.25-38; Riley M. S.. Greeno J. G. & Heller J.1. Development of children's problem solving ability in arithmetic [A].Ginsburg H. P.(Ed).The development of mathematical thinking.New York.Academic Press,1983.153-196.
    ⑥ Kintsch W., Greeno. J. G(1985). Understanding and solving word arithmetic problems. Psychological Review.92(1):109-129.
    ① 鲍建生.周超著.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.:327.
    ① Schoenfeld, A.(1985). Mathematical problem solving, New York, NY:Academic press.
    ② 张华,庞丽娟,许晓晖等.家庭生态环境与儿童早期数学认知能力[J],北京师范大学学报(社会科学版),2005,(3):55-61.
    ③ 庞丽娟,魏勇刚,论数学问题解决的生态模式fJ],心理发展与教育,2008(3):45-49.
    ① 张远等,对数学开放性问题的几点认识[J],数学教育学报,2000(4):22-27.:廖运章,数学应用问题解决心理机制的调查与认知分析[J],数学教育学报,2001(1):72-74.:杨建华,应用题解法的比较分析[J],中学数学,2003(3):18-19.
    ② Liping Ma. (2010).Knowing and Teaching Elementary Mathematics (anniversary edition), New York, NY: Routledge Taylor & Francis Group,2010:xi.
    ① 罗增儒,数学解题学引论[M],西安:山西师范大学出版社,1997:258.
    ① 吴岱明,科学研究方法学.湖南人民出版社,1987.5:379;徐利治.数学方法论选讲[M].武汉:华中工学院出版社,1983:24-29.
    ② 江高文,数学新思维——中学数学思维策略与解体艺术[M],武汉:华中师范大学出版社,2001:243.
    ③ 罗增儒,数学解题学引论[M],西安:陕西师范大学出版社,1997:10.
    ④ 任樟辉,数学思维论[M],南宁:广西教育出版社,1996:230-245.
    ① 郑毓信,数学教育哲学(2版)[M],成都:四川教育出版社,2001:321.
    ① 张桂芳,多位数乘法计算中的进位错误类型及笔算乘法的教学层次[J],2012(11):43-45.
    ② 谷超豪,主编《数学辞典》,上海:上海辞书出版社,1992:58.
    ③ 孙宏安,数学能力新探[J],课程·教材·教法,1996(7):54-57.
    ① 徐光辉,多角度利用典型题[J],教育教学论坛,2011(8):108.
    ① 中华人民共和国教育部.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012:126.
    ① [苏]奥加涅相等著,刘远图等泽,中小学数学教学法[M],北京:测绘出版社,1983:177.
    ① 徐辉,关于新课程改革中教学问题的观察与思考——兼论小学数学算法优化与多样化的关系[J],课程·教材·教法,2003(10):11-14.
    ② 张桂芳,宋乃庆,数学课程中的算法知识:集中显性教学与分散隐性渗透相结合[J],数学教育学报,2013(2): 15-18
    ① 张桂芳,浅析多位数乘法计算中的进位错误类型及笔算乘法的教学层次[J],小学教学研究(理论版),2012(8):43-45.
    ② 李明振,“算法多样化”教学:内涵、问题与策略[J],中国教育学刊,2006(12):54-56.;王艳,小学数学“算法多样化”教学研究[J],教育与教学研究,2009(z):89-92.
    ① 张远等,对数学开放性问题的几点认识[J],数学教育学报,2000(4):22-27.
    ① 李明振,“算法多样化”教学:内涵、问题与策略[J],中国教育学刊,2006(12):54-56.
    ② 王艳,小学数学“算法多样化”教学研究[J],教育与教学研究,2009(z):89-92.
    ① 周超,数学高层次思维的界定与评价研究[硕士学位论文],苏州大学,2003:23.
    ② 孙旭花等,“一题多解”之再升华螺旋变式课程设计理论介绍——以三角形中位线定理推导为例[J],数学教育学报,2008(6):21-29.
    ① 喻平,数学教育心理学[M],南宁:广西教育出版社,2004:67.
    ① 李明振,“算法多样化”教学:内涵、问题与策略[J],中国教育学刊,2006(12):54-56.:王艳,小学数学“算法多样化”教学研究[J],教育与教学研究,2009(z):89-92.
    ① 李继闵.《九章算术》导读与译注.[M].陕西:陕西科学技术出版社,1998:37.
    ① 杨豫辉,小学数学教材“问题解决”专题教学实践调查分析[J],数学教育学报,2004(3):58-59.
    ② 李鹏,刘春房,数学解题应该怎样教——由一个教学片断谈起[J],数学通报,2008(1):39-41.
    ① 喻平,2002,数学问题解决认知模式及教学理论研究[博士学位论文],南京师范大学:20.
    ① Wood, R. (1986). The agenda for educational measurement. In D. L Nutrmll (Ed.), Assessing educational achievement (pp.185-203). London, U.K.:Falmer Press.
    ① 喻平,数学教育心理学[M],南宁:广西教育出版社.2004:94
    ③ Schoenfeld, A.(1985). Mathematical problem solving, New York, NY:Academic press.
    ④ 辛自强,问题解决与知识建构[M],北京:教育科学出版社,2005(2):113-123.
    ⑤ 张小乔等,问题解决及其教学的信息加工理论[J],教育研究与实验,1990(3):46-50.
    ① 张小乔等,问题解决及其教学的信息加工理论[J],教育研究与实验,1990(3):46-50.
    ② 陈英和等,小学2~4年级儿童数学应用题表征策略差异的研究[J],心理发展与教育,2004(4):19-25.
    ③ 张桂芳,整式乘法运算几何背景图形的教学教学应用[J],数学通报,2013(2):29-31
    ① 黄坪,一题多解问题的解法特性与思维训练[J],数学通报,1998 (7):22-24.;李鹏,刘春房,数学解题应该怎样教——由一个教学片断谈起[J],数学通报,2008(1):39-41;张永昌,李斌,读懂数学教材的三个维度[J],教学与管理,2010(11):35-36.:
    ② 吴什艳,反思教学中的一题多解[J],中学数学教学参考,2001(12):13-14.
    ① 董晓荣 李荣登,初中数学综合复习中的“变式训练”[J],教学与管理,2002(4):59.
    ②王千,如何认识一题多解的教育功能[J],数学通报,数学通报,2004(9):10-12.;唐绍友,也谈一题多解教学[J],数学通报,2005(8):50-51.;廖晓芳,科学理解新课标,提高课堂教学的有效性[J],四川职业技术学院学报,2009(3):96-98.
    ③ 苏兴震、 陆钧,例谈多解问题的教学误区[J],江苏教育研究,2012(5c):55-57;王艳,小学数学“算 法多样化”教学研究[J],教育与教学研究,2009(z):89-92.
    ① 喻平,教学中几对矛盾的对峙与融通[J],教育理论与实践,2008(4):48-51.
    ② 刘丽娟,让思维得到提升——从一题多解到多题一解[J],江苏教育研究,2011.(4B):44-45;苏兴震、陆钧,例谈多解问题的教学误区[J],江苏教育研究,2012(5c):55-57;张永昌,李斌,读懂数学教材的三个维度[J],教学与管理,2010(11):35-36.
    ① 鲍建生.周超.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.:333.
    ① 马云鹏,数学教育测量与评价[M],北京:北京师范大学出版社,2009:46-65
    ② 马云鹏,数学教育测量与评价[M],北京:北京师范大学出版社,2009:46-65
    [苏]克鲁捷茨基著,李伯季等译,中小学生数学能力心理学[M],上海:上海教育出版社,1987:342.
    ① 马云鹏,数学教育测量与评价[M],北京:北京师范大学出版社,2009:46-65.
    ① 田佩章,学生的学习方式改变了吗——从一次检测谈起[J],人民教育,2006(23):31-35.
    ① [苏]克鲁捷茨基,中小学生数学能力心理学[M],上海:.上海教育出版社,1987:337
    ② 朴钟鹤,韩国英才教育的历史沿革与特点[J],比较教育研究,2008(4):67-71.
    ③ 马云鹏,数学教育测量与评价[M],北京:北京师范大学出版社,2009:6.
    ④ 浙江省教育厅调研组,,论加快浙江省高等教育发展[J]教育研究,2001(1):41-45.
    [1]Alan H. Scoenfeld..(1985) Mathematical problem solving. New York:Academic Press, INC.
    [2]Anand, P. G., et al.(1987).Vising computer-assisted instruction to personalize arithmetic materials for elementary school children. Journal of Educational Psychology.,(2):72-78
    [3]Anderson., J. R..(1980).Cognitive psychology and it's implications. New York:Freeman.
    [4]Andesron, J. R., & Schunn, C. D.(2000). Implication of the ACT-R leaning theory:No magic bullets. In Glaser,R.(Ed.). Advance in instructional psychology. Vol.5.Mahwah,NJ:Erlbaum..1-27.
    [5]Balfanz R., Ginsburg P. H, Greenes C..(2003). The big math for little kids early childhood mathematics program. Teaching Children Mathematics.9:264-276.
    [6]Bigge, M. L. & Shermis,S. S. (1997). Learning theories for teachers. New York:Harper Collins.
    [7]Biggs,J., & Tang, C.(2007).Teaching for learning at university. Maikenhead, UK:Open University Press/McGraw Hill Educational.
    [8]Bowden, J., & Marton, F.(1998).The university ofLearning.London:Kogan Page.105-108.
    [9]Brian Greer. (1992).Multiplication and division as models of situations.In Douglas A. Grouws,(Ed.).Handbook of Research on mathematics Teaching and Learning. New York,: Simon & Schuster and Prentice Hall International.276-278
    [10]Carpenter, T. P. (1985). Toward a theory of construction:Review of Children's counting types: Philosophy, theory, and application. Journal for Research in Mathematics Education, 16.70-76.
    [11]Carpenter, T. P. (1985). Learning to add and subtract:An exercise in problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving:Multiple research perspectives (pp.17-40). Hillsdale,NJ:Lawrence Erlbaum.
    [12]Charles, R. & Silver, E. (1989).The teaching and assessing of mathematical problem solving. Hillsdale, NJ:Erlbaum.
    [13]Choike, J. R.. .(2000). Teaching strategies for "Algebra for all".Mathematics Teachers. 93(7),556-563.
    [14]Conney, J.B., et al.. (1990).Individual differences in memory for mathematical story problems: memory span and problem perception. Journal of Educational Psychology,,82(3):570-577
    [15]Cooney, T. A.(1985).Beginning teacher's view of problem solving. Journal for Research in Mathematics Education.,16.324-336
    [16]Copper G., Sweller J. (1987).Effect of schema acquisition and rule automation on mathematics problem-solving transfer Journal of Education Psychology,79(4):347362.
    [17]Davis, R. B. (1984). Learning mathematics:The cognitive science approach to mathematics education. London:Croom Helm.
    [18]Douglas A. Grouws..(1992). Handbook of research on mathematics teaching and learning. By National Council of Teachers of Mathematics. New York:Simon & Schuster and Prentice Hall International.
    [19]Dubinsky, F. & McDonald, M. A..(2001). APOS:A constructivist theory of learning in undergraduate mathematics education research,in "The Teaching and Learning of Mathematics at University Level:An ICMI Study"(Ed.).D. Holton,Kluwer Academic Publishers,275-282.
    [20]Dubinsky, F., Weller, K., McDonald, M. & Brown, A.(2005). Some historical issues and paradoxes regarding, the concept of infinity:an APOS analysis:part2. Educational Studies in Mathematics.60.253-266.
    [21]Halmos, P. (1980). The heart of mathematics. American. Mathematical Monthly,87,519-524.
    [22]Goldin, G. & Shteingold, N..(2001). Systems of representations and the development of mathematical concepts. In A. A. Cuoco & F. R. Curcio.(Eds.).The roles of representation in school mathematics.1-23
    [23]Fuson, K, C. (1992). Research on learning and teaching addition and subtraction of whole numbers. In G. Leinhardt, R. T. Putnam, & R. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (PP.53-187). Hillsdale, NJ:Lawrence Erlbaum.
    [24]Greeno, J. G. (1987), Instructional representations based on research about understanding. In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp.61-88). Hillsdale, NJ: Lawrence Erlbaum.
    [25]Hart, K (1981). Children' understanding of mathematics:11-16. London:Murray。 In Grouws,D.A.(Eds.), Handbook of research on mathematics teaching and learning:A project of the National Council of Teachers of Mathmatics.1992.312
    [26]Heller, J.& Hungate, H.(1985). Implications for mathematics instruction of research on scientific problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem sobving:Multiple research perspectives (pp.83-112). Hillsdale, NJ:Lawrence Erlbaum.
    [27]Hinsley, D. A., Hayes, J. R.. & Simon, H. A. (1977). From words to equation:Meaning and representation in algebra word problems. In M. A. Just &P. A. Carpenter (Eds.),Cognitive Processes in Comprehension.89-106. Hillsdale,NJ:Erlbaum
    [28]Hoch, M. & Dreyfus, M.(2004).Structure sense in high school algebra:The effect of brackets. In M. J. Homes & A. B. Fuglestad (Eds.),Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education,.3,49-56.Bergen,Norway:Bergen University College.
    [29]Huang, Ringjin.(2002). Mathematics teaching in Hong Kong and Shanghai ---A classroom analysis from the perspective of variation. Doctoral thesis, University of Hong Kong.
    [30]Janvier, C.(1987). Representation and understanding:The notion of function as an example. Problems of Representation in the teaching and learning of mathematics. Lawrence Erlbaum,Hillsdale,NJ,67-89.
    [31]John B. Biggs. (1979). Individual differences in study processes and the Quality of Learning Outcomes,Higher Education.8.(4).381-394.
    [32]John B.Biggs, Kevin F. Collis.(1982).The SOLO Taxonomy[M].New York:Academic Press.
    [33]J. P. Guilford,(1965). Fundamental statistics in psychology and education. New York, NY: McGraw-Hill.
    [34]Jonassen, D. H., Beissner, K. & Yacci, M. A. (1993). Structural knowledge:Techniques for representing, assessing, and acquiring structural knowledge. Hillsdale, NJ:Lawrence Erlbaum Associates.
    [35]Kentucky Department of Education. (2001). Demographic reports. Retrieved March 15, 2004, http://kdemaxport2. kde. State. Ky. Us.
    [36]Kieran, C.(1992). The learning and teaching of school algebra. In Grouws, D. A.(Eds.),.Handbook of research on mathematics teaching and learning:A project of the NCTM. New York:Macmillan Publishing Company.
    [37]Kieran, C.(1992).The learning and teaching of school algebra. In Grouws, D. A.(Eds.),Handbook of Research on Mathematics Teaching and Learning:A project of the NCTM. New York:Macmillan Publishing Company. Knuth, Eric.(2000). "Understanding Connections between Equations and Graphs." The Mathematics Teacher..93.(1).48-53
    [38]Kilpatrick, A..(1982).Retrospective account of the past 25 years of research on teaching mathematical problem solving. In E.A. Silvee (Eds.). (1985).Teaching and learning mathematical problem solving:Multiple research perspectives. Lawrence Erlbaum Associates. p2.
    [39]Kilpatrick, J. (1985). A retrospective account of the past twenty-five years of research on teaching mathematical probllem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving:Multiliple research Perspectives.1- 15. Hilsdale, NJ: Erlbaum.
    [40]Kintsch W., Greeno. J. G.(1985). Understanding and solving word arithmetic problems. Psychological Review.92(1):109-129
    [41]Knuth,Eric.(2000). "Understanding Connections between Equations and Graphs." The Mathematics Teacher..93.(1).48-53
    [42]Lane, S. & Silver, E. A. (1995). Equity and validity consideration in the design and implementation of mathematics:Performance assessment:The experience of the QUASAR project. In M. Nettles, & A. L. Nettles(Eds.).Equity and excellence in educational testing and assessment.185-219. Boston:Kluwqwe.
    [43]Lawson, M. J. Chinnappan, M. (2000).Knowledge connectedness in geometry problem solving. Journal for Research in Mathematics Education,31.26-43
    [44]Lesh,R., Post, T. & Behr, M. (1987).Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics..33-40. Hillsdale, NJ:Lawrence Erlbaum Associates.
    [45]Lewis, A. B..(1989). Training students to representation arithmetic word problem. Journal of Educational Psychology.81(4).521-531
    [46]Liping Ma. (2010).Knowing and Teaching Elementary Mathematics (anniversary edition), New York, NY:Routledge Taylor & Francis Group,2010:xi
    [47]Markman, A. & Dietrich, E.(2000).In defense of representation. Trends in Cognitive Sciences.4. 470-475.
    [48]Marton, F. & Booth, S.(1997). Learning and awareness. Mahwah, NJ:Lawrence Erlbaum Associates, Publishers.
    [49]Marton, F., & Pang, M. F.(1999, August). Two faces of variation. Paper presented at 8th EARLI conference, Gotegorg, Sweden.
    [50]Marton, F. (2008). Building your strength:Chinese pedagogy and necessary conditions of learning. Available at http://www.ied.edu.hk/wvals/conference08/programl.htm,The World Association of Lesson Studies(WALS). Accessed 28 February 2009.
    [51]Marton F., Booth S.(1997). Learning and awareness. Mahwah, NJ:Lawrence Erlbaum Associates.
    [52]Marton, F.,& Pang, M. F. (2006). On some necessary conditions of learning.,Journal of Learning Sciences, 15.193-220
    [53]Mayer, R. E. (1987).Educational Psychology:A cognitive approach:Little Brown.
    [54]Mayer, R. E. (1992). Thinking, problem solving, cognition. New York:W. H. Freeman and Company Press.
    [55]Neshe,r P. (1982).Levels of description in the analysis of addition and subtraction word problems.In:T. P. Carpenter, J. M. Moser, T. A. Romberg (Eds). Addition and subtraction:A cognitive perspective. Hillsdale, NJ:Lawrence Erlbaum Associates, Inc.,1982.25-38
    [56]Newell, A. & Simon, H. (1972). Human problem solving. Englewood Cliffs, NJ:Prentice Hall.
    [57]Niss. M.(2003).Mathematical competencies and the learning of mathematics:The Danish KOM project.http://www.nationalacademics.org/mseb/Mathematical_Competencis_and_the_Learning_of_Mathematics.pdf.
    [58]Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In Rosch, E. & Lloyd, B. (Eds.). Cognition and Categorization (pp.259-303). Hillsdale New Jersey:Lawrence Erlbaum Associates, Publishers.
    [59]Penelope Serow. (2007).Utilizing the Rasch Model to gain insight into students' understandings of class inclusion concepts in geometry.Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia. J. Watson & K. Beswick (Eds), MERGA Inc.651-660.
    [60]Riley, M S., Greeno, J. G., & Heller, J. I. (1983). Development of children's problem solving ability in arithmetic. In H. Ginsburg (Ed.), The development of mathematical thinking(PP.153-196). New York:Academic Press.
    [61]Rovio-Johansson, A.(1999). Being good at teaching:Exploring different ways of handling the same subject in higher education. Sweden:ACTA Universitatis Gothoburgensis.
    [62]Riley M. S., Greeno J. G. & Heller J. I. Development of children's problem solving ability in arithmetic [A].Ginsburg H. P.(Ed).The development of mathematical thinking.New York:Academic Press,1983.153-196.
    [63]Runesson U.(1999). Variationens pedagogik:Skilda Satt att Behandla ett Matematiskt Innehall (the pedagogy of variation:Different ways of handling a mathematical topic). Goteborg:Acta Univertsitatis Gothoburgensis.
    [64]Schoenfeld A.. (1994).Mathematical thinking and problem solving. Hillsdale,NJ:Lawrence Erldbaum Associates.:132-156
    [65]Schoenfeld, A.(1985). Mathematical problem solving, New York, NY:Academic press.
    [66]Simon, H.. (1980). Problem solving and education. In D. Tuma & E. Reif (Eds.). Problem solving and education:Issues in teaching and research. Hillsdale. New York, NY:Knopf,
    [67]Silver, E.A. (1981).Recall of mathematical problem information. solving related problems. Journal for Research in Mathematics Education.12:54-64
    [68]Sternberg, R. (1999). Handbook of creatiuity. Cambridge:Cambridge University Press.
    [69]Sun, X.H..(2007).Spiral variation (Bianshi) curriculum design in mathematics:Theory and practice. Doctoral Dissertation. Hong Kong:The Chinese University of Hong Kong (in Chinese)
    [70]Thompson, P.W. (1985). Experience, problem solving, and learning mathematics: Considerations in developing mathematics curricula. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving:Multiple research perspectives (pp.189-236). Hillsdale, NJ:Lawrence Erlbaum.
    [71]Sweller, J. & Cooper, G. A..(1985).The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, (2):59-89
    [72]Wenke, D. & Frensrrensch, P.. (2003). Is success or failure at solving complex problems related to intellectual ability? In J. Davidson & R. Sternberg (Eds.), The psychology of problem solving,.87-126. New York:Cambridge University press.
    [73]Wood, R. (1986). The agenda for educational measurement. In D. L Nutrnll (Ed.), Assessing educational achievement (pp.185-203). London, U.K.:Falmer Press.
    [74]Xuhua Sun, "Variation problems" and their roles in the topic of fraction division in Chinese mathematics textbook examples, Educ Stud Math(2011)76:65-85
    [75]Zhang J.(1997). The nature of external representations in problem solving. Cognitive Science, 21(2):179-217.
    [76][苏]奥加涅相等著,刘远图等译,中小学数学教学法[M],北京:测绘出版社,1983:110-176
    [77][法]阿达玛.陈植荫,冉奚安译.数学领域中的发明心理学[M].南京:江苏教育出版社,1989:28
    [78]鲍建生.周超.数学学习的心理基础与过程[M].上海:上海教育出版社,2009.: 177
    [79]鲍建生等.变式教学研究[J].数学教学,2003(1-3):11-12
    [80]鲍建生.中英两国初中数学期望课程综合难度的比较[J].全球教育展望,2002(9):48-52.
    [81]鲍明彦.“一题多解”的反思[J].林区教学,2003(2):39-40
    [82]编写组.小学数学应用题解法大全(三年级)[M].南京:江苏美术出版社,2011:85.
    [83][美]波利亚.数学的发现[M](一、二).刘景麟等译.内蒙古人民出版社,1979-1981;欧阳绛译.北京:科学出版社,1982:187
    [84][美]G.波利亚著,涂泓.冯承天译.怎样解题:数学教学法的新面貌[M].上海:上海科技教育出版社,2002:1
    [85]但琦.高一学生数学应用能力的调查与分析[J].数学教育学报,2007(1):66-69
    [86]戴再平.数学习题理论[M].上海:上海教育出版社,1996:20
    [87]戴再平.中小学数学开放题丛书(五卷集).上海:上海教育出版社,2000-2002:78,298
    [88]董晓荣.李荣登.初中数学综合复习中的“变式训练”[J].教学与管理,2002(4):59
    [89]杜继渠.对一题多解教学的反思[J].中学数学研究(江西师大),2006(5):9-13
    [90]蔡桂荣.妙用一题多解培养创新思维[J].黄冈职业技术学院学报,2011(3):69-71
    [91]曹培英.谈小学数学学习中的问题解决[J].课程.教材.教法,1999(9):44-48
    [92]陈启桂.应用题复习的一点做法[J].小学数学教学参考,2005(6):31-32
    [93]陈迪军.变式教学诱发一题多解[J].数学通报,2006(1):44-45
    [94]陈海霞.一道试题错解访谈后的启示[J].江苏教育,2007.7-8:71
    [95]陈积贵.从一题多解及多变谈创造性思维[J],甘肃教育,2007.9(B):49
    [96]陈英和等.小学2-4年级儿童数学应用题表征策略差异的研究[J].心理发展与教育.2004(4):19-25
    [97]方金秋.数学问题解决的认知定义[J],数学通报,1995(1):22-25
    [98]冯育强.李德宜.从一题多解到多题一解[J].高师理科学刊,2011(4):71-72
    [99]冯忠良.结构——定向教学的理论与实践[M].北京:北京师范大学出版社,1992:291-300
    [100][苏]弗里德曼著.丁家泰.赵素兰译.怎样解数学题[M],北京:北京师范大学出版社,1988:231
    [101]傅小兰.何海东.问题表征过程的一项研究[J].心理学报,1995(1):204-210
    [102]傅建华.任伟芳.高考数学复习要注重一题多解[J].宁波教育学院学报,2008(5):123-125
    [103]高文君.鲍建生.中美教材习题的数学认知水平比较——以二次方程及函数为例[M].数学教育学报,2009(4):57:60
    [104][美]格劳斯,D.A..陈昌平等译.数学教与学研究手册[M].上海:上海教育出版社,1999:369
    [105]顾继玲.新教材中数学观之分析及思考[J].数学教育学报,2003(2):90-93
    [106]管鹏.张庆林.小学生解答复杂应用题的困难原因分析[J].现代中小学教育,1997(1):41-43
    [107]郭思乐.思维与数学教学[M].北京:人民教育出版社,1991:95
    [108]顾泠沅.教学任务的变革[J].上海教育,2003(1):26-27
    [109]郭民.小学生数感的发展与特征研究[博士学位论文].华东师范大学,2009:26
    [110]谷超豪.主编《数学辞典》.上海:上海辞书出版社,1992:58
    [111]黄岩.变式训练是激活学生思维的有效途径[J].大连教育学院学报,2010(2):49-50
    [112]黄坪.一题多解问题的解法特性与思维训练[J].数学通报,1998(7):22-24
    [113]韩飞.“一题多解”与高职学生发散思维的培养[J].高等数学研究,2012(4);99-101
    [114]韩春见.一题多解,多解归一[J].中学教研(数学),2007(10):34-36
    [115]胡松林.孔企平.从重视运算技能到倡导数学的思考——浅谈小学数学“数与代数“教学目标的演变过程[J],小学青年教师,2004(6):9
    [116]和邓平.提倡算法多样化别冷落了一题多解[J].小学教学研究,2006(3):28
    [117]胡作玄.第三次数学危机[M].成都:四川人民出版社,1985:69
    [118]何小亚.解决数学问题的心理过程分析[J].数学教育学报,2004(3):33
    [119]何小亚.植美贤.高一学生对数运算技能水平测试量表的编制与研究[J].数学教育学报,2011(5):55-58
    [120]何小亚.姚静.中学数学教学设计[M].北京:科学出版社,2008:163
    [121][美]加涅.皮连生等译.学习的条件和教学论[M].上海:华东师范大学出版社,1999:175-177
    [122]江高文.数学新思维——中学数学思维策略与解体艺术[M].武汉:华中师范大学出版社,2001:243
    [123]江凤祥.培养学生的发散思维能力浅见[J],中学教学研究.2004(7):36-37
    [124]金钟植.论一题多解的根源[J].数学通报,1998(9):34-35
    [125]教育部基础教育司.走进新课程:与课程实施者对话[M],北京:北京师范大学出版社.2002.3:8
    [126][苏]克鲁捷茨基著.李伯季等译.中小学生数学能力心理学[M].上海:上海教育出版社,1983:341.390
    [127]李静.基于多元表征的初中代数变式教学研究[博士学位论文].西南大学,2011:8-10
    [128]廖运章.数学应用问题解决心理机制的调查与认知分析[J].数学教育学报,2001(1):72-74
    [129]廖晓芳.科学理解新课标,提高课堂教学的有效性[J].四川职业技术学院学报,2009(3):96-98
    [130]李俊(2003).中小学概率的教与学[M].上海:华东师范大学出版社.2003.5:27-29.
    [131]李文斌.从初中数学的一题多解谈培养中学生创新思维能力[J].中国校外教育(中旬刊)2010(1):54-57
    [132]李明振.数学问题解决策略及其训练研究[J].贵州师范大学学报(自然科学版),1998(2):72-76
    [133]李明振.“算法多样化”教学:内涵、问题与策略[J].中国教育学刊,2006(12):54-56
    [134]李鹏刘春房.数学解题应该怎样教——由一个教学片断谈起[J].数学通报,2008(1):39-41
    [135]李继闵.《九章算术》导读与译注.[M].陕西:陕西科学技术出版社,1998:37
    [136]李胜平.论数学问题解决中知识、策略、元认知三者关系的实证研究[J].上海教育科研,2007(11):73-75.
    [137]李善良著.现代认知观下的数学概念学习与教学[M].南京:江苏教育出版社,2005.:55
    [138]李万道.培养数学创造性思维的最基本途径[J].中学数学教学,2005(2):21-23.
    [139]林祟德.学习与发展[M].北京:北京师范大学出版社,1999:290-299
    [140]林崇德.发展心理学[M].杭州:浙江教育出版社,2002:311
    [141]刘建华.小学数学应用题复习教学的技巧[J].甘肃教育,2005(9):49
    [142]刘飞现.算法多样化并非一题多解[J].小学教学参考(数学),2004(1):44
    [143]刘天英.从一题多解中培养学生的数学能力[J],科技信息,2009(4):567
    [144]刘丽娟.让思维得到提升——从一题多解到多题一解[J].江苏教育研究,2011.(4B):44-45
    [145]刘广珠.小学生解决分数应用题认知加工过程的实验研究[J].心理发展与教育,1997(3):7-10
    [146]刘云章.赵雄辉.数学解题思维策略——波利亚著作选讲[M].长沙:湖南教育出版社,1992:83
    [147]罗增儒.数学解题学引论[M].西安:山西师范大学出版社,1997:481-553
    [148]鲁志鲲.申继亮.结构不良问题解决及其教学意义[J].中国教育学刊,2004(1):44-49
    [149]刘春艳.应用类比实现“特殊与一般”的相互转化[J].数学通报,2009(12):15
    [150]刘幸舒.小议一题多解教学[J].长春师院学报(自然科学版),1993(2):47-55
    [151]吕学琴.由平行四边形的一堂习题课所想到的[J].上海中学数学,2006(10):4-5
    [152]马云鹏.数学教育测量与评价[M].北京:北京师范大学出版社,2009:46-65.
    [153]孟德酉.李为杰.浅议开发智力培养能力的一题多解教学[J].数学通报,1988(6):4-9
    [154][美]Mary Kay Stein等著;李忠如.陈静译译.实施初中数学课程标准的教学案例[M].上海:上海教育出版社,2001.142
    [155]苗天志.苗天慧.数学问题解决的心理分析[J].上饶师范学院学报,2006(3):84-88
    [156]莫雷.论能力结构研究的基本方法的变革[J].心理科学通讯,1989(2):33-36
    [157]聂必凯.数学变式教学的探索性研究[博士学位论文].华东师范大学,2004.:11
    [158]倪明.关于数学应用问题编制的原则[J],数学教育学报,1998(2):51-53
    [159][瑞士]皮亚杰.著.王宪钿等译.发生认识论原理[M].北京:商务印书馆,1996.:27
    [160]庞丽娟.魏勇刚.论数学问题解决的生态模式[J].心理发展与教育,2008(3):45-49
    [161]朴钟鹤.韩国英才教育的历史沿革与特点[J].比较教育研究,2008(4):67-71
    [162]全美数学教师理事会.美国学校数学教育的原则和标准[S].蔡金法,等,译.北京:人民教育出版社,2003.:6
    [163]钱铭,从一题多解见“再发现”式教育之效果[J].数学教育学报,2000(3):81-83
    [164]任真.在解题教学中发展和完善学生CPFS结构[J].齐齐哈尔师范高等专科学校学报,2008(6):105-106
    [165]任樟辉.数学思维论[M].南宁:广西教育出版社,1996:236
    [166]邵光华.几何解题策略的实验研究[J].数学通报,1997(1):10-15
    [167]沈光中.开展“问题解决”研究深化小学数学教改实验[J].课程.教材.教法,1999(12):32-34
    [168]施良方.学习论(第2版)[M].北京:人民教育出版社,2001:178
    [169]施铁如.解代数应用题的认知模式[J].心理学报,1985(3):296-303
    [170][美]斯腾伯格.俞晓琳.吴国宏译.超越IQ——人类智力的三元理论[M].上海:华东师范大学出版社,2000:41-123
    [171]苏志清.发挥一题多解对培养思维品质的作用[J].数学通报,2000(2):27-28
    [172]苏兴震.陆钧.例谈多解问题的教学误区[J].江苏教育研究,2012(5c):55-57
    [173]孙树相.从数学问题的变化中培养学生的发散思稚[J].通化师范学院学报,2004(5):90-92
    [174]孙旭花等.“一题多解”之再升华螺旋变式课程设计理论介绍——以三角形中位线定理推导为例[J].数学教育学报,2008(6):21-29
    [175]孙瑞清.关于发展学生数学能力的几个问题[J].数学通报,2002(4):57-58
    [176]孙宏安.数学能力新探[J].课程·教材·教法,1996(7):54-57
    [177]宋俊浩.影响高中生数学应用问题解决的因素的调查与研究[硕士学位论文],华东师范大学,2007:15
    [178]唐绍友.也谈一题多解教学[J].数学通报,2005(8):50-51
    [179]田佩章.学生的学习方式改变了吗——从一次检测谈起[J].人民教育,2006(23):31-35
    [180]陶幼明.刘涛.一题多解培养学生创新思维能力[J].继续教育研究,2011(4):122-123
    [181]涂荣豹.数学解题的有意义学习[J].数学教育学报,2001(4):15-20
    [182]涂冬波.项目自动生成的小学儿童数学问题解决认知诊断CAT编制[博士学位论文].江西师范大学,2009:50-60
    [183]辛自强.问题解决与知识建构[M].北京:教育科学出版社,2005.2:113-123
    [184]徐光辉.多角度利用典型题[J].教育教学论坛,2011(8):108
    [185]徐敏毅.儿童解决算术应用题时认知加工过程的实验研究[J].心理发展与教育,1994(3):33-39
    [186]徐利治.数学方法论选讲[M].武汉:华中工学院出版社,1983:24-29
    [187]徐朋.在数学教学中培养学生的思维能力[J].大连教育学院学报,2007(3):74
    [188]徐娟.通过一题多解培养学生的数学思维能力[J].江苏教育学院学报(自然科学),2010(12):80-82
    [189]徐辉.关于新课程改革中教学问题的观察与思考——兼论小学数学算法优化与多样化的关系[J].课程·教材·教法,2003(10):11-14
    [190]许正华.溶数学思想于一题多解之中[J].数学通报,1997(8):45-46
    [191]胥兴春.刘电芝.问题表征方式与数学问题解决的研究[J].心理科学,2002(3):264-270
    [192]学习质量评价SOLO分类理论(可观察的学习成果结构)/[澳]彼格斯(Biggs,J.B.),[澳]科利斯(Collis, K. F.)著;高凌飚,张洪岩主译.—北京:人民教育出版社,2010:110
    [193]杨豫辉.小学数学教材“问题解决”专题教学实践调查分析[J].数学教育学报,2004(3):58-59
    [194]杨建华.应用题解法的比较分析[J].中学数学,2003(3):18-19
    [195]杨春花.数学建模与一题多解[J].数学学习,2005(3):4-6
    [196]杨耀南.与圆有关的多解问题分类解析[J].数学学习,2005(1):13-24
    [197]叶忠国.职业教育中充分调动学生学习数学的主动性[J].中南民族大学学报(人文社会科学版),2005(5):348-349
    [198]义务教育课程标准实验教科书·数学(六年级上册)[M]-北京:人民教育出版社,2006:113-116
    [199]殷霞.初中生数学问题解决观的现状及其分析[J].无锡教育学院学报,2006(3):86~89
    [200]尹汶.晓峰.在“多解优化”中提升学生思维品质[J].辽宁教育,2007.(4):53-55
    [201]喻平.数学问题解决认知模式及教学理论研究[博士学位论文].南京师范大学,2002:1-5
    [202]喻平.数学教育心理学[M].南宁:广西教育出版社.2004:55-60
    [203]喻平等.中国数学教育心理研究30年[M].北京:科学出版社,2011:111
    [204]喻平.现代心理学关于解决数学应用题的研究述评[J],上海师范大学学报(教育版).2000(1):13-15
    [205]喻平.个体CPFS结构与数学问题表征的相关性研究[J].数学教育学报,2003(3):10-13
    [206]喻平.教学中几对矛盾的对峙与融通[J].教育理论与实践,2008(4):48-51
    [207]于琴.“一题多解”与“一题多变”——浅谈高三数学复习精讲策略[J].文教资料,2005(1): 8
    [208]袁永超.从一题多解感悟学生数学思维发展的层次性[J].数学教学研究,2007(12):7
    [209]于克芳.马静如.数学问题解决的含义及问题解决能力的构成成分[J].云南教育学院学报,1994(5):76-79
    [210]张奠宙.20世纪数学经纬[M].上海:华东师范大学出版社,2002:87
    [211]张奠宙.数学教育研究导引[M].南京:江苏教育出版社,1994:52
    [212]张奠宙.过伯祥.数学方法论稿[M].上海:上海教育出版社,1996:109
    [213]张奠宙.中国数学双基教学[M].上海:上海教育出版社,2009.:66.
    [214]张永昌.李斌.读懂数学教材的三个维度[J].教学与管理,2010(11):35-36
    [215]张华.庞丽娟.许晓晖等.家庭生态环境与儿童早期数学认知能力[J],北京师范大学学报(社会科学版),2005,(3):55-61
    [216]张桂芳.宋乃庆.数学课程中的算法知识:集中显性教学与分散隐性渗透相结合[J].数学教育学报,2013(2):15-18
    [217]张桂芳.浅析多位数乘法计算中的进位错误类型及笔算乘法的教学层次[J].小学教学研究(理论版),2012(8):43-45
    [218]张桂芳.整式乘法运算几何背景图形的教学教学应用[J].数学通报,2013(2):29-31
    [219]张小乔等.问题解决及其教学的信息加工理论[J].教育研究与实验,1990(3):46-50
    [220]张桂凤.谈小学数学教学中的“问题解决”[J].科教文汇下半月刊,2006(1):113
    [221]张忠旺.在数学复习中进行一题多解的教学探讨[J].数学通报,1992(10):16-20
    [222]张远等.对数学开放性问题的几点认识[J].数学教育学报,2000(4):22-27
    [223]张绍英.应重视发挥一题多解在数学教学中的作用[J].福建中学数学,2005(2):2-3
    [224]张俭福.数学教学中一题多解的调控机制[J].数学通报,1997(11):28-31
    [225]张传伟.数学的“问题表征”在“问题解决”中的意义[J].数学通报,2003(12):3-6
    [226]张辉蓉.数学解题教学是非之争及思考[J].中国教育学刊,2010(5):38
    [227]张庆林.管鹏.小学生表征应用题的元认知分析[J].心理发展与教育,1997(3):11-14
    [228]赵继强.吴建华.“问题解决”在数学教学中的一个探讨[J].达县师范高等专科学校学报,2005(S1):117-118
    [229]赵小云.沈陆娟.美国数学教育中的问题解决及其评价[J].比较教育研究,2003(10):35-40
    [230]赵振国.新课标下学生创新能力的培养[J].中学月刊。中学版,2007(5):12-14
    [231]郑毓信.数学教育哲学(2版)[M].成都:四川教育出版社,2001:321
    [232]郑毓信.问题解决与数学教育[M].南京:江苏教育出版社,1994:78
    [233]郑毓信.变式教学理论的必要发展[J].中学数学月刊,2006.(1):1-3.
    [234]郑善弘.杜云峰.略论小学数学教学中的一题多解与学生发散思维的培养[J].辽宁教育学院学报,1992(4):76-80
    [235]郑君文.张恩华.数学学习论[M].南宁:广西教育出版社,1998:77-80
    [236]郑雪静等.中小学生提出数学问题能力评价探究[J].数学教育学报,2007(3):49-53
    [237]浙江省教育厅调研组.论加快浙江省高等教育发展[J].教育研究,2001(1):41-45
    [238]中华人民共和国教育部.全日制义务教育数学课程标准(实验稿)[M].北京:北京师范大学出版社,2001:10.
    [239]中华人民共和国教育部.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012:8-10
    [240]周洪伟.“一题多解”对培养小学生发散思维作用的思考[J],中国校外教育(上旬刊),2012(7):117
    [241]周世桢.谈谈数学教育中的“问题解决”[J].南平师专学报,1996(04):23-28
    [242]周超.数学高层次思维的界定与评价研究[硕士学位论文].苏州大学,2003:23
    [243]周子太.常盛.对于算法多样化的几点看法[J].小学数学教学参考,2004(11):39-41
    [244]朱新明等.通过样例和问题解决建立产生式[J].心理学报1987(2):176-183
    [245]朱德全.数学问题系统的构建与解决程式[J].中国教育学刊,1999(5):41-44
    [246]朱新明.解决几何问题的思维过程[J].心理学报.1985(1):9-18
    [247]朱文芳.对数学教学中提倡“算法多样化”的几点认识[J].数学通报,2003,(4):18.
    [248]王刚.从欧拉解决七桥问题看数学问题解决方法[J].新乡师范高等专科学校学报,2005(2):121-122
    [249]王刚.从一个运筹学案例看数学问题解决方法[J].教育科学论坛,2006(4):46-48
    [250]王甦.汪安圣.认知心理学[M].北京:北京大学出版社,1992:276-289
    [251]王金战等.教你玩转数学——数学是怎样学好的(魅力与方法篇)[M].北京:北京大学出版社,2010:178
    [252]王千.如何认识一题多解的教育功能[J].数学通报,2004(9):10-12
    [253]王继兴.一题多解及评判指数[J].云南大学学报(自然科学版),2008,30(S2):433-436
    [254]王九伦.一题多解的又一例证[J].数学通报,2003(7):34-25
    [255]王艳.小学数学“算法多样化”教学研究[J].教育与教学研究,2009(z):89-92
    [256]王延文等.数学能力研究导论[M].天津:天津教育出版社,1999:289-297
    [257]王胜林.一道奥林匹克赛题的多解与思考[J].数学教学,2007(5):48-50
    [258]吴岱明.科学研究方法学.湖南人民出版社,1987.5:379
    [259]吴什艳.反思教学中的一题多解[J].中学数学教学参考,2001(12):13-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700