液相沉淀法制备钒酸铁纳米光催化剂及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化技术作为一项新的环境净化技术越来越为人们所重视,其中光催化剂是光催化过程的关键部分。在众多的光催化剂中,TiO2以优良的抗化学和光腐蚀性能、价格低廉等优点而成为过去几十年来最重要的光催化剂,然而其实用化研究进程长期以来却未有较大的突破,主要由于其带隙较宽,只能利用紫外光和难以回收利用等原因。因此,研究和开发非TiO2新型光催化体系已成为光催化领域的热点之一,具有宽广的前景和挑战性。其中钒酸盐作为新型可见光催化剂之一,近年来逐渐引起学者的关注。但目前研制的钒酸盐光催化剂种类较少,且大都应用于光分解水方面,少数用于光催化降解有机污染物。为此,论文采用一种简单合成路线制备钒酸铁(FeVO4)光催化剂用于降解染料,并用不同金属进行掺杂改性,对其微观结构和光催化性能进行探索和研究。论文的研究成果进一步拓宽了钒酸盐光催化剂的研究领域,为探索钒酸盐光催化剂及其掺杂改性提供一定的理论基础和依据。
     论文采用液相沉淀法,制备了钒酸铁(FeVO4)光催化剂,并用Ag、Ba、Cu、Fe和Eu掺杂改性FeVO4光催化剂。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、比表面积(BET)、X射线光电子能谱(XPS)和紫外可见漫反射光谱(UV-Vis DRS)等技术研手段研究了样品的制备工艺、形貌、结构和光吸收性能与催化性能的关系。实验以甲基橙为模型反应,评价各样品光催化活性。
     以硝酸铁和偏钒酸铵为原料,在不同n(V)/n(Fe)摩尔比,不同pH值和不同温度条件下制备了系列样品,优化了三斜型FeVO4的工艺制备条件。实验发现,不同n(V)/n(Fe)摩尔比、不同pH值对物相形成有一定的影响。n(V)/n(Fe)摩尔为1时制备的样品为纯相,高于或小于1时有V2O5或Fe2O3相; pH高于或低于8时,有Fe2O3或V2O5相,杂相均影响样品的活性。温度对样品的结晶程度和晶粒大小影响较大。实验结果表明:n(V)/n(Fe)摩尔比为1,pH值为8,800℃下煅烧4h时,样品活性相对最高。在此条件下制备的样品为非化学计量比物质:Fe2x2 + Fe3 +1-2 xV5+O4-x,晶体中存在氧空位;晶体粒径约74nm左右,对光的吸收阈为605nm左右,禁带宽度约为2.05eV,比表面积为:2.265m2/g。样品在可见光下具有活性,且其沉降性好而有利于回收,重复使用5次左右能保持活性基本不变。同时确定了FeVO4光催化降解甲基橙的反应条件。
     银掺杂钒酸铁光催化剂:对比三种掺杂方法后,确定混合钒酸银和钒酸铁前躯体共同热处理的方法效果最佳。采用该法掺杂后:FeVO4晶型仍然为三斜型,但部分Ag+进入FeVO4晶格中,使FeVO4晶格产生了畸变和膨胀,并加大了晶体中非化学计量比,增大了表面吸附氧量;晶体表面形貌发生了显著变化,但未增大比表面积。当掺杂量大于10 wt%时,出现Ag4V2O7相,主要分布在针状物上。最佳掺杂量为1wt%,800℃下煅烧4h时。
     采用钒酸铁+钒酸钡前驱体混合后热处理方法,制备了掺杂Ba2+/FeVO4光催化剂。掺杂Ba2+后,未改变FeVO4晶型;但Ba进入FeVO4晶格中,导致晶格缺陷和晶胞体积增大,晶粒度增大,并加大了FeVO4晶体的非化学计量比及增加了表面吸附氧量;当掺杂量大于12 wt%时,出现BaV2O6相,主要分布在FeVO4晶体表面的片状物质上;增强了光的吸收能力。掺杂后形貌发生了显著变化,但仍没有增大其比表面积。最佳掺杂量为12wt%,750℃下煅烧4h。
     采用液相沉淀法制备Fe2O3/FeVO4光催化剂:当n(Fe)/n(V)摩尔比为1.01:1时,煅烧温度为750℃时制得的Fe2O3/FeVO4光催化剂,生成的Fe2O3相抑制了晶粒粒径的增加,并起到捕获电子的作用,使其较纯FeVO4活性提高。
     采用钒酸铁+钒酸铜前驱体混合后热处理方法制备Cu2+掺杂FeVO4光催化剂。掺杂Cu2+后,未改变FeVO4晶型,但晶粒增大。当掺杂量大于5wt%时有新相Cu3Fe4(VO4)6出现。掺杂后,加大了FeVO4晶体的非化学计量比,氧空位增加,表面吸附氧增加。但其比表面积变化较小。形成的新相和FeVO4之间类似复合半导体作用而提高了其活性。最佳掺杂量为5wt%的钒酸铜,在700℃下煅烧4h时。Eu/FeVO4光催化剂制备:对比几种掺杂方法,确定浸渍法制备的Eu/ FeVO4光催化剂光催化效果优于其他方法。FeVO4负载Eu后,晶型和晶粒径大小未有改变,但表面附着较多细小颗粒,比表面积增大。光吸收性能增强。最佳掺杂量为0.5wt%,回烧温度为250℃。
     本论文制备的FeVO4及其掺杂改性光催化剂,在可见光下具有活性,便于回收,能重复利用,具有很好的应用前景。但其比表面积却较小,如何提高比表面积值得进一步研究。采用不同金属离子对其掺杂改性,均能有效提高其活性。但存在最佳掺杂量,高于或低于此值,活性不能得到很好提高。在最佳掺杂量下,煅烧温度也影响活性的提高。
Semiconductor-based phtotocatalysis has become increasing promising technology in environmental remediation. Photocatalyst was a key part in photocatalytic process. Of various types of photocatlysis, TiO2 has been identified as the most effective and useful photocatalyst because of its photostable, nontoxic, cheap and active properties in the past decades. However, the study of TiO2 has not larger breakthrough because it has wide energy gap, was only effective under ultra-violet light and difficult to recycle. Therefore, the research and development of new non-TiO2 photocatalytsts has become one of the hot fields, with broad prospects and challenging. Recently, vanadate, as one of the new photocatalyst, is gaining more attention of scholars. However, few vanadate has been developed,most of which being used in water splitting, only a few of which for the photocatalytic degradation of organic pollutants. So, pure iron(III) vanadate (FeVO4) photocatalyst and doped FeVO4 photocatalyst were prepared with simple synthesis methods in the paper. Its structure and photocatalytic properties were explored and researched, broadening the vanadate photocatalysts research field. It may provide a theoretical basis and foundation for further exploring vanadate photocatalyst and doping.
     In paper, FeVO4 photocatalyst was synthesised with liquid phase precipitation method . As well as Ag, Ba, Cu, Fe and Eu-doped photocatalyst FeVO4 were prepared. The relationships between preparation, sturcure, morphologies and photocatalytic of samples were investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (BET), X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflectance spectra (DRS). The photocatalytic activities of the samples were determined by oxidative decomposition of methyl orange in aqueous under UV light and visible light irradiation.
     Using Iron Nitrate and Vanadium Ammonium as raw materials, series samples were synthesised. The different factors’(n (V) / n (Fe) molar ratio, precipitation pH and calcination temperature) effects on the characterization of FeVO4 were discussed and the optimum preparation conditions of triclinic FeVO4 was concluded. The results showed that the different n (V) / n (Fe) molar ratio and different pH value had impact on the phase formation. The pure FeVO4 was prepared when n (V) / n (Fe) molar ratio was 1 and Fe2O3 or V2O5 phase appeared when n (V) / n (Fe) molar ratio was higher or lower than 1.00 and pH value be higher or lower than 8. Calcining temperature greatly affected the crystallization and the grain size of samples.
     It was found that the samples prepared with the n (V) / n (Fe) moral ratio be 1,pH=1 and calcinated under 800℃for 4 hours had the best photocatalytic ability. The sample prepared under these conditions was triclinc phase and oxygen-deficient lattice structure due to deviation from oxgen stoichiometric material. The structure was Fe2x2 + Fe3 +1-2 xV5+O4-x, with the particle size be about 74nm. The absorption edge was around 605nm and its band gap was about 2.05eV. But it had small specific surface area: only 2.265m2/g. FeVO4 photocatalyst shows the photocatalytic activity under the visible ligh and it is easy to recovery from the suspension beacause of its good sedimentation ability.The effects of catalyst loading, initial MO concentration, light intensity and pH value on the degree of photo degradation had been investigated.
     Ag+ doped FeVO4: it was conclued that the method of calcining silver vanadate and iron vanadate mixtures worked best on the basis of comparison of three doping methods. It was found that Ag doping led to distoration and expansion of crystal lattice due to a few of Ag being into the FeVO4 crystal lattice, which increased the degree of oxgen stoichiometric. Ag doping changed crystal surface morphology dramatically, but didn't change the specific surface area. And Ag4V2O7 phase appeared when the doping amount was greater than 10wt%, mainly be on the needle-like material. In the experimental conditions used, the optimal photocatalytic activity for all the prepared samples was reached when the Ag doping was 1 wt% calcined at 800℃for 4h.
     Ba2+ doped FeVO4 photocatalyst was prepared through calcining silver vanadate and iron vanadate mixtures. It was found that Ba doping had little effect on the grain size of FeVO4, but led to distoration and expansion of crystal lattice due to a few of Ba being into the FeVO4 lattice, which increased the degree of oxgen stoichiometric. BaV2O6 phase appeared when the doping amount was greater than 12wt%, mainly be on the flake-like material. Ba doping changed crystal surface morphology dramatically with almost the same specific surface area .The light absorption ability was intensitied after Ba2+ doping . In the experimental conditions used, the optimal photocatalytic activity for all the prepared samples is reached when the Ag doping was 1 2wt% and the samples calcined at 750℃.
     Fe2O3/FeVO4 photocatalysts were successfully prepared by liquid phase precipitation. It was found that the samples prepared with the Fe/V moral ratio be 1.01:1 and calcinated under 750℃had the best ability of photodegradation of MO. Doping Fe2O3 maybe inhibit the growth of FeVO4 and increase the surface area which can improve the photo-activity. Also the Fe2O3 can act as electron traps promoting the electron-hole separation and then increase the photo-activity.
     Cu2+ doped FeVO4 photocatalyst was prepared through calcining cupper vanadate and iron vanadate mixtures. It was found that Cu doping made particle size increased and led to distoration and expansion of crystal lattice, which increased the degree of oxgen stoichiometric. Cu3Fe4(VO4)6 phase appeared when the doping amount was greater than 5wt%. Cu doping changed crystal surface morphology dramatically with almost the same specific surface area. In the experimental conditions used, the optimal photocatalytic activity for all the prepared samples is reached when the Ag doping was 5wt% and the samples calcined at 700℃.
     Eu/ FeVO4 photocatalysts were prepared by the impregnation method on the basis of comparison of four methods. The results indicated that the Eu/ FeVO4 photocatalysts consist of triclinic phase without signifcant changes of crystalline size. SEM images showed that after loading with Eu,many fine particles were observed on the surface of the FeVO4 particles which maybe greatly increase their specific surface area. The DRS measurements showed that the light absorption of Eu/ FeVO4 novel photocatalyst was greatly increased during 200-500nm.. The photocatalyty activity of Eu/ FeVO4 sample was significantly enhanced when doping content was 0.5wt % and calcined at 250℃.
     In this paper, pure FeVO4 and the doped FeVO4 have good application prospects because they had photocatalytic activity under visible light irradiation and can be easy to recovery from the suspension and be reused at least 5 times without reducing photocatalytic efficiency. But it was pitful for its small surface area . How to improve the specific surface area is worthy to further study. Using different metal ions doping can effectively enhance its activity. However, there exists an optimum doping amount, higher or lower than this value, the activity should not be very good. In the optimum doping amount, the calcination temperature also affected the activity improved.
引文
陈士夫,程雪丽. 1999.空心玻璃微球附载TiO2清除水面漂浮的油层[J].中国环境科学,l9(l):47-50.
    陈士夫. 1996.玻璃纤维负载TiO2光催化降解有机磷农药[J].环境科学, 17(4):33-35.
    董抒华,许珂敬,刘俊成. 2007. Sr掺杂LaFeO3晶光催化活性的研究[J].人工晶体学报, 36(2):433-437.
    方世杰,徐明霞,黄卫友等. 2001.纳米TiO2光催化降解甲基橙[J].硅酸盐学报,29(5):439-442.
    冯小刚,卫涛,袁春伟. 2004.饮用水中微囊澡毒素污染及其光催化降解的研究进展[J].东南大学学报(自然科学版), 34(5):705-710.
    傅希贤,单志兴,曾淑兰. 1997.用喷雾热分解技术制备中空球形CaTiO3[J].应用科学学报, 15(2):249-252.
    傅希贤,单志兴,肖坤林等.1996.掺杂对PbTiO3光催化活性的影响[J].应用化学,13(6):58-60.
    傅希贤,桑丽霞,王俊珍等. 2001.钙钛矿(ABO3)化合物的光催化活性及其影响因素[J].天津大学学报, 34(2):229-231.
    高濂,郑珊,张青红. 2002.纳米氧化钛光催化材料及应用[M].北京:北京工业出版社.
    戈磊,崔立山. 2008.新型可见光活性氧化钯/钒酸铋复合光催化剂的制备及光催化性能[J].硅酸盐学报, 36(3):320-324.
    戈磊. 2008.新型Pt/BiVO4可见光活性光催化剂的制备和表征[J].无机材料学报, 23(3):449-453.
    郭玉,张溪文,韩高. 2006.掺杂二氧化钛薄膜的常压化学气相沉积及其结构性能研究[J].真空科学与技术学报, 26(3):190-194.
    洪孝挺,王正鹏,陆峰等. 2004.可见光响应非金属掺杂TiO2的研究进展[J].化工进展,23(10):1077-1080.
    黄文娅,余颖. 2005.可见光化的半导体光催化剂[J].化学进展, 17(2):242-247.
    霍爱群,谭星等. 1998.纳米TiO2膜光催化降解废水中的阿特拉津的研究[J].工业水处理,18(3):25-29.
    蒋正静,戴洁,张志兰等. 2001.锌、镉掺杂纳米级钛酸铅的制备及对活性翠兰的光催化降解[J].应用化学, 18(7):552-555.
    井立强,袁福龙,侯海鸽等. 2004. ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系[J].中国科学B辑化学,34(4):310-314.
    李明利,徐明霞,庞学满等. 2006.可见光活性负载型Fe2O3/TiO2光催化剂的制备[J].硅酸盐学报,34(9):1147-1150.
    李青松,高乃云,马晓雁等. 2007. TiO2光催化剂降解水中内分泌干扰物17β-雌二醇[J].环境科学, 28(1):120-125.
    李炜罡,霍冀川,刘树信等. 2004.负载型TiO2光催化剂研究进展.[J].陶瓷学报,25(2):133-138.
    李新军,樊俊林,郑少健等. 2006. Ni控制掺杂InVO4薄膜的制备及其可见光催化活性[J].中国有色金属学报. , 16(12):2104-2108.
    梁金生,金宗哲,王静. 2002.稀土/纳米TiO2的表面电子结构[J].中国稀土学报,20(1):74-76.
    刘国光,谢友海,汪应灵等. 2006.纳米复合GeO2/TiO2的制备及光催化性能研究[J]环境科学学报,26(9):1491-1495.
    刘平,周廷云,林华香等. 2001. TiO2/SnO2复合光催化剂的藕合效应[J].物理化学学报,17:265-269.
    刘文通. 1995.太阳能在处理水、大气及土壤中有机污染物方面的应用[J] .海岸工工程,1 4(3):13-18.
    卢萍,姚明明,张颖. 2002.过渡金属离子的掺杂对TiO2光催化活性的影响.感光科学与光化学[J]. 20(3):186-187.
    鲁道荣,王琼燕. 2006. Ca掺杂对纳米晶LaFeO3的光催化性能及微观结构的影响[J].金属功能材料,13(5):22-25.
    彭绍琴,江风益,李越湘. 2005. N掺杂TiO2光催化剂的制备及其可见光降解甲醛[J].功能材料,36(8):1207-1209.
    任成军,钟本和. 2005.煅烧过程中二氧化钛微结构参数的变化和相变[J].硅酸盐学报,33(1):413-417.
    桑丽霞,李群伟,胥利先等. 2008.掺杂Cu2+对钙钛矿型LaFeO3光催化分解水制氢性能的影响[J].西安交通大学学报,42(5):626-629.
    宋长友,徐秀军. 2007. Eu、N掺杂纳米TiO2的制备及光催化性能研究[J].化学工程师, 139(24):6-8.
    唐玉朝,李薇,胡春等. 2003. TiO2形态结构与光催化活性关系的研究[J].化学进展,15(5):376-379.
    汪洋. 2006.掺锌纳米二氧化钛复合材料处理废水中S2-的光催化性能[J].商丘职业学院学报,5(5):92-94.
    王金淑,刑朋飞,李莉莉等. 2000.机械化学法N掺杂纳米TiO2的制备与表征[J].北京工业大学学报,32(7):633-637.
    王祖竤,张凤宝,张前程. 2004.负载型TiO2光催化剂的研究进展.[J]化学工业与工程,21:248-254.
    吴越. 1992.氧化物的非化学计量性和催化作用[J].科学通报, 37:97-103.
    肖开良,徐平娇,刘彬. 2000.纳米TiO2在某些领域的应用[J].攀钢技术,4:70-72.
    熊魏,林树坤,谢勇平. 2003.液相法合成Ba3(VO4)2晶体原料[J].福州大学学报(自然科学版),31(5):618-621.
    胥利先,桑丽霞,马重芳等. 2006.介孔InVO4光催化剂的合成及其光催化分解水的性能[J].催化学报,27(2):100-102.
    阎建辉,黄可龙,刘素琴等.2004.碱土金属掺杂纳米TiO2催化剂的制备及光催化活的评价[J].无机化学学报,20(3):301-306.
    杨建军,李东旭,张治军等. 2001. Pt/Fe2O3/TiO2的制备、表征及其光催化活性研究[J] .真空科学与技术,21(4):277-280.
    杨秋华,傅希贤,王晓东. 2004. LaFe1-yCuyO3光催化还原性能与正电子湮没的研究.[J].硅酸盐学报,32(4):512-516.
    曾帜涛,陈爱平,古政荣. 2002.光催化剂技术在饮用水深度净化中的应用[J].净化技术,21(1):16-19.
    张立德,牟季美.1994.纳米材料科学[M]. .沈阳:辽宁科学出版社.
    张霞,赵岩,张彩碚. 2005. TiO2/Fe2O3核壳粒子的制备及光学性能[J].材料研究学报,19(4):343-348.
    张志兰,戴洁,卞国庆等. 2000. PbTiO3纳米粉的制备及光催化研究[J].化学研究与应用,12(5):507-509.
    赵洁,丘克辉,董宏伟. 2006.锐钛矿纳米TiO2光催化降解与环保应用研究进展[J].中国非金属矿工业导刊,4:50-55.
    赵明,方铃,张弓等. 2004.磁反应溅射Ti2-xNx膜的可见光吸收性能[J].材料研究学报,18(1):108-112.
    朱裔荣,唐有根,阎建辉等. 2008.氮掺杂SrTiO3的制备及可见光催化产氢活性研究.[J].无机材料,23(3):443-448.
    朱宽秀,傅希贤,单志兴等. 1995.用等离子熔盐法制备光催化剂MTiO3(M=Mg, Ca, Sr, Ba) [J].天津大学学报,28(4):546-552.
    
    
    Asahi R, Morikawa T, Ohwaki T, et al.2001.Visible-light Photocatalysist in nitrogen-doped titanium oxides[J]. Science, 293(5528):269-271.
    Bessekhouad Y, Robert D, Weber J Y. 2004. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J]. Journal of Photochemistry and Photobiology A: Chemistry,163(3):569-580.
    Briggs D, Seah M P. Practical surface analysis [M]. Vol. 1, second edition 1993.
    Buhtltiyarov V L. 2000. Catalysis Today, 56:403-405.
    Carey J H, Lawrence J, Tosine H M. 1976. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspension [J].Bulletin Environmental contamination Toxicol, 16:697-701.
    Chatterjee D, Mahata A. 2001. Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light [J]. Applied Catalysis B:Environmental, 33:119-125.
    Chen S F, Cao G Y. 2005. Study on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvous [J]. Journal of Chemosphere,60(9):1308-1315.
    Chiang K, Amal R, Tran T. 2003. Photocatalytic Oxidation of Cyanide: Kinetic and Mechanistic Studied [J]. Journal of Molecular Catalysis A: Chemical,193(1-2):285-297.
    Choi W, Termin A, Hoffmann M R. 1994. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and change carrier recombination dynamics[J].J Physical Chemistry, 98:13669-13672.
    Choi Y, Umebayshi T, Yoshikawa M. 2004. Fabrication and characterization of C-doped anatase TiO2 photocatalysts[J]. Journal of Material Science, 39(5):1837-1839.
    Lee Y G ,Kota N , Tomoaki W , Tsuyoshi ,et al. 2006. Effect of 10 MPa Ammonia Treatment on the Activity of Visible Light Responsive Ta3N5 Photocatalyst [J]. Chemistry Letters,35(4): 353-343.
    Costa D, Marcus P,Yang W P. 1994. Resistance to Pitting and Chemical Composition of Passive Films of a Fe-17%Cr Alloy in Chloride-Containing Acid Solution[J]. Journal of the Electrochemical Society, 141(10): 2669-2676.
    Dawson A.,Kamat P V. 2001. Semiconductor-metal Nanocomposites Photoinduced Fusion and Photocatalysis of Gold-capped TiO2 (TiO2/Gold) Nanoparticles [J]. Journal of Physical Chemistry B. 105:960-966.
    Ekambaram S, Patil K C. 1995. Rapid synthesis and properties of FeVO4, AlVO4, YVO4 and Eu3+-doped YVO4 [J]. Journal of Alloys and Compounds,217:104-107.
    Fujishima A, Rao T N, Tryk D A.2000. Titanium dioxide photocatalysis [J]. Journal of Photochemisitry and Photobiology C: Photochemistry Review, 1:1-21.
    Gopidas K R,Bohorquez M,Kamat P V. 1990. Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfid-silver(I) iodide systems[J]. Journal of Physical Chemistry,94:6435-6440.
    Hara M, Hitoki G, Takata T, et al.2003. TaON and Ta3N5 as new visible light driven photocatalysts[J] . Catalysis Today ,78(1-4):555-560.
    Hu X X , Hu CH. 2007. Preparation and visible-light photocatalytic activity of Ag3VO4 powders [J]. Journal of Solid State Chemistry, 80:725-732.
    Huang G L, Zhu Y F. 2007. Synthesis and photocatalytic performance of ZnWO4 catalyst [J]. Materials Science & Engineering B, 139(2-3):201-208.
    Hwang D W, Kim H G, Kim J. 2000. Photocatlytic Water Splitting over highly Donor-Doped (110) Layered Perovskites [J]. Journal of Catalysis, 193:40-48 .
    Irie H, Watanabe Y, Hashinmoto K 2003. Nitrogenconcentration dependence on photocatalytic activity of TiO2-xNx powders[J]. Journal of Materials Science, Journal of Physical Chemistry B, 107:5483-5488.
    Karunakaran C, Anilkumar P. 2007. Semicondctor-catalyzed solar photooxidation of iodide ion[J]. Journal of Molecular Catalysis A: Chemical,265(1-2):153-158.
    Kohta N, Jun N, Tsuyoshi T, et al. TiNxOyFz as a Stable Photocatalyst for Water Oxidation in Visible Light (<570 nm) [J]. Chemistry Letters, 2:196-197.
    Kasahara A , Nukumizu K, Domen K, et al .2002. TiNxOyFz as a Stable Photocatalyst for Water Oxidation in Visible Light (<570 nm) [J]. Physical and Chemistry A ,106 : 6750 -6753.
    KatoS J, Hirano Y J, Iwata M, et al.2005. [J]. Applied Catalysis B: Evironment .57(2):291-298.
    Kida T , Guan GQ , Yoshida A. 2003 . Photocatalytic activity of CdS nanoparticles incorporated in titanium silicate molecular sieves of ETS-4 and ETS-10[J]. Chemical Physics Letters,371:563 -567.
    Klare M, Scheen J, Vogelsang K, et al. 2000. Degradation of short-chain alkyl and alkanolamines by TiO2 and Pt/TiO2 assited photocatalysis[J]. Chemosphere, 41(3):353-362.
    Kohtani S, Koshiko M, Kudo A, et al. 2003. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator[J].Applied Catalysis B:Environmental,46:573-586.
    Kohtani S, Makino S, Kud O A, et al. 2002. Photocatalytic degradation of 4-n-Nonylphenol under irradiation from solar simulator: Comparison between BiVO4 and TiO2 photocatalysts[J]. Chemsitry Letters,7:660-661.
    Kohtani S, Tomohiro M, Tokumura K, et al. 2005. Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts[J]. Applied Catalysis ,58:265-272
    Kudo A, Kato H. 2000. Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting[J]. Chemical Physics Letters,331:373-377.
    Kutty T R N, Avudaityai M. 1989. Photocatalytic activity of tin-substituted TiO2 in visible light[J]. Chemical Physics Letters,163:93-97.
    Kwon Y T, Song K Y, Lee W I et al . 2000. Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction[J]. Journal of Catalysis, 191:192-199.
    Li A M, Zhu Y R, YU X, et al. 2007. Photocatalytic degradation of paper-making sewage with Fe2O3/UV/H2O2[J]. J Safety & Environment, 5: 39-42.
    Li N, Tong S Y. 1994. Spectrophotometric study of the interaction tetraphenylporphyrin tetrasulfonate with proteins[J] . Talanta, 41 (10): 1657-1662.
    Li X Z, Li F B,Yang C L, et al. 2001. Photocatalytic activity of WOX-TiO2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemisty , 141:209-214.
    Lin H Y, Chen Y F, Chen Y W. 2007. Water splitting reaction on NiO/InVO4 under visible light irradiation[J]. International Journal of Hydrogen Energy, 32:86-92.
    Linsebiger A L, Lu G Q, Jate J T. 1995. Photocatalysis on TiO2 surfaces:principle, mechanisms,and selected results[J], Chemical Reviews, 95(3):735-758.
    Liu J W, Zheng ZH X, Zuo K H, et al. 2006. Preparation and characterization of Fe3+-doped nanometer TiO2 photocatalyst [J].Journal of Wuhan Universtity of Technology-Material,Science Edition, 21:57-60.
    Long M, Cai W, Cai J, et al. 2006. Efficient photocatalytic degradation of phynol over Co3O4/BiVO4 composite under visible light irradiation[J]. Journal of Physical Chemistry B, 110(41): 20211-20216.
    Lonnen J, Kilvington S, Keboes S C,et al. 2005. Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water [J]. Water Resource, 39(5):877-883 .
    Luo J, Maggard P A. 2006. Hydrothermal synthesis and photocatalytic activities of SrTiO3-coated Fe2O3 and BiFeO3 [J]. Advaced Materials ,18(4):514-517.
    Machida M, Ma X, Yabunaka J, et al. 2000. Pillaring and photocatalytic property of partially substituted layered titanates, Na2Ti3-xMxO7 and K2Ti4-xMxO9(M=Mn, Fe, CO, Ni, Cu) [J]. Journal of Molecular Catalysis A: Chemical, 155:131-142.
    Masatoshi H, Mika E, Takashi M, et al. 1997. Lithiation characteristics of FeVO4 [J]. Solid State ionics, 98:119-125.
    Matos J, Laine J. Herrmann M J. 2001. Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated[J]. Journal of Catalysis,200:10-20.
    Mkhalil L B, Rophael M W, Mournad W E. 2002. The removal of the toxic Hg (II) salts from water by photocatalysis [J]. Appllied Catalysis B: Environmental, 36:125-130.
    Mokhtar M, Bayoumy W A, Khairy M, et al. 2006. Synthesis and structural characterization of TiO2 and V2O5/TiO2 nanoparticles assembled by the anionic surfactant sodium dodecyl sulfate [J]. Microporous and mesoporous materials, 97(1-3):66-77.
    Navio J A, Colon G, Tvillas M. 1998. Hetergeneous photocatalysis reactions of nitrite oxidation andCr(VI)reduction on ion-doped titantia prepared by the wet impregnation method [J]. Appllied Catalysis B,16(2):187-196.
    Nsuresh Rao, O G Palanna. 1995. Electrical and magnetic studies of iron(III) vandate [J]. Bulletin of Material Science, 18(3):229-236.
    Ogura S, Kohno M, Sato K, et al. 1997. Photocatalytic activity for water decomposition of RuO2-combined M2Ti6O13 (M=Na, K, Rb, Cs) [J]. Applied Surface Science, (121-122):521-524.
    Oka Y, Yao T, Yamamoto N, et al. 1996. Hydrothermal Synthesis, Crystal Structure, and Magnetic Properies of FeVO4-II[J]. Journal of Solid state chemistrsy, 123:54-59.
    Ozawa T, Iwasaki M, Tasa H, et al. 2005. Low-temperature synthesis of antase-brookite composite nanocrystals: the junction effect on photocatalytic activity[J]. Colloid and interface Science, 281(2):510-513.
    Paola A D,Marci G ,Palmisano L,et al. 2002. Preparation of po1ycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol[J]. Journal of Physical Chemistry B,106:637-645.
    Ranjit K T, Wiliner I, Bossmann S H, et al. 2001. Lanthanide oxide doped titanium dioxide photocatalytis: effective photocatalysis for the enhanced degradation of salicylic and t-cinanamic acid[J]. Journal of Catalyst, 204(2):305-313.
    Sakthivel S, Kisch H. 2003. Daylight photocatalysis by carbon-modified titanium dioxide [J]. Angewandte Chemie, 42(40):4908-4911.
    Sasaki T, Koshizaki N, Koinuma M, et al. 1999. Preparation of M/TiO2 (Au, Pt) nanocomposite films using co-sputtering method [J]. Nanostructured Materials, 12:511-514.
    Sato T and Fukugami Y. 2001. Synthesis and photocatalytic properties of TiO2 and Pt pillared HCa2Nb3o10 doped with various rare earth ions [J]. Solid State Ionics, 141-142:397-405 .
    Sayama K, Arakawa H, Domen K. 1997.Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites [J]. Chemical Materials,9:1063-1064.
    Schiaveuo M. 1993. Some Working Principles of Heterogeous Photocatalysis by Semiconductors [J]. Electrochemical Acta, 38(1):1056-1062.
    Serphone N , Borgarello E , Grazel M. J. 1984 .Photodegradation of ntachlorophenol catalyzed by semiconductor particles [J]. Journal of Chemical Society, Chemical Communications,342-344.
    Shahed U , Khan M, Mofareh A, William B. Ingler Jr. 2002. Efficent photochemical water splitting by a chemically modified n-TiO2 [J]. Science, 297(5590):2243-2245.
    Siham A Q, Salman R S. 2002. Journal of Photochemistry and Photobiology A: Chemistry, 148 (1 -3) : 161-168.
    Suda Y, Kawasaki H, Ueda T, et al. 2004. Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method[J]. Thin Solid Films , 453-454:162-166.
    Suresh R N, Palanna O G. 1995. Electrical and magnetic studies of iron (III) vanadate [J]. Bulletin Material Science, 18(3):229-236.
    Takata T, Tanaka A, Hara M, et al. 1998.Recent progress of photocatalysts for overall water splitting [J]. Catalysis Today, 44:17-26.
    Tokunaga S, Kato H, Kudo A. 2001. Selective preparation of monochlinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. Chemical Material, 13:4624-4628.
    Siemon U, Bahnemann D, Testa J, et al. 2002. Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 148(1-3): 247-255.
    Uchihana T, Matsumura M, Ono J. et al. 1990. Effect of EDTA on the photocatalytic activities and flatband potential of cadmium and cadmium selenide[J]. Journal of Physics and Chemistry,94(1):415-418.
    Wagner C D, Riggs W M, Davis L E. Moulder J F. 1979. Handbook of X-Ray Photoelctroscopy[M]. Eden Prairie, MN: Perking-Elmer Corporation, Physical Electronics Division.
    Wilke K, Breuer H D. 1999. The influence of transition metal doping on the physical and photocatalytic properties of titania [J]. Journal of Photochemistry and Photobiology A: Chemistry, 121:49-54.
    Wohrle D, Schneider G.. 1992. Photooxidation of 2-mercaptoethanol in the presence of water soluble phthalocyanine and perylene-3,4,9,10-tetracarboxylic acid derivative[J]. Journal of Molecular Catalysis A: Chemical,75(2):L39-L44.
    Xie B P, Zhang H X, Cai P X, et al. 2006. Simultaneus photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation[J]. Journal of Chemosphere,63:956-963.
    Xie Y B Yuan CH W. 2004. Characterization and photocatalysis of Eu3+-TiO2 sol in the hydrosol reaction system [J]. Materials Research Bulletin, 39:533-543.
    Xu A W, Gao Y, Liu H Q. 2002 .The preparation, characterization, and their photocaalytic activities of rare-earth-doped TiO2 nanoparticles[J]. Journal of Catalyst, 207(2):151-157.
    Xu H Y, Li H M, Wu C D, et al. 2008. Preparation, characterization and phhotocatlaytic activity of transition metal-loaded BiVO4[J]. Material Science and Engineering B, 147:52-56
    Xu H Y, Wang H, Yan H. 2007. Preparation and photocatalytic properties of YVO4 nanopowders [J]. Journal of Hazardous Materials, 144:82-85.
    Yanagisawa M, Uchida S, Sato T. 2000.Synthesis and photochemical properties of Cu2+ doped layered hydrogen titanate[J]. International of Journalo for Inorganic Materials, 2:339-346.
    Yang J K, Lee S M. 2006. Removal of Cr(III) and humic acid by using TiO2 photocatalysis[J]. Journal of Chemosphere,53:1677-1684.
    Yang P, Lu CH, Hua N P, et al. 2002.Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis [J]. Materials Letters, 57:794-801.
    Ye J H , Zou Z G, Oshikiri M, et al . 2002 . Novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation [J] . Chemical Physics Letters, 356 : 221-226.
    Ye J H, Zou Z G, Ye J H. 2003. Synthesis and properties of MIn0.5Nb0.5(M=Ca, Sr, Ba) photocatalysts[J]. Physical Chemistry B, 107:61-65.
    Ye J H, Zou Z G,, Arakawa H, et al. 2001. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 [J]. Journal of Photochemistry and Photobiology A: Chemistry,148:79-83.
    Yu J, Kudo A. 2006. Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4 [J]. Advanced Functional Materials, 16:2163-2169.
    Zhang H M, Liu J B, Wang H. et al. 2007. Rapid microwave-assisted synthesis of phase controlled BiVO4 nanocrystal and research on photocatlaytic properties under visible light irradiation [J]. Journal of Nanoparticle Research. DOI 10.1007/S 11051.
    Zhou L, Wang W ZH, Liu SH W. et al. 2006.A sonochemical route to visibl-light-driven high-activity BiVO4 photocatalyst [J]. Journal of Molecular Catalysis A: Chemical,252:120-124.
    Zhu X D, Nanny M A, Butler E C. 2007. Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite [J]. Journal of Photochemistry and Photobiology A: Chemistry, 185:289-294.
    Zoppo R A, Trasferetti B C, Davanzo C U. 2003. Electroanalytical Chemistry, 544:47-51.
    Zou Z G,Ye J H , Arakawa H. 2000. Structural properties of InNbO4 and InTaO4: Correlation with photocatalytic and photophysical properties [J]. Chemical Physics Letters, 332: 271 -277.
    Zou Z G, Ye J H , Arakawa H. J . 2001. Substitution Effect of In3+ by Fe3+ on Photocatalytic and Structural Properties of Bi2MNbO7 Photocatalysts [J]. Physical Chemistry B , 168:289-297.
    Zou Z G, Ye J H , Sayama K. 2001. Direct split- 250 ting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature, 414 : 625-627.
    Zou Z G, Ye J H . 2001. Arakawa H. Effect of Ni substitution on the structure and photocatalyticactivity of InTaO4 under visible light irradiation [J]. Materials Research Bulletin, 36 :1185 -1193 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700