腾格里沙漠腹地钻孔揭示的沙漠形成与古环境演化历史
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新生代以来,亚洲内陆干旱化、全球降温、特提斯海消亡、青藏高原的阶段性隆升、亚洲季风系统的形成等构造-环境事件,在成因上有着复杂的联系。中国西北沙漠的形成和发展,是这些构造-环境事件相互作用的集中体现。位于青藏高原东北缘、黄土高原西北部的腾格里沙漠,不仅是季风与西风的交互区,也是干旱与半干旱、高原与盆地的过渡区;它的形成和演化历史与古环境记录是解开干旱区自身干旱化历史与驱动机制的基础和关键。腾格里沙漠地区因沙丘覆盖,缺少天然露头剖面,因此在腾格里沙漠腹地进行沙漠岩心钻探,以建立沙漠内部的地层序列,认识沙漠形成的地质历史和古环境演化过程。
     钻孔位于腾格里沙漠腹地(WEDP01),钻进深度为276m,平均取心率62%(0-147m为78%,147-276m为50%)。按5-10m间距挑选样品进行岩石磁学分析,判定样品中的磁性矿物类型,对钻孔按20cm间距进行了系统热退磁和剩磁测量,建立了钻孔的磁性地层,并与ESR年代进行对比。沉积相分析包括颗粒微观结构分析和粒度分析。挑选典型岩性地层的样品、现代沙丘样品和黄土L1和S1的样品进行了颗粒表面微观特征观察;以10cm间距进行了粒度测量与组分分析,确定不同粒度组分的成因和沉积物的沉积相。古环境分析包括粒度组分、磁化率、色度和元素地球化学分析。按1m间距进行元素地球化学测量,10cm间距进行高、低频磁化率、色度测量。以红度为温度指标,以风成组分含量、化学风化指数为干旱化指标,探讨腾格里沙漠地区的古环境演变过程。在此基础上,通过与深海沉积、黄土高原黄土-红粘土序列以及其他研究成果的对比,探讨驱动和控制沙漠形成的主要因素,进而认识亚洲内陆干旱化与青藏高原隆升、全球降温之间的耦合关系。本论文得出以下主要结论:
     1)通过系统的热退磁和超导磁力仪剩磁测量,获得了735个可靠的磁倾角数据,利用Arison-Levi最大似然统计方法计算了正负极性段的平均倾角,正极性段和负极性段的平均倾角相差不到5°,通过了倒转检验。建立了腾格里沙漠腹地钻孔的磁极性柱,与标准极性柱能很好的对比,包含了完整的布容正极性世、松山负极性世和基本完整高斯正极性世,钻孔底部位于高斯正极性世C2An.3n内,通过外推法估算钻孔底部年龄~3.55Ma,B/M和M/G界限分别位于33.17m和144.02m。
     2)根据沉积相分析和古环境代用指标记录,晚上新世以来腾格里沙漠腹地经历了五次沉积环境演变:3.55-3.1Ma,相对湿热的冲洪积与河流沉积环境,粉尘含量低;3.1-2.6Ma,相对暖湿的河流为主的河湖相交替沉积环境,粉尘含量低;2.6-1.22Ma,相对温暖,干湿交替的河流湖泊沉积环境,粉尘含量高;1.22-0.9Ma,相对冷干的湖相沉积环境,粉尘含量高;0.9-OMa,冷干的沙漠湖泊沉积环境。连续的风成砂组分在~0.9Ma之后出现,说明腾格里沙漠在~0.9Ma开始出现,而典型的风成砂在~0.68Ma出现,说明沙漠在~0.68Ma之后基本形成。在沙漠出现以前,腾格里沙漠地区在2.85-2.6Ma出现化学淋溶减弱、粉尘沉积急剧增加的干旱化事件。以红度为代表的温度降低时间分别发生在2.85和0.9、0.68Ma,与干旱化增强事件是一致的。
     3)沉积速率和沉积相分析表明,3.55-2.6Ma期间,腾格里沙漠地区冲洪积和河流砾石发育,沉积速率远高于其他时期,与沙漠周围山体特别是贺兰山和祁连山剧烈隆升有关,是对青藏运动在该地区的直接响应。在2.6Ma以后,沉积速率降低,说明阿拉善地台南部已经上升到比较高的位置,与周围山体高差降低,且整体比较稳定。0.9Ma左右的昆黄运动期间,祁连山强烈隆起,沙漠西北部的石羊河开始发育,现代的盆山格局基本形成。构造-环境事件的统一性,说明青藏高原的阶段性隆升是腾格里沙漠形成的主要驱动因素,证实了沙漠研究专家的观点,即青藏高原的隆升不仅制造了干旱的气候环境,而且给其周边大型沉积盆地带来了丰富的碎屑物质,为大型沙漠形成提供充足的物源。因此,在前人总结的基础上,将中国西北部大型沙漠的发育模式归结为“隆升-河湖-沙漠”发育模式。北半球冰量的变化与腾格里沙漠地区干旱化事件基本一致,说明二者存在密切的内在联系,但是具体的驱动和反馈机制,还需要更深入的研究。
     4)在沙漠专家建立的中国沙漠演化阶段的基础上,认真总结了晚上新世以来中国西北内陆沙漠的形成和扩张过程。远源沙漠向近源沙漠分三个阶段逐步扩张:-3.4Ma,塔克拉玛干沙漠西部和古尔班通古特沙漠出现;-2.8-2.6Ma,塔克拉玛干沙漠和古尔班通古特沙漠均扩张,但塔克拉玛干沙漠东部的罗布泊地区还没有形成沙漠;0.9-0.6Ma,塔克拉玛干沙漠、古尔班通古特沙漠继续扩张,柴达木盆地沙漠、巴丹吉林沙漠、腾格里沙漠出现并形成,西北内陆的大型沙漠格局基本形成;-0.15Ma,大型沙漠进一步扩张,东部的沙漠和沙地开始出现和扩张。阶段性自西向东扩张的沙漠,不仅缩短了粉尘源区与粉尘沉积区的距离,粉尘释放量也随之增加,解释了黄土高原和北太平洋粉尘沉积的沉积速率和粒径在3.4、2.8、0.9Ma同时增加。
Asian drying is associated with the global cooling, Tethys extinction, stepwise uplift of the Tibetan Plateau and evolution of Asian monsoon during the Cenozoic. These tectonic-enviromental events are closely interacted with each other in northwestern China, where the major arid region in central Asian and big deserts located. Tengger Desert, one of these big deserts, located to the northeastern Tibetan Plateau and the northweastern Loess Plateau, is a key region interplayed by monsoon and westerly, and a transition area from semiarid to arid area and from the higher plateau to the lower basin. Owing to overlapping of sand dunes and lacking of natural outcrops in the desert region, a drilling program was conducted in the central desert in order to establish the stata of the desert center and to further recognize the drying history of the desert.
     The drill core (WEDP01), located in the center of the Tengger Desert, is of276m in depth with core recovery rate of62%(78%in0-147m,50%in147-276m). After determining the main magnetic carriers of the remanent magnetization magnetic hysteresis loops and thermomagnetic curves analysis from typical samples,remanance of paleomagnetic samples with an interval of20cm was measured using the superconductive magnetometer after systematic thermal demagnetization. Electron Spin Resonance (ESR) dating method was also applied to compare with the paleomagnetic measurement results for cross check in order to thoroughly establish the chronological framework of the drill core. Scanning Electron Microscope and grain-size component analsis were employed for sedimentary facies analysis; and grain-size, high and low frequency magnetic susceptibility and color index were all measured with an interval of10cm for paleoevironmental reconstruction. In addition, element was measured using the X-ray fluorescence spectrometer with an interval of1m. The paleoenvironment in the Tengger Desert center was reconstructed according to the series of redness, aeolian components and chemical weathering index. Based on the comparison of paleoenvironmtal indexes in Tengger Desert, Loess Plateau and deep ocean, the driving factors affecting the desert formation and evolution are further discussed. The following are the main conclusions of this thesis.
     1) On a systematic thermal demagnetization and remanence measurement, magneto stratigraphy of the drill core was produced including Brunhes Normal Polarity Chron, Matuyama Reversed Polarity Chron and nearly overall Gauss Normal Polarity Chron. The bottom of the drill core is in C2An.3n, thus the basal age (~3.55Ma) was calculated by extrapolation; and the B/M and M/G boundary is at33.17m and144.02m, respectively.
     2) The results of sedimentary facies analysis and paleoenvironmental records showed that the five stages of depositional environment changed in Tengger Desert after late Pliocene:3.55-3.1Ma, relatively hot and humid alluvial\diluvial-fluvial depositional environment, with little dust;3.1-2.6Ma, relatively warn and humid fluvial dominated fluvial-lacustrine depositional environment with low dust content;2.6-1.22Ma, relatively warm and alterlating humid and arid lacustrine depositional environment with high dust content;1.22-0.9Ma, relatively cold and arid lacustrine depositional environment with high dust content;0.9-OMa, cold and arid desert-lacustrine depositional environment. The continuous aeolian sand appeared afer0.9Ma, revealing the origin of Tengger Desert; and the the typical aeolian sand like present after0.68Ma suggesting the formation of Tengger Desert. Meanwhile, the weakening chemical weathering and abruptly increase of dust content suggest that significant drying event occurred in the Tengger Desert during2.85-2.6Ma; and the redness, an indication of temperature, also significantly decreased at2.85,0.9and0.68Ma, which is consistant with the drying processes, suggesting a drying-cooling trend in the Tengger desert area.
     3) The high sedimentary rate of the drill core from3.55-2.6Ma, revealed the uplift of Qilian and Helan mountains near the desert, consistant with the uplift of the Tibetan Plateau. The origin of Shiyang River in the Tengger Desert northwestern to the core after~0.9Ma, maybe suggest a further uplift of Qilian Mountains. The coupling of the tectonic movement with the drying events indicates that the stepwise uplifted Tibetan Plateau plays an important role in driving the desert formation and expansion in north China. This demonstrates the previous viewpoint about the desert evolution in northwestern China that the uplift of the Tibetan Plateau directly drove the desert formation. The uplift not only blocks the moisture from ocean resulting in the arid climate in the north China, but also supplies massive fluvial-lacustrine and alluvial-pluvial clastic sediments for the desert formation and expansion. Based on these, we concluded and suggested this formation modal of large desert in northwestern China as "Tectonic uplift-River and lake development-Desert formation". In addition, the North Hemisphere ice volume evolution also has a similar trend with the drying event in the Tengger Desert, indicating a close connection between them.However, the specific driving and feedback mechanism is still not clear and needs further investigations.
     4) Based on the previous study, the process of the desert formation and expansion in northwestern China are summarized from the late Pliocene, which includes four stepwise expansion processes from westerm distal deserts to eastern proximal deserts. Since~3.4Ma, the Taklimkan Desert and Guerbantunggut Desert first formed and further expansion occurred by~2.8-2.6Ma, while the desert environment did not develop in the Lop Nor area. Form0.9to0.6Ma, the Taklimakan Desert and Guerbantunggut Desert enlarged again and the Qaidam Desert, the Badain Jaran Desert and the Tengger Desert nearly simultaneously formed, suggesting the desert landscape emerging in the northweatern China; by the0.15Ma, these deserts expanded again and some deserts in the eastern and northeastern China also successively formed. Along with the deserts expansion, the dust loading increased and the distance between the source and deposition area also shortened, which resulted in the coherently rasing dust accumulation rate in the Loess Plateau and Pacific Ocean at3.4Ma,2.8Ma and0.9Ma.
引文
Akhmetiev, M.A., and Beniamovski, V.N.,2009. Paleogene floral assemblages around epicontinental seas and straits in Northern Central Eurasia:proxies for climatic and paleogeographic evolution. Geologica Acta,7(1):297-309.
    An, Z. S, Kutzbach, J. E, Prell, W. L, et al.,2001. Evolution of Asian monsoons and phased up lift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature,411:62-66.
    An, Z.,2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19,171-187.
    An, Z., Clemens, S.C., Shen, J., Qiang, X., Jin, Z., Sun, Y., Prell, W.L., Luo, J., Wang, S., Xu, H., 2011. Glacial-interglacial Indian summer monsoon dynamics. Science 333,719-723.
    An, Z., Colman, S.M., Zhou, W., Li, X., Brown, E.T.,Jull, A.J.T., Cai, Y., Huang, Y., Lu, X., Chang, H., Song, Y., Sun, Y., Xu, H., Liu, W., Jin, Z., Liu, X., Cheng, P., Liu, Y., Ai, L., Li, X., Liu, X., Yan, L., Shi, Z., Wang, X., Wu, F., Qiang, X., Dong, J., Lu, F., Xu, X.,2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci. Rep.2.
    An, Z., Huang, Y., Liu, W., Guo, Z., Steven, C, Li, L., Warren, P., Ning, Y., Cai, Y., Zhou, W., Lin, B., Zhang, Q., Cao, Y., Qiang, X., Chang, H., Wu, Z.,2005. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation. Geology 33,705-708.
    Arason, P., Levi, S.,2010. Maximum likelihood solution for inclination-only data in paleomagnetism. Geophysical Journal International 182,753-771.
    Ashley, G.M.,1978. Interpretation of polymodal sediments. The Journal of Geology 86,411-421.
    Bagnold, R., Barndorff-Nielsen, O.,1980. The pattern of natural size distributions. Sedimentology 27,199-207.
    Bailey, I., Liu, Q., Swann, G.E., Jiang, Z., Sun, Y., Zhao, X., Roberts, A.P.,2011. Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth and Planetary Science Letters 307, 253-265.
    Balsam, W.L., Deaton, B.C., Damuth, J.E.,1999. Evaluating optical lightness as a proxy for carbonate content in marine sediment cores. Marine Geology 161,141-153.
    Barron, V.& Torrent, J.,1986. Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour, Journal of Soil Science,37,499-510.
    Bauluz, B., Mayayo, M.J., Fernandez-Nieto, C, Gonzalez Lopez, J.M.,2000. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain):implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology 168, 135-150.
    Beget, J.E., Hawkins, D.B.,1989. Influence of orbital parameters on Pleistocene loess deposition in central Alaska. Nature 337,151-153.
    Beget, J.E., Stone, D.B., Hawkins, D.B.,1990. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary. Geology 18,40-43.
    Behrenfeld M.J., O'Malley R.T., Siegel D.A., McClain C.R., Sarmiento J.L., Feldman G.C., Milligan A.J., Falkowski P.G., Letelier R.M. and Boss E.S.2006. Climate-driven trends in contemporary ocean productivity. Nature 444,695-696.
    Bhatia, M.R., Crook, K.A.,1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to mineralogy and petrology 92,181-193.
    Bigham, J., Golden, D., Buol, S., Weed, S., Bowen, L.,1978. Iron oxide mineralogy of well-drained Ultisols and Oxisols:II. Influence on color, surface area, and phosphate retention. Soil Science Society of America Journal 42,825-830.
    Bowler J M, Chen K Z, Yuan B Y. Systematic variations in loess source areas:Evidence from Qaidam and Qinghai bansins, western China. In:Liu T S, ed. Aspects of Loess Research. Beijing:China Ocean Press,1987.39-51
    Boyd, P.W., Law, C.S., Wong, C., Nojiri, Y., Tsuda, A., Levasseur, M., Takeda, S., Rivkin, R., Harrison, P.J., Strzepek, R.,2004. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428,549-553.
    Butler, R.F.,2004. Paleomagnetism:Manetic domains to geologic terranes. Electronic Edition.
    Cai, M., Fang, X., Wu, F., Miao, Y., Appel, E.,2012. Pliocene-Pleistocene stepwise drying of Central Asia:Evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Tibetan Plateau. Global and Planetary Change 94-95,72-81.
    Cande, S.C., Kent, D.V.,1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 100,6093-6095.
    Cerling T E. Carbon dioxide in the atmosphere:evidence from Cenozoic and Mesozoic paleosols.American Journal of Science,1991,291:377-400.
    Cerling. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth andPlanet. Sci. Lett.,1984,71:229-240.
    Chang, H. et al.,2012. Magnetostratigraphic and paleoenvironmental records for a Late Cenozoic sedimentary sequence drilled from Lop Nor in the eastern Tarim Basin. Global and Planetary Change,80-81(0):113-122.
    Chang, H. et al.,2013. A Rb/Sr record of the weathering response to environmental changes in westerly winds across the Tarim Basin in the late Miocene to the early Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology:in press.
    Charreau, J., Gilder, S., Chen, Y., Dominguez, S., Avouac, J.P., Sevket, S., Jolivet, M., Li, Y., Wang, W.,2006. Magnetostratigraphy of the Yaha section, Tarim Basin (China):11 Ma acceleration in erosion and uplift of the Tian Shan mountains. Geology 34,181-184.
    Chen, F.H., Li, J., Zhang, W.,1991. Loess stratigraphy of the Lanzhou profile and its comparison with deep-sea sediment and ice core record. GeoJournal 24,201-209.
    Chen, J. et al.,2007. Nd and Sr isotopic characteristics of Chinese deserts:Implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta,71:3904-3914.
    Chen, J., An, Z., Head, J.,1999. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research 51,215-219.
    Chen, J., Ji, J., Balsam, W., Chen, Y., Liu, L., An, Z.,2002. Characterization of the Chinese loess-paleosol stratigraphy by whiteness measurement. Palaeogeography, Palaeoclimatology, Palaeoecology 183,287-297.
    Coleman, M., Hodges, K.,1995. Evidence for Tibetan Plateau uplift before 14Myr ago from a new age for east-west extension. Nature,374,49-52.
    Cornell, R.M., Schwertmann, U.,2003. The iron oxides:structure, properties, reactions, occurrences and uses. Wiley-Vch.
    Crucifix, M., Hewitt, C.D.,2005. Impact of vegetation changes on the dynamics of the atmosphere at the Last Glacial Maximum. Climate Dynamics 25,447-459.
    Cui, Z., Wu, Y., Liu, G., Ge, D., Pang, Q., Xu, Q.,1998. On Kunlun-Yellow River tectonic movement. Science in China Series D:Earth Sciences 41,592-600.
    Currie, B.S., Rowley, D.B. and Tabor, N.J.,2005. Middle Miocene paleoaltimetry of southern Tibet:implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology,33(3):181-184.
    Dasch, E.J.,1969. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochimica et Cosmochimica Acta 33,1521-1552.
    Derbyshire, E., Meng, X., Kemp, R.A.,1998. Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record. Journal of Arid Environments 39,497-516.
    DeCelles, P.G. et al.,2007. High and dry in central Tibet during the Late Oligocene. Earth and Planetary Science Letters,253(3):389-401
    DeCelles, P.G., Kapp, P., Ding, L. and Gehrels, G.,2007. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau:Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geological Society of America Bulletin, 119(5-6):654-680.
    Deines P. The isotopic composition of reduced organic carbon. In:Firtz P, Fontes J Ch. (Eds), Handbook of environmental Isotope Geochemistry. Elsevier, New York,1980, pp.331-406.
    Ding Z, Sun J, Yang S et al.,1998. Preliminary magnetostratigraphy of a thick aeolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Geophysical Research Letter,25, 1225-1228
    Ding, Z. L., E. Derbyshire, et al.,2005. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters,237(1-2):45-55.
    Ding, Z.L., Sun, J.M., Liu, T.S., Zhu, R.X., Yang, S.L., Guo, B.,1998. Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China. Earth -and Planetary Science Letters 161,135-143.
    Ding, Z., Sun, J., Rutter, N.W., Rokosh, D., Liu, T.,1999. Changes in Sand Content of Loess Deposits along a North-South Transect of the Chinese Loess Plateau and the Implications for Desert Variations. Quaternary Research 52,56-62.
    Ding, Z.L., Derbyshire, E., Yang, S.L., Sun, J.M., Liu, T.S.,2005. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters 237,45-55.
    Ding, Z.L., Derbyshire, E., Yang, S.L., Yu, Z.W., Xiong, S.F., Liu, T.S.,2002. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea D18O record. PALEOCEANOGRAPHY 17,1-21.
    Ding, Z.L., Rutter, N.W., Sun, J.M., Yang, S.L., Liu, T.S.,2000. Re-arrangement of atmospheric circulation at about 2.6Ma over northern China:evidence from grain size records of loess-palaeosol and red clay sequences. Quaternary Science Reviews 19,547-558.
    Ding, Z.L., Sun, J.M., Yang, S.L., Liu, T.S.,1998. Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Geophysical Research Letters 25,1225-1228.
    Dunlop, D.J., □zdemir,□.,2001. Rock magnetism:fundamentals and frontiers. Cambridge University Press.
    Dupont-Nivet, G., Krijgsman, W., Langereis, C.G., Abels, H.A., Dai, S., Fang, X.,2007. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature 445, 635-638.
    England, P. and Houseman, G.,1989. Extension During Continental Convergence, With Application to the Tibetan Plateau. J. Geophys. Res.,94(B12):17561-17579.
    Fang, X., Garzione, C., Van der Voo, R., Li, J., Fan, M.,2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth and Planetary Science Letters 210,545-560.
    Fang, X., Yan, M., Van der Voo, R., Rea, D.K., Song, C., Pares, J.M., Gao, J., Nie, J., Dai, S., 2005. Late Cenozoic deformation and uplift of the NE Tibetan Plateau:Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. Geological Society of America Bulletin 117,1208-1225.
    Garzione, C.N., Dettman, D.L., Quade, J., DeCelles, P.G. and Butler, R.F.,2000. High times on the Tibetan Plateau:Paleoelevation of the Thakkhola graben, Nepal. Geology,28(4):339-342.
    Garzione, C.N., Quade, J., DeCelles, P.G. and English, N.B.,2000. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth and Planetary Science Letters,183(1):215-229.
    Giosan, L., Flood, R.D., Aller, R.C.,2002. Paleoceanographic significance of sediment color on western North Atlantic drifts:I. Origin of color. Marine Geology 189,25-41.
    Guan, Q.Y., Pan, B.T., Li, N., Zhang, J.D., Xue, L.J.,2011. Timing and significance of the initiation of present day deserts in the northeastern Hexi Corridor, China. Palaeogeography, Palaeoclimatology, Palaeoecology,306,70-74.
    Harrison, T., Copeland, P.,Kidd, W.S.F.,Yin, A.,1992. Raising Tibet. Science,255(5052): 1663-1670.
    Haug, G., Maslin, M., Sarnthein, M., Stax, R., Tiedemann, R.,1995. Evolution of northwest Pacific sedimentation patterns since 6 Ma (Site 882). Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results 145,293-314.
    Haug, G.H., Ganopolski, A., Sigman, D.M., Rosell-Mele, A., Swann, G.E., Tiedemann, R., Jaccard, S.L., Bollmann, J., Maslin, M.A., Leng, M.J.,2005. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature 433,821-825.
    Hays, J.D., Imbrie, J., Shackleton, N.J.,1976. Variations in the Earth's orbit:pacemaker of the ice ages. Science, pp.1121-1132.
    He, Z., Zhou, J., Lai, Z., Yang, L., Liang, J., Long, H., Ou, X.,2010. Quartz OSL dating of sand dunes of Late Pleistocene in the Mu Us Desert in northern China. Quaternary Geochronology 5, 102-106.
    Heller, F., and Tungsheng, L.,1984. Magnetism of Chinese loess deposits. Geophysical Journal of the Royal Astronomical Society,77(1):125-141.
    Heller, F., Liu, X., Liu, T. and Xu, T.,1991. Magnetic susceptibility of loess in China.Earth and Planetary Science Letters,103(1):301-310.
    Heller, F., Liu,T.S.,1982. Magnetostratigraphical dating of loess deposits in China Nature,300: 431-433.
    Helmke, J.P., Schulz, M., Bauch, H.A.,2002. Sediment-color record from the northeast Atlantic reveals patterns of millennial-scale climate variability during the past 500,000 years. Quaternary Research 57,49-57.
    Howard, J.L., Amos, D.F., Lee Daniels, W.,1996. Micromorphology and dissolution of quartz sand in some exceptionally ancient soils. Sedimentary Geology 105,51-62.
    Hren, M. T., B. Bookhagen, et al.2009.δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau:Implications for moisture sources and paleoelevation reconstructions. Earth and Planetary Science Letters 288,20-32.
    Hsii, K., Ryan, WBF,Cita, MB,1973. Late Miocene desiccation of the Mediterranean, nature, 242(5395):240-244.
    Hsu, K.J., Montadert, L.,Bernoulli, D.,Cita, M.B.,Erickson, A.,Garrison, R.E.,Kidd, R.B.,Melieres, F.,Muller, C.,Wright, R.,1977. History of the Mediterranean salinity crisis. Nature,267(5610):399-403.
    Hulme, M., Marsh, R.,1990. Global Mean Monthly Humidity Surfaces for 1930-59,1960-69 and Projected for 2030. Report to UNEP/GEMS/GRID. Climate Research Unit, University of East Anglia, Norwich.
    Jiang, H., Ding, Z. et al.2007. Magnetostratigraphy of the Neogene Sikouzi section at Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology 243(1-2):223-234.
    Jiang, H.C., Ji, J.L., Gao, L., Tang, Z.H., Ding, Z.L.,2008. Cooling-driven climate change at 12-11 Ma:multiproxy records from a long fluviolacustrine sequence at Guyuan, Ningxia, China Palaeogeogr. Palaeoclimatol. Palaeoecol.265,148-158.
    Jickells, T., An, Z., Andersen, K.K., Baker, A., Bergametti, G., Brooks, N., Cao, J., Boyd, P., Duce, R., Hunter, K.,2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308,67-71.
    Jin, Z., Cao, J., Wu, J., Wang, S.,2006. A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia. Earth Surface Processes and Landforms 31, 285-291.
    John, K.E.S., Krissek, L.A.,2002. The late Miocene to Pleistocene ice-crafting history of southeast Greenland. Boreas 31,28-35.
    Kapp, P. et al.,2011. Wind erosion in the Qaidam basin, central Asia:Implications for tectonics, paleoclimate, and the source of the Loess Plateau. GSA Today,21(4/5):4-10.
    Kirschvink, J.,1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society,62(3):699-718.
    Kohler, P., Bintanja, R., Fischer, H., Joos, F., Knutti, R., Lohmann, G., Masson-Delmotte, V., 2010. What caused Earth's temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews 29,129-145.
    Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. and Wilsonk, D.S.,1999. Chronology, causes and progression of the Messinian salinity crisis, nature:652-655.
    Kutzbach J E, Guetter P J, Ruddiman W F et al. Sensitivity of climate to Late Cenozoic up lift in Southern Asia and the American West:Numerical experiments. Journal of Geophysical Research,1989,94 (D15):18393-18407.
    Kutzbach, J.E., Prell, W.L., Ruddiman, W.F.,1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. The Journal of Geology:177-190.
    Laj, C., Channell, J.E.T.,2007. Geomagnetic excursions, in Treatise on Geophysics, vol.5, Geomagnetism, edited by M. Kono, pp.373-416, Elsevier, Amsterdam.
    Larrasoana, J.C., Roberts, A.P., Rohling, E.J.,2008. Magnetic susceptibility of eastern Mediterranean marine sediments as a proxy for Saharan dust supply? Marine Geology 254, 224-229.
    Larsen, H., Saunders, A., Clift, P., Beget, J., Wei, W., Spezzaferri, S., Ali, J., Cambray, H., Demant, A., Fitton, G.,1994. Seven million years of glaciation in Greenland. Science 264, 952-955.
    Laurent, M., Falgueres, C., Bahain, J.J., Rousseau, L., Van Vliet Lano, B.,1998. ESR dating of quartz extracted from quaternary and neogene sediments:method, potential and actual limits. Quaternary Science Reviews 17,1057-1062.
    Li, B., Zhang, D.D., Jin, H., Wu, Z., Yan, M., Sun, W., Zhu, Y., Sun, D.,2000. Paleo-monsoon activities of Mu Us Desert, China since 150 ka B.P.-a study of the stratigraphic sequences of theMilanggouwan Section, Salawusu River area. Palaeogeography, Palaeoclimatology, Palaeoecology 162,1-16.
    Li, J.,1991. The environmental effects of the uplift of the Qinghai-Xizang Plateau. Quaternary Science Reviews 10,479-483.
    Li, M., Fang, X., Yi, C., Gao, S., Zhang, W., Galy, A.,2010. Evaporite minerals and geochemistry of the upper 400 m sediments in a core from the Western Qaidam Basin, Tibet. Quaternary International 218,176-189.
    Lisiecki, L.E., Raymo, M.E.,2005. A Plio-Pleistocene stack of 57 globally distributed benthic 818 O records. Paleoceanography 20,522-533.
    Liu, C., Masuda, A., Okada, A., Yabuki, S., Fan, Z.,1994. Isotope geochemistry of Quaternary deposits from the arid lands in northern China. Earth and Planetary Science Letters 127,25-38.
    Liu, T., Ding, Z.,1998. Chinese loess and the paleomonsoon. Annual.Review of Earth and Planetary Sciences 26,111-145.
    Liu, W.M., Zhang, L.Y., Sun, J.M.,2010. High resolution magnetostratigraphy of Luochuan loess-paleosol sequence in the central Chinese Loess Plateau. Chinese Journal of Geophysics 53,888-894. (in Chinese with English abstract).
    Lu, H., Wang, X., and Li, L.,2010. Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in Asia. From:Monsoon Evolution and Tectonic-Climate Linkage in Asia, (eds:Clift,P. D., Tada, R., and Zheng, H.), Geological Society, London, Special publication,342,31-45.
    Maher, B.A.,1998. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 137,25-54.
    Maher, B.A., Prospero, J.M., Mackie, D., Gaiero, D., Hesse, P.P., Balkanski, Y.,2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews 99,61-97.
    Maher, B.A., Thompson, R.,1995. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quaternary Research 44,383-391.
    Maher, B.A., Thompson, R., Zhou, L.P.,1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon:a new mineral magnetic approach. Earth and Planetary Science Letters 125,461-471.
    Mahowald, N.M., Kloster, S., Engelstaedter, S., Moore, J.K., Mukhopadhyay, S., McConnell, J.R., Albani, S., Doney, S.C., Bhattacharya, A., Curran, M.,2010a. Observed 20th century desert dust variability:impact on climate and biogeochemistry. Atmospheric Chemistry and Physics 10,10875-10893.
    Mahowald, N.M., Kloster, S., Engelstaedter, S., Moore, J.K., Mukhopadhyay, S., McConnell, J.R., Albani, S., Doney, S.C., Bhattacharya, A., Curran, M.,2010b. Observed 20th century desert dust variability:impact on climate and biogeochemistry. Atmospheric Chemistry and Physics 10,10875-10893.
    Mahowald, N.M., Muhs, D.R., Levis, S., Rasch, P.J., Yoshioka, M., Zender, C.S., Luo, C.,2006a. Change in atmospheric mineral aerosols in response to climate:Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research 111,D10202.
    Mahowald, N.M., Yoshioka, M., Collins, W.D., Conley, A.J., Fillmore, D.W., Coleman, D.B., 2006b. Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophysical Research Letters 33, L20705.
    Manabe, S., Broccoli, A.J.,1990. Mountains and arid climates of middle latitudes. Science 247, 192-195.
    Manabe, S., Terpstra, T.B.,1974. The effects of mountains on the general circulation of the Atmospere as identified by numerical expriments. Journal of the Atmospheric Sciences 31, 3-42.
    Martin J. H. and Fitzwater S. E.1988. Iron-deficiency limits phytoplankton growth in the Northeast Pacific Subarctic. Nature 331,341-343.
    Martin, J.H.,1990. Glacial-interglacial CO2 change:The iron hypothesis. PALEOCEANOGRAPHY 5,1-13.
    Martin, J.H., Coale, K., Johnson, K., Fitzwater, S.E., Gordon, R., Tanner, S., Hunter, C., Elrod, V., Nowicki, J., Barber, R., Lindley, S., Watson, A., Van Scoy, K., Law, C., Liddicoat, M.,1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371,123.
    McLennan, S.,1989. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry 21,169-200.
    McLennan, S., Hemming, S., McDaniel, D., Hanson, G.,1993. Geochemical approaches to sedimentation, provenance, and tectonics. Special Papers-Geological Society of America, 21-21.
    Meyer, B., Tapponnier, P., Bourjot, L., Metivier, F., Gaudemer, Y., Peltzer, G., Shunmin, G., Zhitai, C.,1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International 135,1-47.
    Miao, X., Sun, Y., et al.2004. Spatial pattern of grain size in the Late Pliocene "Red Clay" deposits (North China) indicates transport by low-level northerly winds. Palaeogeography, Palaeoclimatology, Palaeoecology 206(1-2):149-155.
    Middleton, G.V.,1976. Hydraulic interpretation of sand size distributions. Journal of Geology 84, 405-426.
    Molnar, P.2005. Mio-Plicene growth of the Tibetan plateauand evolution of East Asian climate, Palaeontol. Electron.,8,2A,23 pp.
    Molnar, P., England, P., Martinod, J.,1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys.31,357-396.
    Mudelsee, M., Schulz, M.,1997. The Mid-Pleistocene climate transition:onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth and Planetary Science Letters 151,117-123.
    Murray, A.S., Wintle, A.G.,2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32,57-73.
    Nagao, S., Nakashima, S.,1992. The factors controlling vertical color variations of North Atlantic Madeira Abyssal Plain sediments. Marine Geology 109,83-94.
    Nesbitt, H., Young, G.,1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. nature 299,715-717.
    Nichols, G.,2009. Sedimentology and stratigraphy. Wiley-Blackwell, A John Wiley&Sons, Ltd.
    Nie, J., King, J., Jackson, M., Fang, X., Song, Y.,2008. AC magnetic susceptibility studies of Chinese red clay sediments between 4.8 and 4.1 Ma:Paleoceanographic and paleoclimatic implications. Journal of Geophysical Research:Solid Earth (1978-2012) 113.
    Nie, J., King, J.W., Fang, X.,2007. Enhancement mechanisms of magnetic susceptibility in the Chinese red-clay sequence. Geophysical Research Letters 34, L19705.
    Pachur, H.-J., Wunnemann, B., Zhang, H.,1995. Lake evolution in the Tengger Desert, Northwestern China, during the last 40,000 years. Quaternary Research 44,171-180.
    Pan, B., Burbank, D., Wang, Y., Wu, G., Li, J., Guan, Q.,2003. A 900 k.y. record of strath terrace formation during glacial-interglacial transitions in northwest China. Geology 31,957-960.
    Pearson, P. N., Palmer, M. R., Atmospheric carbon dioxide concentrations over the past 60 million years, Nature,2000,406:695-699.
    Peck, J., King, J., Colman, S., Kravchinsky, V.,1994. A rock-magnetic record from Lake Baikal, Siberia:evidence for Late Quaternary climate change. Earth and Planetary Science Letters 122, 221-238.
    Peck, J.A., Green, R.R., Shanahan, T., King, J.W., Overpeck, J.T., Scholz, C.A.,2004. A magnetic mineral record of Late Quaternary tropical climate variability from Lake Bosumtwi, Ghana. Palaeogeography, Palaeoclimatology, Palaeoecology 215,37-57.
    Polissar, P.J., Freeman, K.H., Rowley, D.B., McInerney, F.A., Currie, B.S.,2009. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth and Planetary Science Letters 287,64-76.
    Prell, W.L., Kutzbach, J.E.,1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360,647-652.
    Pullen, A. et al.,2011. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology,39(11):1031-1034.
    Pye, K.,1987. Aeolian dust and dust deposits. Academic Press, London.
    Pye, K.,1995. The nature, origin and accumulation of loess. Quaternary Science Reviews, 14(7-8):653-667.
    Qiang, M., Chen, F., Zhou, A., Xiao, S., Zhang,J., Wang, Z.,2007. Impacts of wind velocity on sand and dust deposition during dust storm as inferred from a series of observations in the northeastern Qinghai-Tibetan Plateau, China. Powder Technology 175,82-89.
    Qiang, X. K., Li, Z. X. et al.2001. Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet. Earth and Planetary Science Letters 187(1-2):83-93.
    Qiang, X.K., An, Z.S., Song, Y.G., Chang, H., Sun, Y.B., Liu, W.G., Ao, H., Dong, J.B., Fu, C.F., Wu, F., Lu, F.Y., Ca, Y.J., Zhou, W.J., Cao, J.J., Xu, X.W., Ai, L.,2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Science China Earth Sciences 54,136-144.
    Qin, X., Cai, B., Liu, T.,2005. Loess record of the aerodynamic environment in the east Asia monsoon area since 60,000 years before present. Journal of Geophysical Research 110, B01204.
    Rainer, G.,1989. Electron spin resonance (ESR) dating. Quaternary International 1,65-109.
    Ramstein, G., Fluteau, F., Besse, J., Joussaume, S.,1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years, nature, 386(6627):788-795.
    Rao, W., Yang, J., Chen, J. and Li, G.,2006. Sr-Nd isotope geochemistry of eolian dust of the arid-semiarid areas in China:Implications for loess provenance and monsoon evolution. Chinese Science Bulletin,51(12):1401-1412.
    Raymo, M.,1994. The initiation of Northern Hemisphere glaciation. Annual Review of Earth and Planetary Sciences,22(1):353-383.
    Raymo, M., Ruddiman, W.F.,1992. Tectonic forcing of late Cenozoic climate, nature 359, 117-122.
    Rea, D.K.,1994. The paleoclimatic record provided by eolian deposition in the deep sea:The geologic history of wind. Reviews of Geophysics,32(2):159-195.
    Rea, D.K., Snoeckx, H. and Joseph, L.H.,1998. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift, and cooling of the northern hemisphere. PALEOCEANOGRAPHY,13(3):215-224.
    Roberts, A.P., Cui, Y., Verosub, K.L.,1995. Wasp-waisted hysteresis loops:Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. Journal of Geophysical Research 100,17909-17917,17924.
    Rogl, F.,1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica,50(4):339-349.
    Rossel V, Minasny, B, Roudier, P.& McBratney, A. B.,2006. Colour space models for soil science, Geoderma,133,320-337.
    Ruddiman, W.F., Kutzbach, J.E.,1989a. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west. Journal of Geophysical Research: Atmospheres 94,18409-18427.
    Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M., Backman, J.,1989b. Pleistocene evolution:Northern hemisphere ice sheets and North Atlantic Ocean. PALEOCEANOGRAPHY 4,353-412.
    Ryan, W.B.F.,2009. Decoding the Mediterranean salinity crisis. Sedimentology,56(1):95-136.
    Savin, S. M., R. G. Douglas, and F. G. Stehli.1975. Tertiary marine paleotemperatures. Geological Society of America Bulletin 86:1499-1510.
    Sawyer, E.,1986. The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico metasedimentary belt, Superior Province, Canada. Chemical Geology 55,77-95.
    Saylor, J., Quade, J., Dettman, D., DeCelles, P., Kapp, P., Ding, L.,2009. The late Miocene through present paleoelevation history of southwestern Tibet. American Journal of Science 309, 1-42.
    Schwertmann, U.,1971. Transformation of hematite to goethite in soils. Nature 232,624-625.
    Schwertmann, U.,1987. Occurrence and formation of iron oxides in various pedoenvironments, Iron in soils and clay minerals. Springer, pp.267-308.
    Shackleton, N. J., J. Backman, H. Zimmerman, D. V. Kent, M. A. Hall, D. G. Roberts, D. Schnitker, J. G. Baldauf, A. Desprairies, R. Homrighausen, P. Huddlestun, J. B. Keene, A. J. Kaltenback, K. A. O. Krumsiek, A. C. Morton, J. W. Murray, and J. Westberg-Smith.1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:620-623.
    Shackleton, N.,1987. Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews, 6(3):183-190.
    Shackleton, N., An, Z., Dodonov, A., Gavin, J., Kukla, G., Ranov, V., Zhou, L.,1995. Accumulation rate of loess in Tadjikistan and China:relationship with global ice volume cycles, Quaternary Proceedings, pp.1-6.
    Singh, B., Gilkes, R.,1992. Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia. Journal of Soil Science 43,77-98.
    Song, C., Gao, D., Fang, X., Cui, Z., Li, J., Yang, S., Jin, H., Douglas, B., L, K.J.,2005. Late Cenozoic high-resolution magnetostratigraphy in the Kunlun Pass Basin and its implications for the uplift of the northern Tibetan Plateau. Chinese Science Bulletin 50,1912-1922.
    Song, Y., Fang, X., et al.2007. Late Neogene rock magnetic record of climatic variation from Chinese eolian sediments related to uplift of the Tibetan Plateau. Journal of Asian Earth Sciences 30(2):324-332.
    Stevens, T. et al.,2013. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau. Quaternary Science Reviews(accept).
    Stevens, T., Palk, C., Carter, A., Lu, H. and Clift, P.D.,2010. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons. Geological Society of America Bulletin,122(7-8):1331-1344.
    Sun, D.H., An, Z.S., Shaw, J., Bloemendal, S.J., Sun, Y.B.,1998a. Magnetostratigraphy and Palaeoclimatic significance of Late Tertiary Eolian Sequences in the Chinese Loess Plateau. Geophysical Journal International 134,207-212.
    Sun, D.H., Shaw, J., An, Z.S., Chen, M.Y., Yue, L.P.,1998b. Magnetostratigraphy and paleoclimatic interpretation of continuous 7.2Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophysical Research Letters 25,85-88.
    Sun, D., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang, F., An, Z., Su, R.,2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sediment. Geol.152,263-277.
    Sun, D., Zhang, Y., Han, F., Zhang, Y., Yi, Z., Li, Z., Wang, F., Wu, S., Li, B.,2011a. Magnetostratigraphy and palaeoenvironmental records for a Late Cenozoic sedimentary sequence from Lanzhou, Northeastern margin of the Tibetan Plateau. Global and Planetary Change 76,106-116.
    Sun, D., Bloemendal, J.,Yi, Z.,Zhu, Y.,Wang, X.,Zhang, Y.,Li, Z.,Wang, F.,Han, F.,2011b. Palaeomagnetic and palaeoenvironmental study of two parallel sections of late Cenozoic strata in the central Taklimakan Desert:Implications for the desertification of the Tarim Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 300,1-10.
    Sun, D.H., Su, R.X., Bloemendal, J., Lu, H.Y.,2008. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China:Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation. Palaeogeography, Palaeoclimatology, Palaeoecology,264,39-53.
    Sun, Donghuai, J. Bloemendal, et al.2004. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena 55:325-340.
    Sun, J.2002. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters 203:845-859.
    Sun, J., Ye, J., Wu, W., Ni, X., Bi, S., Zhang, Z., Liu, W., Meng, J.,2010a. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology 38,515.
    Sun, J. and Zhu, X.,2010b. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8Ma:Implications for provenance change. Earth and Planetary Science Letters,290(3-4):438-447.
    Sun, J.,2005. Nd and Sr isotopic variations in Chinese eolian deposits during the past 8 Ma: Implications for provenance change. Earth and Planetary Science Letters,240(2):454-466.
    Sun, J., Liu T,2006. The Age of the Taklimakan Desert. SCIENCE,312,1621.
    Sun, J., Zhang L., et al.2008. Evidence for enhanced aridity in the Tarim Basin of China since 5.3Ma. Quaternary Science Reviews 27:1012-1023.
    Sun, J., Zhang, L., Deng, C. and Zhu, R.,2008. Evidence for enhanced aridity in the Tarim Basin of China since 5.3Ma. Quaternary Science Reviews,27:1012-1023.
    Sun, J., Zhang, Z. and Zhang, L.,2009. New evidence on the age of the Taklimakan Desert. Geology,37(2):159-162.
    Sun, J.M., Zhu, R.X., Bowler, J.,2004. Timing of the Tian Shan Mountains uplift constrained by magnetostratigraphic analysis of molasses deposits. Earth Planet. Sci. Lett.219,239-253.
    Sun, Jimin, Ding Zhongli, Liu Tungsheng, Dean Rokosh, Nat Rutter,1999.580,000-year environmental reconstruction from aeolian depositsat the Mu Us Desert margin, China. Quaternary Science Reviews,18,1351-1364.
    Sun, Y. et al.,2007.Distinguishing the sources of Asian dust based on electron spin resonance signal intensity and crystallinity of quartz. Atmospheric Environment,41:8537-8548.
    Sun, Y., He, L., Liang, L., An, Z.,2011c. Changing color of Chinese loess:Geochemical constraint and paleoclimatic significance. Journal of Asian Earth Sciences 40,1131-1138.
    Sun, Z.C., Feng, X., Li, D., Yang, F., Qu, Y., Wang, H.,1999. Cenozoic Ostracoda and palaeoenvironments of the northeastern Tarim Basin, western China. Palaeogeogr. Palaeoclimatol. Palaeoecol.148,37-50.
    Tang, M. and Reiter, E.R.,1984. Plateau monsoons of the Northern Hemisphere:A comparison between North America and Tibet. Monthly Weather Review,112(4):617-637.
    Tapponnier, P., Xu, Z., Francoise, R., Bertrand, M., Nicolas, A., Gerard, W., Yang, J.,2001. Oblique stepwise rise and growth of the Tibet Plateau. Science 294,1671-1677.
    Tauxe, L.,2012. Essentials of Paleomagnetism:Second Web Edition. Electronic Edition.
    Tauxe, L., Mullender, T.A.T., Pick, T.,1996. Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. Journal of Geophysical Research 101,571-584.
    Taylor, S.R., McLennan, S.M.,1985. The continental crust:its composition and evolution.
    Thompson, J.A. and J. Bell (1996), Color index for identifying hydric conditions for seasonally saturated mollisols in Minnesota, Soil Sci. Soc. Am. J.,60,1979-1988
    Thompson, R., Battarbee, R.W., O'sullivan, P., Oldfield, F.,1975. Magnetic susceptibility of lake sediments. Limnology and Oceanography,687-698.
    Thompson, R., Oldfield, F.,1986. Environmental Magnetism. Allen and Unwin, London.
    Tian, L., Masson-Delmotte, V., Stievenard, M., Yao, T., Jouzel, J.,2001. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J. Geophys. Res. 106,28081-28088.
    Tian, L., Yao, T., MacClune, K., White, J.W.C., Schilla, A., Vaughn, B., Vachon, R., Ichiyanagi, K.,2007. Stable isotopic variations in west China:A consideration of moisture sources. J. Geophys. Res.112,1-12.
    Tsuda A., Takeda S., Saito H., Nishioka J., Nojiri Y., Kudo I., Kiyosawa H., Shiomoto A., Imai K., Ono T., Shimamoto A., Tsumune D., Yoshimura T., Aono T., Hinuma A., Kinugasa M., Suzuki K., Sohrin Y., Noiri Y., Tani H., Deguchi Y., Tsurushima N., Ogawa H., Fukami K., Kuma K. and Saino T.2003. A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science 300,958-961.
    Viscarra Rossel, R., Minasny, B., Roudier, P., McBratney, A.,2006. Colour space models for soil science. Geoderma 133,320-337.
    Wang, P., Clemens, S., Beaufort, L., Braconnot, P., Ganssen, G., Jian, Z., Kershaw, P., Sarnthein, M.,2005. Evolution and variability of the Asian monsoon system:state of the art and outstanding issues. Quaternary Science Reviews 24,595-629.
    Wang, X., Xia, D., Wang, T., Xue, X., Li, J.,2008. Dust sources in arid and semiarid China and southern Mongolia:Impacts of geomorphological setting and surface materials. Geomorphology 97,583-600.
    Wang, X., Sun, D., Wang, F., Li, B., Wu, S., Guo, F., Li, Z., Zhang, Y., Chen, F.,2013. A high-resolution multi-proxy record of late Cenozoic environment change from central Taklimakan Desert, China. Climate of the Past Discussions 9,2661-2680.
    Wang, X., Sun, D., Chen, F., Wang, F., Li, B., Popov, S.V., Wu, S., Zhang, Y., Li, Z.,2014. Cenozoic paleo-environmental evolution of the Pamir-Tien Shan convergence zone. Journal of Asian Earth Sciences 80,84-100.
    Wang, Y., Yang, J., Chen, J., Zhang, K., Rao, W.,2007. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7Ma:Implications for the East Asian winter monsoon and source areas of loess. Palaeogeography, Palaeoclimatology, Palaeoecology 249,351-361.
    Watson, A., Bakker, D., Ridgwell, A., Boyd, P., Law, C.,2000. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. nature 407,730-733.
    Weltje, G.J., Prins, M.A.,2007. Genetically meaningful decomposition of grain-size distributions. Sedimentary Geology 202,409-424.
    Whalley, W. B., J. R. Marshall, et al.1982. Origin of desert loess from some experimental observations. Nature 300:433-435.
    White, W.M.,2013. Geochemistry. John Wiley & Sons.
    Wu, F., Fang, X., Ma, Y., Herrmann, M., Mosbrugger, V., An, Z., Miao, Y.,2007. Plio-Quaternary stepwise drying of Asia:Evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth and Planetary Science Letters 257,160-169.
    Wu, Y., Cui, Z., Liu, G., Ge, D., Yin, J., Xu, Q., Pang, Q.,2001. Quaternary geomorphological evolution of the Kunlun Pass area and uplift of the Qinghai-Xizang (Tibet) Plateau. Geomorphology 36,203-216.
    Xu, Q., Ding, L., Zhang, L., Cai, F., Lai, Q., Yang, D., Liu-Zeng, J.,2013. Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau. Earth and Planetary Science Letters 362,31-42.
    Xu, Y., Yue, L., Li, J., Sun, L., Sun, B., Zhang, J., Ma, J., Wang, J.,2009. An 11-Ma-old red clay sequence on the Eastern Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 284,383-391.
    Yang J. D, Chen J, Tao X C, et al.2001. Sr isotope ratios of acid-leached loess residues from Luochuan, China:A tracer of continental weathering intensity over the past 2.5Ma. Geochemical Journal 35:403-412
    Yang, J., Li, G., Rao, W., Ji, J.,2009. Isotopic evidences for provenance of East Asian Dust. Atmospheric Environment 43,4481-4490.
    Yang, S., Ding, F., Ding, Z.,2006. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochimica et Cosmochimica Acta 70,1695-1709.
    Yang, X., Rost, K.T., Lehmkuhl, F., Zhenda, Z., Dodson, J.,2004. The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum. Quaternary International 118,69-85.
    Yang, X., Zhu, B., White, P.D.,2007. Provenance of aeolian sediment in the Taklamakan Desert of western China, inferred from REE and major-elemental data. Quaternary International 175, 71-85.
    Yang, X., Scuderi, L., Paillou, P., Liu, Z., Li, H., Ren, X.,2011. Quaternary environmental changes in the drylands of China-A critical review. Quaternary Science Reviews 30,3219-3233.
    Yang, X., Li, H., Conacher, A.,2012. Large-scale controls on the development of sand seas in northern China Quaternary International 250,74-83.
    Yin, G., Lin, M., Lu, Y., Li, J., Han, F.,2007. Preliminary ESR dating results on loess samples from the loess-paleosol sequence at Luochuan, Central Loess Plateau, China. Quaternary Geochronology 2,381-385.
    Yokoo, Y., T. Nakano, et al.2004. Mineralogical variation of Sr-Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific. Chemical Geology 204:45-62.
    Yokoo, Y., T. Nakano, et al.2004. Mineralogical variation of Sr-Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific. Chemical Geology 204:45-62.
    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science,2001,292:686-693.
    Zan, J., Fang, X., Nie, J., Teng, X. and Yang, S.,2012. Rock magnetism in loess from the middle Tian Shan:Implications for paleoenvironmental interpretations of magnetic properties of loess deposits in Central Asia. Geochemistry, Geophysics, Geosystems,13(10).
    Zan, J., X. Fang, et al. (2010). A rock magnetic study of loess from the West Kunlun Mountains Journal of Geophysical Research 115(B10101):1-9.
    Zhang, H., Wunnemann, B., Ma, Y., Peng, J., Pachur, H.-J., Li, J., Qi, Y., Chen, G., Fang, H., Feng, Z.,2002. Lake Level and Climate Changes between 42,000 and 18,00014 C yr BP in the Tengger Desert, Northwestern China. Quaternary Research 58,62-72.
    Zhang, H.C., Peng, J.L., Ma, Y.Z., Chen, G.J., Feng, Z.-D., Li, B., Fan, H.F., Chang, F.Q., Lei, G.L., Wu"nnemann, B.,2004. Late Quaternary palaeolake levels in Tengger Desert, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology 211,45-58.
    Zhang Xiaoye, Zhang Guangyu, et al.1996. "Elemental tracers for Chinese soure dust." SCIENCE IN CHINA (Series D) 39(5):512-521.
    Zhang, X.Y. et al.,2003. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett.,30(24):2272.
    Zhang, Z.S., Wang, H., Guo, Z.T., Jiang, D.,2007. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeography, Palaeoclimatology, Palaeoecology,245(3-4):317-331.
    Zheng, D., Zhang, P.-Z., Wan, J., Yuan, D., Li, C, Yin, G., Zhang, G., Wang, Z., Min, W., Chen, J.,2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters 248,198-208.
    Zheng, H., C. M. Powell, et al.2003. Late Neogene loess deposition in southern Tarim Basin: tectonic and palaeoenvironmental implications. Tectonophysics 375:49-59.
    Zheng, H., Powell, C., An, Z., Zhou, J. and Dong, G.,2000. Pliocene uplift of the northern Tibetan Plateau. Geology,28,715-718.
    Zhou, L., Oldfield, F., Wintle, A., Robinson, S., Wang, J.,1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346,737-739.
    Zhu, Y. et al.,2008. A new magnetostratigraphic framework for late Neogene Hipparion Red Clay in the eastern Loess Plateau of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(1-2):47-57.
    Zijderveld, J.,1967. AC demagnetization of rocks:analysis of results. Methods in paleomagnetism,254-286.
    安芷生,王苏民,昊锡浩等,1998.中国黄土高原风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动.中国科学(D辑),28,481-490.
    蔡厚维,1986.巴丹吉林地区第四纪地层划分的探讨.甘肃地质,3,142-153.
    曹景轩,王世环,袁修福,陈金荣,1985.1:20万查干布拉格幅地质图及说明.宁县地质矿产局,银川.
    陈骏,安芷生,刘连文,季俊峰,杨杰东,陈旸,2001.最近2.5Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化.中国科学(D辑)31,136-145.
    陈明扬,1991.中国风尘堆积与全球干旱化.第四纪研究,4,361-371.
    陈旸,陈骏,刘连文,2001.甘肃西峰晚第三纪红粘土的化学组成及化学风化特征.地质力学学报7,167-175.
    崔之久,伍永秋,刘耕年,等,1998.关于“昆仑-黄河”运动.中国科学(D辑),28(1):53-59.
    邓成龙,刘青松,潘永信,朱日祥,2007.中国黄土环境磁学.第四纪研究27,193-209.
    董光荣,高全洲,邹学勇,1995a.晚更新世以来巴丹吉林沙漠南缘气候变化.科学通报,40(13):423-427.
    董光荣,陈惠忠,王贵勇,李孝泽,邵亚军,金炯,1995b.150Ka以来中国北方沙漠、沙地演化和气候变迁.中国科学(B辑)25,1303-1312.
    董光荣,靳鹤龄,王贵勇,高尚玉,1999.中国沙漠形成演化与气候变化研究.中国科学院院刊,276-280.
    董光荣,李保生,高尚玉,1983.由萨拉乌苏河地层看晚更新世以来毛素乌沙漠的变迁.中国沙漠,3(2):9-14.
    董光荣,李森,李保生,王跃,阎满存,1991.中国沙漠形成演化的初步研究.中国沙漠11,23-32.
    董光荣,王贵勇,陈惠忠,金炯,王跃,1994.中国沙漠形成、演化与青藏高原隆升的关系,青藏高原与全球变化研讨会论文集,北京,pp.13-29.
    俄有浩;苏志珠;王继和;翟新伟;刘虎俊;唐进年;丁峰;张锦春;廖空太;郑庆钟;2006.库姆塔格沙漠综合科学考察成果初报.中国沙漠,26(5):693-697.
    方小敏,吕连清,杨胜利,李吉均,安芷生,蒋平安,陈秀玲,2002a.昆仑山黄土与中国西部沙漠发育和高原隆升.中国科学(D辑)31,177-184.
    方小敏,史正涛,杨胜利,李吉均,蒋平,2002b.天山黄土和古尔班通古特沙漠发育及北疆干旱化.科学通报.47(7):540-545.
    方小敏,徐先海,宋春晖,韩文霞,孟庆泉,鸟居雅之,2007.临夏盆地新生代沉积物高分辨率岩石磁学记录与亚洲内陆干旱化过程及原因.第四纪研究27,989-1000.
    高红山,潘保田等,2005.祁连山河流阶地的形成时代与机制探讨.地理科学.25(2):197-202
    高全洲,董光荣,李保生等,1995.晚更新世以来巴丹吉林南缘地区沙漠演化.中国沙漠,15(4):345-352.
    何柳,孙有斌,安芷生,2010.中国黄土颜色变化的控制因素和古气候意义.地球化学39,447-455.
    胡守云,邓成龙,Appel, E., Verosub, H.,2001湖泊沉积物磁学性质的环境意义.科学通报46,1491-1494.
    胡守云,王苏民,Appel, E.,吉磊,1998.呼伦湖湖泊沉积物磁化率变化的环境磁学机制.中国科学:D辑28,334-339.
    贾佳,夏敦胜,魏海涛,金明,刘现彬,王博,2011.阿西克剖面记录的西天山地区黄土磁学性质及古气候意义初探.中国沙漠31,1406-1415.
    孔立,戴霜,刘学,朱强,赵杰,张明震,黄永波,刘俊伟,2010.六盘山群火石寨剖面沉积物色度记录的128.10-115.30Ma气候变化.兰州大学学报(自然科学版)46,44-50.
    李保生,高全洲,阎满存等,2005.150ka BP以来巴丹吉林沙漠东南区域地层序列的新研究.中国沙漠,24(4):457-465.
    李保生,靳鹤龄,吕海燕,1998.150ka以来毛乌素沙漠的堆积与变迁过程.中国科学(D辑),28(1):85-90.
    李吉均,方小敏,1998.青藏高原隆起与环境变化研究.科学通报43,1569-1574.
    李吉均,文世宣,张青松,王富葆,郑本兴,李炳元,1979.青藏高原隆起的时代、幅度和形式的探讨.中国科学,608-616.
    李吉均,方小敏,等.1996.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学(D辑)26(4):316-322.
    李平原,刘秀铭,郭雪莲,吕镔,赵国永,马明明,2013.西北戈壁沙漠-黄土高原区表土磁化率特征及其意义.第四纪研究33,360-367.
    李双建,张然,王清晨,2006.沉积物颜色和粘土矿物对库车坳陷第三纪气候变化的指示.沉积学报24,521-530.
    李孝泽,董光荣,2002.白银盆地中新世末沙丘岩及其古沙漠与古环流重建.中国沙漠22,602-606.
    李孝泽,董光荣,2006.中国西北干旱环境的形成时代与成因探讨.第四纪研究26,895-904.
    刘东生,1985.黄土与环境.科学出版社,北京.
    刘秀铭,刘东生,夏敦胜,王冠,2007.中国与西伯利亚黄土磁化率古气候记录一氧化和还原条件下的两种成土模式分析.中国科学:D辑37,1382-1391.
    刘秀铭,安芷生,强小科,鹿化煜,周杰,蔡演军,2001.甘肃第三系红粘土磁学性质初步研究及古气候意义.中国科学(D辑)31,192-205.
    刘秀铭,刘东生,Heller,F.,许同春,1990.黄土频率磁化率与古气候冷暖变换.第四纪研究1,42-50.
    刘秀铭,刘东生,Shaw J.,1993.中国黄土磁性矿物特征及其古气候意义.第四纪研究,281-287.
    刘振敏,李博昀,刘国庆,徐少康,2007.腾格里地区盐湖的盐类沉积特征.化工矿产地质29,193-201.
    鹿化煜,安芷生,1998.黄土高原黄土粒度组成的古气候意义.中国科学(D辑),28(3):278-183.
    鹿化煜,王先彦,李郎平.2008.晚新生代亚洲干旱气候发展与全球变冷联系的风尘沉积证据.第四纪研究28(5):949-957.
    Mischke Steffen,2005.内蒙古巴丹吉林沙漠成因的粒度分析和热发光测年新证据.古地理学报7,79-97.
    穆桂金,1994.塔克拉玛干沙漠的形成时代及发展过程.干旱区地理,17(3):1-9.
    聂军胜,昝金波,宋友桂,2012.中国黄土高原红粘土环境磁学研究进展.第四纪研究32,576-587.
    强小科,安芷生等.2010.晚渐新世以来中国黄土高原风成红粘土序列的发现:亚洲内陆干旱化起源的新记录.中国科学:地球科学40,1479-1488.
    强小科,安芷生,李华梅等.佳县红粘土堆积的磁学性质及其古气候意义.中国科学,D辑,2004,34(7):658-667.
    屈建军,左国朝,张克存,等.库姆塔格沙漠形成演化与区域新构造运动关系研究.干早区地理,2005,28(4):424-428.
    饶文波,杨杰东,et al.2006.中国干旱-半干旱区风尘物质的Sr,Nd同位素地球化学:对黄土来源和季风演变的指示.科学通报41(4):378-386.
    施雅风,李吉均,1999.晚新生代青藏高原的隆升与东亚环境变化.地理学报54,10-21.
    施亚风,汤懋苍,冯玉贞,1998,青藏高原二期隆升与亚洲季风孕育关系探讨.中国科学(D辑),28(3):263-271.
    石培宏,杨太保,田庆春,王建永,2012.靖远黄土-古土壤色度变化特征分析及古气候意义.兰州大学学报(自然科学版)48,15-23.
    宋春晖,白晋锋,赵彦德,金洪波,孟庆泉,2005.临夏盆地13-4.4 Ma湖相沉积物颜色记录的气候变化探讨.沉积学报23,507-513.
    宋友桂,史正涛,方小敏,NIE, J., NAOTO, I.,强小科,王旭龙,2010.伊犁黄土的磁学性质及其与黄土高原对比.中国科学:地球科学40,61-72.
    孙继敏,刘东生,丁仲礼,刘嘉麒,1996.五十万年来毛乌素沙漠的变迁.第四纪研究,359-367.
    孙有斌,孙东怀,安芷生.灵台红粘土-黄土-古土壤序列频率磁化率的古气候意义.高校地质学报,2001,7(3):300-306.
    谭建安.内蒙古阿拉善荒漠的类型.地理集刊,第八号,科学出版社,1964:1-31.
    汤懋苍,1998.青藏高原季风的形成、演化及振荡特性.甘肃气象,16(1):1-14.
    汤懋苍,江灏,柳艳香,郭纬栋,2002.全球各类旱区的成因分析.中国沙漠22,1-5.
    汤懋苍,梁娟,邵明境,石岗,1984.高原季风年纪变化的初步分析.高原气象3,76-82.
    汤懋苍,沈志宝,陈有虞,1979.高原季风的平均气候特征.地理学报34,33-42.
    唐进年,王继和,苏志珠,等.库姆塔格沙漠羽毛状沙丘表面沙粒度分布特征.干旱区地理,2008,31(6):918-925.
    唐进年,苏志珠,丁峰等,2010.库姆塔格沙漠的形成时代与演化.干旱区地理,33(3):325-333.
    唐自华,穆桂金;2006,晚新生代中国北方风尘沉积的可能物源及变化.干旱区地理29(1):101-108.
    万景林,郑文俊,郑德文,王伟涛and王志才,2010.祁连山北缘晚新生代构造活动的低温热年代学证据.地球化学,39(5):439-446.
    王伴月,王培玉,1997.内蒙古阿拉善地区查干布拉格组的新认识.古脊椎动物学报35,121-129.
    王飞,孙东怀,郭峰,王鑫,李再军,张月宝,李宝锋,吴晟,2012a.黄土高原灵台剖面过去7Ma古温度、古降水的半定量重建.地球环境学报3,781-791.
    王飞,孙东怀,张月宝,李再军,王鑫,李宝锋,吴晟,郭峰,2012b.过去8Ma兰州盆地古温度、古降水和古高度的半定量估算.第四纪研究,32(5),1022-1035.
    王建华,吴立宗,潘小多,盖春梅.中国沙漠1:10万分布图集.兰州:中国科学院寒区旱区环境与工程研究所.2006
    王乃昂,张虎才,曹继秀,李吉均,马玉贞,1997.腾格里沙漠南缘武威黄土剖面磁性地层年代初步研究兰州大学学报(自然科学版)33,144-146.
    王培玉,王伴月,1998.内蒙古阿拉善地区的第三系及其动物群.西北地质科学19,1-37.
    王萍,王增光,1997.阿拉善活动地块体的划分及归宿.地震学报17,103-112.
    王树基,1997.准格尔盆地晚新生代地理环境演变.干旱区地理,20(2):9-16.
    王树基,高存海,1990.塔里木内陆盆地晚新生代干旱环境的形成与演变.第四纪研究,(4):372-380.
    王涛,1990.巴丹吉林沙漠形成演变的若干问题.中国沙漠,10(1):29-40.
    王先彦,鹿化煜,季峻峰,王晓勇,赵景波,黄宝春,李珍,2006.青藏高原东北缘中新世红色土状堆积序列的成因及其对亚洲干旱过程的指示.中国科学(D辑)地球科学36, 261-272.
    王鑫,2012.塔里木盆地西南缘新生代沉积演化,博士论文.兰州大学.
    王颖,迪纳瑞尔B.1985.石英砂表面模式图集.北京:科学出版社.
    王跃,李森,王建华,阎满存,1996.试论青藏高原隆升对中国沙漠形成演化的影响.干旱区地理13,20-24.
    吴艳宏,李世杰,2004.湖泊沉积物色度在短尺度古气候研究中的应用.地球科学进展19,789-792.
    吴正,2009.中国沙漠及其治理.科学出版社,北京.
    夏敦胜,魏海涛,马剑英,王训明,张家武,晖,赵.,2006.中亚地区现代表土磁学特征及其古环境意义.第四纪研究26,938-945.
    谢又予,1984.中国石英砂表面结构特征图谱.海洋出版社,北京.
    徐建明et al.,2003.塔里木盆地第四纪磁性地层学研究.地层学杂志,27(004):276-281.
    徐志伟,鹿化煜,赵存法,王先彦,苏志珠,王振亭,刘宏宜,王立新,卢琦.2010.库姆塔格沙漠地表物质组成、来源和风化过程.地理学报,65(1):53-64.
    阎满存,董光荣,李保生,1997.沙坡头地区黄河阶地发育与地貌演化.中国沙漠17,369-376.
    阎满存,董光荣,李保生等,1998.腾格里沙漠东南缘沙漠演化的初步研究.中国沙漠,18(2):111-117.
    阎顺,穆桂金,1990.塔里木盆地晚新生代环境演变.干旱区地理13,1-9.
    阎顺,穆桂金,许英勤,2000.罗布泊地区第四纪环境演变.微体古生物学报17,165-169.
    阎顺,许英勤,1988.天山北麓平原区晚第三纪晚期-更新世的孢粉组合及其环境变迁.新疆地质2,59-65.
    阎顺,许英勤,1990.新疆塔克拉玛干沙漠中两个钻孔的孢粉分析及其意义.新疆地质4,342-350.
    杨东,方小敏,等.2006.早更新世以来腾格里沙漠形成与演化的风成沉积证据.海洋地质与第四纪地质26,93-100.
    杨胜利,方小敏,李吉均,安芷生,陈诗越,福泽仁之,2001.表土颜色和气候定性至半定量关系研究.中国科学(D辑)31,175-181.
    杨石岭et a1.,2000.泾川晚第三纪红粘土的磁性地层及其与灵台剖面对比.第四纪研究,20(5):423-434.
    杨守业,李从先,1999a.长江与黄河沉积物元素组成及地质背景.海洋地质与第四纪地质19,19-26.
    杨守业,李从先,1999b.长江与黄河现代表层沉积物元素组成及其示踪意义.自然科学进展9,930-937
    杨守业,李从先,Hoi-soo, J., Dong-il, L., Man-sik, C.,2003.中韩河流沉积物微量元素地球化学研究.海洋地质与第四纪地质23,19-24.
    叶笃正,1979.青藏高原气象学.科学出版社,北京.
    易治宇,2008.塔格山剖面晚新生代磁性地层,硕士论文.兰州大学.
    昝金波,2010.西昆仑黄土与亚洲内陆干旱化,博士论文.兰州大学.
    张金起,刘斌,陈旭光,孙小明,王云生,2009.新疆艾比湖东南缘K3孔晚新生代环境演化.现代地质23,1012-1021.
    张林源,蒋兆理,1992.论我国西北干旱气候的成因.干旱区地理15,1-12.
    张小曳;2007.有关中国黄土高原黄土物质的源区及其输送方式的再评述.第四纪研究27(2):181-186.
    张亚峰,王新平,潘颜霞,王正宁,虎瑞,2011.荒漠地区地表反照率与土壤湿度相关性研究.中国沙漠31,1141-1148.
    张月宝,2012.兰州地区新生代沉积序列的磁性地层与古环境记录,博士论文.兰州大学.
    钟德才,1998.中国沙海动态演化.甘肃文化出版社,兰州.
    朱岗昆,2005.古地磁学-基础、原理、方法、成果及应用.科学出版社,北京.
    朱日祥,潘永信,丁仲礼.红粘土的磁学性质研究.第四纪研究,1996,(3):232-238.
    朱震达,1999.中国沙漠沙漠化荒漠化及其治理的对策.中国环境科学出版社,北京.
    朱震达,陈广庭,1994.中国土地沙质荒漠化.科学出版社,北京.
    朱震达,王涛,1992.中国沙漠化研究的理论与实践.第四纪研究,(2):97-106.
    朱震,吴正,刘恕等,1980.中国沙漠概论科学出版社,北京.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700