大洪河土坝监测资料分析与风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国已建各类水库87000余座,大坝坝型以土石坝为主,约占90%以上。这些水库绝大多数为五十~七十年代建造(约80000座),为我国水利水电建设奠定了坚实的基础,对我国国民经济建设发挥了重要作用。但此间建造的大坝,已经运行了三、四十年,有的将近半个世纪,即使是优质工程,也难免有老化问题。我国是世界上拥有水库大坝座数最多的国家之一,而溃坝率亦位居世界前列,因此,在注重其巨大社会与经济效益的同时,如何正视水库枢纽之关键性建筑物——大坝的风险问题,如何在新工程的立项决策和已建工程的安全评估中全面系统地考虑各种因素的变异特征,科学合理地把握每座大坝的风险程度,是一个急待研究的课题。
     在进行大洪河水土坝风险分析之前,本文首先对其40余年的变形与渗流长系列监测资料进行了统计分析,在深入分析研究大坝变形与渗流变化规律的同时,构建了大坝变形与坝体渗流规律模拟模型,探讨了各环境因子对大坝变形与渗流的影响程度,以期对大坝工作性态作出科学、合理的评价。
     众所周知,我国拥有的土石坝数量居世界第一,而其失事率亦居榜首,可以说大坝风险,土石坝尤为突出。本文在查阅国内外大量文献资料的基础上,针对土石坝工程特点,通过对其失事模式的分析,应用工程风险及可靠度分析理论,建立了土坝坝坡、渗流破坏及超标洪水漫顶失事的风险模型,采用Monte-Carlo法对大洪河土坝坝坡、渗流风险分析以及皮尔逊Ⅲ型曲线拟合大洪河历史和运行期洪水资料推求超标洪水漫顶风险分析证明了模型的合理性,并
    
    四川大学硕士学位论文
    采用宽窄界限法对该工程大坝整体风险进行了评估。据笔者所查,对土坝三项
    风险建模分析尚未见相关报道。
     大洪河土坝监测资料分析表明,坝体垂直与水平变形呈现出总量逐年增大,
    而增量逐年减小的趋势,坝体变位曲线已趋收敛,大坝变形稳定。大坝测压管
    水位变化趋势反映出坝体空隙水压强已明显减弱,渐趋稳定,并由施工期及运
    行初期反映空隙水压强为主转变为以反映坝体渗流浸润面为主的阶段,大坝渗
    流工作性态正常。在影响坝体变形、渗流的诸多环境因子中,以时效因子影响
    最大,库水位次之,符合土坝的一般规律。
     采用本文所构建的风险模型对大洪河土坝三项风险分析表明,坝坡失稳、
    渗透破坏及漫顶失事的风险率分别为4.305x10-’,9.080xl。,及2.246x10一,,根
    据宽窄界限估计法,该大坝的整体风险率为2.335、1『,‘乃‘2.377 x 10一参
    考混凝土坝有关规范规定及该工程实际运行情况,认为该大坝运行是安全可靠
    的。
     我国水利水电工程风险分析尚属起步阶段,本文所做研究工作是在土坝风
    险建模及分析方法方面的一次探索和新的尝试。针对不同失事模式构建的风险
    分析数学模型可供类似工程借鉴,亦可推广采用于土石坝工程设计与安全评价
    的风险决策分析。
At present, there have been about 87,000 reservoirs in China, among which above 90% or so are earth dams. Most of them were built in the 1950s- 1970s(about eighty thousands), which have established firm base for water conservancy construction and took great effect for national economic development. However, the dams built during the period have worked for over thirty or forty years, some even for nearly half century, some dams has aged, including some high quality engineering. China is one of the countries which have the most amount of dams in the world and the ratio of dams failure is front-line in the world, too. Therefore, how
    to dispose correctly the key structure of the reservoir conservancy project-the
    risk questions of dams, how to consider fully and systemically all kinds of the variable characteristics in decision-making of the new engineering in safety assessment of the engineering built, and how to grasp the risk degree of each dam scientifically and reasonably is an urgent subject.
    Before the risk analysis of the Da Hong River earth dam, in this paper, a long series of displacement and seepage for over forty years is analysed statistically, while analysing the disciplinarians of displacement and seepage of the dam, the simulation models of displacement and seepage of the dam are established and the
    influence degree to displacement and seepage are explored by each environmental
    
    
    
    factor in order to make the scientific and reasonable assessment.
    It is well known that China is the country, which has the most amount of the earth dam throughout the world, and the same to the cases of accidents, among them, the earth dam safety is especially serious. Aiming at the characteristics of the earth dam, through the analysis of their failure modes, the risk model of earth dam failure caused by landslide, seepage and over-standard flood overtopping is founded according to the overseas and domestic statistical data. Its rationality is proved through the risk ratio analysis with the applying the Monte-Carlo method to the landslide failure -, seepage failure and flood over-standard overtopping and through P-D curve by fitting of historical and the operation period flood data of the Da Hong River and the whole risk analysis of the dam has been assessed by the width limit method. According to the existing reference, it is the first application of the risk model analysis of three items.
    It can be seen from the observational data analysis results of the Da Hong River earth dam that the total amount of the vertical and horizontal displacement has a trend of the stepwise increase year after year, while the increment is minishing. The displacement curve of the dam body has converged, and displacement of the dam is stable. Pore water pressure intensity loweres obviously and is coming to be steady. The water level in piezometric pipes has changed from mainly reflecting water pressure intensity during the construction and operation period to mainly reflecting seepage wetted area now. Among the factors influencing displacement and seepage of the dam, the time factor takes the greatest effect, and the reservoir water level is in succession, it answers for the general rules of the earth dam.
    Three items risk analysis of the Da Hong River earth dam hi the application of the risk models built hi this paper indicate that the risk ratio of landslide failure, seepage failure and flood overtopping is respectively 4.305 ×10-4,9.080×10-4 and
    2.246×10~2. According to the width limit method, the whole risk ratio of the dam is 2.335×10-2     dam and the practical operation situation of the dam, it can been drawn a conclusion that this dam works safely and reliably.
    
    
    
    
    The engineering risk analysis of the hydro projiect in China is in the stage of the beginning. The study in this paper is an explore and a new attempt to the risk analysis of the earth dam. The risk analysis model aiming to the different failure modes is able to be referenced by
引文
[1] 张青晖等.风险分析综述.系统工程于电子技术,1996(2)
    [2] R.Lafitte著,刘汉昌译.大坝概率风险分析:它的值和极限.成都水利,1997(2):73~75
    [3] Martin w. Mc Cann,Jr.. Rist Assessment for Dams-Thaw,美国大坝安全年会议论文集
    [4] D.哈特福特著,马小杰译.大坝风险及业主的困境.水利水电快报,2001.1:第22卷第二期,4~6
    [5] 应用风险分析方法进行大坝安全决策和安全管理.国际大坝会议专题76之总报告(2000,北京)
    [6] 国家电力公司大坝安全监察中心.对《国际大坝委员会大坝安全专业委员会公报—风险评估》的印象.大坝与安全,2000(4):1~2
    [7] 朱元甡.长江南京段设计洪水位的风险分析.水文,1989,9(5):8~15
    [8] 朱元甡,韩国宏等.南水北调中线工程交叉建筑物水毁风险分析.水文,1995,(3):1~7
    [9] 冯平等.水库保护区内防洪堤的水文风险估算.河海大学学报,1994.11,22(6):98~100
    [10] 姜树海.基于随机微分方程的河道行洪风险分析.水利水运科学研究,1995.6,(2):127~137
    [11] 赵永军,冯平等.河道防洪堤坝水流风险的估算.河海大学学报,1998.5,26(3):71~75
    [12] 王卓甫等.防洪堤结构风险计算模型探讨.水利学报,1998.7(7),64~67
    [13] 李国芳,黄振平等.长江防洪堤南京段设计洪水位风险分析.河海大学学报,1999,27(2):22-27
    [14] 陈新民,夏佳等.黄河下游悬河决口灾害的风险分析与评价.水利学报,2000(10):66~70
    [15] 徐祖信等.开敞式溢洪道泄洪风险计算.水利学报,1989(4):50~54
    [16] 郑管平等.溢流坝泄流可靠度计算.河海大学学报,1989,17(5):15~21
    
    
    [17]姜树海.泄水建筑物免空化设计的可靠性分析.水利学报,1990(5):12~20
    [18]姜树海.大坝防洪安全的评估和校核.水利学报,1998(1):18~24
    [19]姜树海.水库调洪演算的随机数学模型.水科学进展,1993,4(4):294~300
    [20]金明.水力不确定性及其在防洪泄洪系统风险分析中的影响.河海大学学报,1991,19(1):40~45
    [21]朱元甡等.水库安全设计与垮坝风险.水利水电科技进展,1995.2,15(1):17~24
    [22]杨百银等.水库泄洪布置方案可靠度及风险分析研究.水力发电,1996(8):54~59
    [23]王长新,王惠明等.泄洪风险计算方法的比较.水力发电,1996(8):54~59
    [24]熊明.三峡水库防洪安全风险研究.水利水电技术,1999,30(2):39~42
    [25]王本德,梁国华等.防洪实时风险调度模型及应用.水文,2000,20(6):4~8
    [26]朱元甡.洪泛区洪灾风险的分析和管理.水利经济,1990(2):55~62
    [27]朱元甡,沈福新等.长江防洪决策支持系统——防洪决策风险分析.水科学进展,1996,7(4):295~304
    [28]傅湘,王丽萍等.洪水遭遇组合下防洪区洪灾风险率估算.水电能源科学,1999,17(14):23~26
    [29]陈进等.防洪系统风险分析方法探讨.长江科学院院报,2001.10,18(5):37~41
    [30]邓永录,徐宗学.洪水风险率分析的更新过程模型及其应用.水电能源科学,1989.9,7(3):226~232
    [31]肖焕雄等.江河防洪系统年超标洪水风险率模型研究.自然灾害学报,1993.1,2(1):24~32
    [32]李景玉,徐宗学.洪水风险率Poisson模型应用研究.数理统计与应用概率,1988,3(4):392~401
    [33]徐宗学,肖焕雄.洪水风险率CSPPN模型初步应用研究.水利学报,1991.1(1):28~33,73
    [34]徐宗学,曾光明.洪水频率分析HSPPC模型应用研究.水科学进展,1992.9,3(3):174~180
    [35]Xu Z X, Li J Y.Ito K. Clustering stochastic point process model for flood risk analysis. Stocha Hydrol and Hydrau, 1998,12(1):53~64
    [36]王燕生.防洪调度风险分析.水力发电,1996(10):19~21
    [37]邢大为等.渭河下游“二华夹槽”洪灾风险模拟.西北水资源与水工程,1997,8(1):1~
    
    6
    [38]华家鹏,李国芳等.洪水保险研究.水科学进展,1997,8(3):233~239
    [39]陈元芳.随机模拟中模型与参数不确定性影响的分析.河海大学学报,2000,28(1):32~25
    [40]冯平.风险分析方法在干旱期水资源管理中的应用.水文计算进展问题和展望论文集,1997:136~143
    [41]阮本清,梁瑞驹等.一种供用水系统的风险分析与评价方法.水利学报,2000.9(9):1~7
    [42]王道席.黄河下游水资源调度管理研究[D].南京:河海大学,2000
    [43]洪家宁.水库泥沙淤积量风险分析.水文,1994,14(4):14~18
    [44]梁川.极差分析在水库防洪调度风险评估中的应用.四川水力发电,1994.12(4):25~28
    [45]冯平等.岗南水库超汛限水位蓄水的风险分析.天津大学学报,1995.7,28(4):572~576
    [46]谢崇宝,袁宏源等.水库防洪全面风险率模型研究.武汉水利电力大学学报,1997.4,30(2):71~74
    [47]傅湘等.水库汛期调度的最大洪灾风险率研究.水电能源科学,1998,16(2):12~15
    [48]田峰巍,黄强等.水库实施调度及风险决策.水利学报,1998(3):57~62
    [49]周厚贵.应用风险评审技术(VERT)进行水利工程施工风险分析的探讨.水利经济,1988(4):32,44~46
    [50]王卓甫.用风险决策方法选择施工导流方案.水利学报,1989(11):28~33
    [51]王卓甫.施工导流风险分析.水利学报,1992(5):65~71
    [52]王卓甫.考虑洪水过程不确定性的施工导流风险计算.水利学报,1998(4):33~37
    [53]王卓甫,陈登新.水利水电施工进度计划的风险分析.河海大学学报,1999,27(4):73~87
    [54]肖焕雄,韩彩燕.施工导流系统超标洪水风险率模型研究.水利学报,1993(11):76~83
    [55]肖焕雄,孙志禹.过水围堰初期导流费用风险率计算模型.武汉水利电力大学学报,1994,27(6):622~627
    [56]吕岳鹏.施工导流方案决策研究[D].武汉:武汉水利电力学院,1991
    
    
    [57]唐晓阳,肖焕雄.施工导流系统设计风险率模型研究.武汉水利电力大学学报,1996,29(1):25~31
    [58]周宜红,胡志根.施工截流系统风险率研究.水电能源科学,1996,14(3):171~175
    [59]周宜红,肖焕雄.三峡工程大江截流风险决策研究.武汉水利电力大学学报,1999,32(1):4~6
    [60]孙志禹.过水围堰初期导流工期风险计算模型.水电能源科学,1996,14(3):176~181
    [61]陈凤兰,王长新.施工导流风险分析与计算.水科学进展,1996,7(4):361~366
    [62]李本强,胡颖等.过水围堰导流系统瞬时风险分析.水电能源科学,1997,15(2):42~46
    [63]石明华,钟登华.施工导流超标洪水风险率估计的水文模拟方法.水利学报,1998(3):30~33
    [64]蔡树英,杨金忠.地下水污染风险分析的初步研究.武汉水利电力大学学报,1997,30(1)6~10
    [65]陈小红,涂新军.水质超标风险率的CSPPC模型.水利学报,1999(12):1~5
    [66]束龙仓,朱元生等.地下水资源评价结果的可靠性探讨.水科学进展,2000,11(1):21~24
    [67]李君纯.我国水库坝工安全的状况及前景.全国第三届大坝安全学术讨论会论文集.河海大学出版社,1996:8
    [68]王仁钟,李君纯等.中国水利大坝的安全与管理.南京水利科学研究院,水利部大坝安全管理中心
    [69]汝乃华,牛运光.大坝事故与安全.土石坝.中国水利水电出版社,2001.10:26
    [70]朱元甡,王道席.水库安全设计与挎坝风险.水利水电科技进展,1995.2,15(1):17~24
    [71]郭仲伟.风险分析与决策.机械工业出版社,1987.7
    [72]吴世伟.结构可靠度分析.人民交通出版社,1990:129~133
    [73]T.阿姆达尔等.挪威风险评估的新准则.水利水电快报,2001.11:15~18
    [74]Salmon G M. and Hartford D. N. D.. Risk analysis for dam safety. Water Power and Dam Construction. 1995(3)
    [75]刘吉印,麻荣永.水库优化调度防洪库容的计算方法.河海大学,1990(12),第18卷 水电专辑
    [76]朱伯芳.关于可靠度理论应用于混凝土坝设计的问题[J].土木工程学报,1999(4)
    
    
    [77]A.H-S.ANG W.H.TANG著,孙芳等译.工程规划与设计中的概率概念.冶金工业出版社,1991.6
    [78]郑峰,吴世伟.土坝稳定可靠度分析方法初探[A].全国第三届工程结构可靠度学术会议论文集[C].南京:河海大学出版社,1992
    [79]大洪河水电站.拦河坝(土坝)土工试验报告.长寿发电厂,中国人民解放军重庆后勤工程学院,1993.2:28,36,38
    [80]张广文,刘令瑶.土石坝筑坝材料基本参数概率统计与相关分析.水利水电技术,1994(9):12~16
    [81]姚耀武,陈东伟.土坡稳定可靠度分析.岩土工程学报,1994(4)
    [82]大洪河水电站拦河坝(土坝)坝体稳定分析报告(附件八).能源部,水利部成都勘测设计研究院.1993.2:7~8
    [83]碾压式土石坝设计规范.中华人民共和国水利部.中国水利水电出版社,2002.4:41
    [84]孙慕群,符向前.土坡稳定可靠度分析中若干规律的探讨[J].岩土工程技术,2000(2):113~117
    [85]大洪河水电站拦河坝(土坝)原型观测资料分析报告(附件四).四川水力发电开发咨询服务部,1993.2:9
    [86]刘杰.土的渗透稳定与渗流控制.水利电力出版社,1992.12:80,89
    [87]刘杰.无粘性土的孔隙直径及渗流特性.水利水电科学研究论文集第八集.水利出版社,1982
    [88]Sherard, J.L. Dunnigan, L.P. Talbot, J.R. Basic Properlies of Sand and Gravel Filters. Journal of Geotechnical Engineering. Vol.110, No.6,1984.2
    [89]姜树海.大坝防洪安全的评估和校核.水利学报,1998(1):18~24
    [90]Yen. Ben-chie Risks in Hydrologic Design of Engineering Projects.Journal of the Hydraulics Division, ASCE, HY4,1970
    [91]徐宗学.风险率与不确定性问题研究综述.水文,1987(2)
    [92]刘树坤.国外防洪减灾发展趋势分析[J].水利水电技术,2000,20(1):2~10
    [93]夏岑岭.城市防洪理论与实践[M].合肥:安徽科学技术出版社,2001
    [94]重庆大洪河水电站水库水文、洪水调度及能量指标复核报告(中间报告),国家电力公司成都勘测设计研究院,2002.5:12
    
    
    [95]徐祖信,郭子中.水利水电工程设计洪水标准问题的探讨.水力发电
    [96]张秀玲,文明宣.我国水库失事的统计分析及安全对策讨论.水利管理论文集,1992.3
    [97]宋恩来.大坝超标准运行与风险分析.大坝与安全,1998(2):7,8~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700