堤防工程风险分析理论和实践研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堤防安全评价是堤防设计和堤防除险加固的重要组成部分,是对所研究堤段防洪能力的综合检验和评价。但堤防工程是赋存于一定水环境中受水文和水力条件作用的岩土工程结构,而风险作为一种用来考虑和评价工程实践中诸多不确定和无法预测因素而导致工程失事的一种手段时,是所有岩土工程中先天固有的(Casagrande,1965)。传统定值设计方法由于很难考虑到堤防工程实际存在的不确定性,因而已不足以确切地表征工程的安全程度。将以概率论和可靠度为基础的风险分析方法引入堤防工程安全评价实践中具有重要意义。本文在广泛参阅国内外大量文献基础上,对堤防工程风险分析的理论、模型、方法以及应用进行了探讨研究,取得了以下研究成果:
     (1) 采用故障树分析方法对单元堤段失事破坏类型进行了分析,将单元堤段失事模式分为以下3个层次8种分项失事模式:
     Level Ⅰ:水文失事模式和结构失事模式;
     Level Ⅱ:将水文失事模式分为洪水漫溢失事模式和洪水漫顶失事模式,将结构失事模式分为渗透破坏失事模式、岸坡失稳模式和地震险情失事模式;
     Level Ⅲ:将地震险情失事模式分为岸坡地震失稳和地震液化,岸坡失稳模式分为临水面岸坡失稳模式和背水面岸坡失稳模式,岸坡地震失稳模式同样亦分为临水面岸坡地震失稳模式和背水面岸坡地震失稳模式。
     (2) 依据所进行的单元堤段失事模式分析,分别推导建立了单元堤段分项失事模式风险率计算模型,并提出了分项失事模式功能函数及其功能函数中随机变量的估计方法;同时在建立分项失事模式的风险率计算模型时考虑了分项失事模式的失事后果严重程度,在洪水漫顶失事模式和地震液化失事模式的风险率计算模型中引入贡献权重函数K(h)来考虑其风险对综合失事风险的贡献;然后对单元堤段分项失事模式的风险率计算模型中的洪水位概率密度函数和分项失事风险率的表述方式进行了详细阐述,提出了风险率计算模型中积分计算方法(基于高斯—勒让德节点的离散化积分求解方法和函数拟合方法),给出了分项失事模式条件失事概率计算中随机变量的标准差估计方法,并建议将失事风险率计算结果用风险率与洪水位关系曲线来表示,以更好地表征堤防工程安全程度。
     (3) 对单元堤段综合失事风险率计算的解析解、界限估计和近似估计方法进行了描述;建立了单元堤段失事事件之间的相关函数,以及堤防系统综合失事风险率计算的公式,并提出了堤防系统综合失事风险率计算步骤;分析了堤防失事后
Safety evaluations on levees are systematic inspections and assessments on the performance of flood prevention of the studied reaches, and also are the main part of job before reinforcement design for levees. Levees are brim over with uncertainty, which are kind of geotechnical structures running under the circumstances of flood water and suffering from hydrological and hydraulic effect. However, risks are inherent in geotechnical engineering as tools to considering and evaluating the uncertainty or things hard to predict which could result in failure of the structure(Casagrande, 1965). As a result, traditional deterministic design approaches due to lack of consideration of existed uncertainty in practice, seems not good enough to represent the safety of levees. Therefore, it will be rather valuable to apply probability-and-reliability-based risk analysis procedure in safety assessment of levees. Based on referring on large numbers of correlative literature at home and abroad, this dissertation presents a groping study on foundations, models, approaches and applications of risk analysis for levees failures. And main conclusions of the study are drawn as follows:(1) Fault tree analysis(FTA) is adopted to analyze the failure types of levee reaches, and failure modes of levee reaches are classified into three levels:Level Ⅰ: Hydrological failure mode and structural failure mode.Level Ⅱ: Hydrological failure mode is classified into overflowing failure mode and overtopping failure mode. Structural failure mode is classified into seepage failure mode, slide instability failure mode and seismic disaster failure mode;Level Ⅲ: Seismic disaster failure mode is classified into seism-induced slide instability failure mode and seismic liquefaction failure mode. Both slide instability failure mode and seism-induced slide instability failure mode include the riverward slope and landward slope.(2) Calculating models for risk factor of each failure mode of levee reach are established, and accordingly performance function of each failure mode of levee reaches are proposed. Meanwhile an Contributing weight function K(h) is introduced into calculating models of overtopping failure mode and seimic liquefaction failure mode so as to considering of the contribution from risk of the two failure modes to comprehensive failure risk. Then an illustration to flood PDF in calculating model for
    each failure mode and risk factor of each failure mode are described in detail. And a points-of-Gauss-Legender-quadrature-based discretized method for integral formula of calculating models is proposed, so it is with nonlinear curve fitting method. Furthermore, methods for estimating value of standard deviation of random variables are also discussed.(3) Analytical solution, bounds estimating and approximate estimating to comprehensive failure risk factor of each levee reach are described. In order to obtain failure risk factor of levee system, a correlative function of failure event between two levee reaches is established, and accordingly the formula and procedure of failure risk factor of levee system is proposed. Meanwhile, economic consequence assessment due to levee failure is described, and then the procedure to failure risk evaluation of levee system is proposed. In addition, over-level flood is defined, and procedure of calculating failure risk of levee system under over-level flood condition is brought forward.(4) One misapplication of Monte Carlo sampling method in practice is pointed out, and procedure of Monte Carlo sampling under correlation conditions is presented. Meanwhile, an extended geometrical optimized method(EGOM) is proposed, procedure of which under conditions of correlation and non-normal distribution variable is presented. Furthermore, EGOM and quadratic polynomial response surface method(RSM) are combined to solve the probabilistic problems with implicit performance function.(5) In allusion to the characteristic of each failure mode of levee reach, calculating approaches for conditional probability of each failure mode of levee reach are presented: EGOM-based RSM for conditional probability of seepage failure mode, a practical method to locate critical probabilistic surface and minimum (3 by Hassan and Wolff for conditional probability of slope instability failure mode. In addition, based on proposed calculating models of failure modes and calculating approaches for conditional probability of failure modes, the code LeveeRisk for failure risk factor of levee reach is developed.(6) Based on Banqiao river left levee reinforcement project, with proposed and presented foundations, approaches and code of risk analysis for levees, the risk factor and risk value of Banqiao river left levee are evaluated, and assessment about the calculating result is also made subsequently. According to its 1995' failure case, critical risk factor and critical risk value for Banqiao river left levee are established. In
    Levee Engineering;Risk Analysis;Failure Mode;Acceptable Risk;Over-level Flood;External Qinhuai River Levee;Banqiao River Levee;Geomembance
引文
1.麻荣永.土石坝风险分析方法及应用[M].北京:科学出版社,2004
    2.王运辉.防汛抢险技术[M].武汉:武汉水利电力大学出版社,1999
    3.水利部规划计划司.2005年全国水利统计公报[EB/OL].
    4.李青云,张建民.长江堤防安全评价的理论 方法和实现策略[J].中国工程科学,2005,7(6):7-13
    5.董哲仁.堤防除险加固实用技术[M].北京:中国水利水电出版社,1998
    6.包承纲,吴昌瑜,丁金华.中国堤防建设技术综述[J].人民长江,1999,30(10):15-17
    7.陈祖煜.对长江干堤加固工程中一些问题的思考[J].水利水电科技进展,2003,23(4):4~7
    8.GB50286-98,堤防工程设计规范[S].
    9.国家自然科学基金委员会.自然科学学科发展战略调研报告:水利学科[M].北京:科学出版社,1994
    10. Casagrande A. Role of the "Calculated Risk" in Earthwork and Foundation Engineering[J]. Journal of the soil mechanics division, ASCE, 1965, 91(4)
    11.吴兴征,赵进勇.堤防结构风险分析理论及其应用[J].水利学报,2003,8:79-85.
    12.李青云.长江堤防工程安全评价的理论和方法研究[D][博士论文].清华大学,2002.5
    13.杨光煦.堤防险情及其处置[J].人民长江,1999,30(9):13-15
    14.骆辛磊.堤防险情严重程度划分及其识别方法探讨[J].水利水电科技进展,2003,23(2):21-25
    15.刘亚凤,孟宪双,张本秋.堤防渗透破坏类型及其除险加固措施[J].防渗技术,2002,8(4):43-44
    16.董哲仁.堤防抢险加固实用技术[M].北京:中国水利水电出版社,1999
    17.段金曦,段文忠,朱矩蓉.河岸崩塌与稳定分析[J].武汉大学学报(工学版),2004,37(6):17-22
    18.魏一鸣,金菊良,杨存建等.洪水灾害风险管理理论[M].北京:科学出版社,2002
    19. U. S. Department of the Interior, Bureau of Reclamation. Dam Safety Risk Analysis Methodoogy[P]. Technical Service Center, Denver, Colorado, 2003
    20. Booi H Kam. Risk analysis & assessment[M]. RMIT, 2002
    21. Pieter van Gelder, Lucien Duckstein and Eric Parent. A multicritieria approach to risk analysis[J]. PSAM7/ESREL2004 Conference, Eds: Spitzer, Schmocker, and Dang, June 14-18, 2004, Berlin.
    22. Canadian Standards Association, 1997. CAN/CSA-Q850-97, Risk Management Guideline for Decision Makers[S].
    23.王栋,朱元甡.防洪系统风险分析的研究评述[J].水文,2003,23(2):15-21
    24. Ken Ho, Eric Leroi & Bill Roberds. Quantitative risk assessment: Application, myths and future direction[C]. Modem Techniques for Dams Financing, Construction, Operation, Risk Assessment. 57# DRESDEN, 2001, 9: 269-305.
    25. Tim Bedford, Roger Cooke. Probabilistic Risk Analysis: Foundations and Methods[M]. UK: Cambridge University Press, 2001
    26. Raymond A. Stewart. Dam Risk Management[A]. Proc. An International Conference on Geotechnical & Geological Engineering, 19-24 November, Melbourne, Australia, 2000
    27. Bowles, D. S., Parsons, A. M., Anderson, L. R., and Glover, T. F. Portfolio risk assessment of SA water's Large dams, ANCOLD Bulletin, 1999, No. 112
    28. Yacov Y. Haims. Total risk management[J]. Risk Analysis, 1991, 11(2): 169-171
    29. ICOLD. Bulletin On Risk Assessment As An Aid To Dam Safety Management: Principles, Terminology and Discussion of Current and Potential Roles[P]. Draft Version 10. August. 2000.
    30.于学馥,宋存义.不确定性科学决策方法[M].北京:冶金工业出版社,2003
    31. Yen B. C., Ang A. H. S. Risk analysis in design ofg hydraulic projects[C]. Stochastic Hydraulics, 1st International Symposium on Stochastic Hydraulics, 1971: 694-709
    32. National Research Council(NCR). Risk analysis and uncertainty in flood damage reduction studies[M]. Washington, D. C.: National Academy Press, 2000
    33. Van Gelder, P. H. A. J. M. Statistical methods for the risk-based design of civil structures[D]. Phd thesis. Delft University of Technology, 1999
    34. Boshouwers W. P. C. Risk modeling in civil and financial engineering[D]. Masters thesis. Delft University of Technology, 2003
    35. Haching I. The emergence of probability[M]. Cambridge University Poress, Cambridge, UK. 1975
    36. Christian J. T., Hon M. Geoteehnical engineering reliability: how well do we know, What we are doing[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(10): 985-995
    37. Wonnacott R., T. wonnacott. Introductory statistics[M]. New York: John Wiley & Sons, 1985
    38. Walpole R., R. Myers. Probability and statistics for engineers and scientists[M]. New York: Macmillan Publishing Co., 1978.
    39. Van Gelder P. H. A. J. M. Statistical methods for the risk-based design of civil structures[D]. Ph. D. thesis Delft University of Technology, 1999
    40.李小勇.土工参数空间概率特性及软粘土堤基固结概率分析[D][博士论文].浙江大学,2001
    41.罗云,樊运晓,马晓春.风险分析与安全评价[M].北京:化学工业出版社,2004.
    42.陈春梅,朱秀文,刘江南.FMEA在项目风险管理中的应用研究[J].河北建筑科技学院学报,2004,21(3):83-87.
    43. Anand Pillay, Jin Wang. Modified failure mode and effects analysis using approximate reasoning[J]. Realiability Engineering and System Safety, 2003, 79(1): 69-85.
    44. P. C. Teoh, Keith Case. Failure modes and effects analysis through knowledge modeling[J]. Journal of Materials Processing Technology, 2004, 153-154(10): 253-260.
    45. D. N. D. Hartford. Judged values and value judgements in dam risk assessments[C]. Proceedings of the 1999 Australian Conference on Dams: 138-154
    46.曾声奎,赵廷地,张建国等.系统可靠性设计分析教程[M].北京:北京航空航天大学,2001
    47.罗桦槟,张世英.事件树方法的贝叶斯分析[J].系统工程与电子技术,1999,21(9):78-80
    48. Ioannis A. Papazoglou, Mathematical foundations of event trees[J]. Reliability Engineering and System Safety, 1998, 61(3): 169-183
    49.田宏,陈宝智,无穹等.广义多态事件树模型[J].中国安全科学学报,2000,10(6):35-39
    50. Huang David, Chen Toly, Wang Maojiun J. A fuzzy set approach for event tree analysis[J]. Fuzzy Sets and Systems, 2001, 118(1): 153-165
    51.金朝光,林焰,金卓尚.基于模糊集理论事件树分析方法在风险分析中应用[J].大连理工大学学报,2003,43(1):97-101
    52. Joocheol Kim. Event tree based sampling[J]. Computers & Operations Research, 2006, 33(5): 1184-1199
    53. Gordon A. Fenton. Probabilistic methods in geotechnical engineering[M]. Workshop presented at ASCE Geologan'97 Conference, Logan, Utah, 1997.
    54.蔡佳昆.故障树计算机辅助分析及应用研究[D][硕士论文].天津大学,2001
    55. Van Zyl D., Miller I., Milligan V., Tilson W. J. Probabilistic risk assessment for tailings impoundment founded on Paleokarst[M]. Uncertainty in the geologic environment: From theory to practice, ASCE, Reston. Va.
    56.张景林等.安全系统工程[M].北京:煤炭工业出版社,2002,8.
    57.刘宁.可靠度随机有限元及其工程应用[M].北京:中国水利水电出版社,2001
    58. U. S. Army. Guidelines for risk and uncertainty analysis in water resources planning[R]. IWR-Report, 1992.
    59.曹云.堤防风险分析及其在板桥河堤防中的应用[D][硕士论文].河海大学,2005
    60.赵国藩、金伟良、贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000
    61.郭书祥,冯元生,吕震宙.随机有限元方法与结构可靠性[J].力学进展,2000,30(3):343-350
    62. Fishman G. S. Monte Carlo: Concepts, algotithms, and applications[M]. Springer, New York, 2005
    63. Benjamin J. R., Comell C. A. Probability, Statistics and Decisions for Civil Engineers[M]. McGraw-Hill, New York, N, Y., 1970
    64. Hasofer A. M., Lind N. C. Exact and invariant second moment format[J]. Journal of the Engineering Mechanics, 1974, 100(1): 111-121
    65. Paloheimo E., Hannus H. Structural design based on weighted fractiles[J]. Journal of Structural devision, ASCE, 1974, 100(7).
    66. Breitung K. Asymptotic approximations for multinormai integrals[J]. Journal of Engineering Mechanics, ASCE, 1984, 100(3): 357-366
    67. Rosenbleuth E. Point estimates for probability moments[J]. Proc. Natl. Acad. Sci. U. S. A., 1975, 72(10): 3812-3814
    68. Rosenbleuth E. Two-point estimates in probabilities[J]. Appl. Math. Model., 1981, 5(2): 329-335
    69. Chowdhury R. N. Recent developments in landslide studies: probabilistic methods[R]. State-of-the-art report, 4th International Symposium on Landslides, Toronto, 1984, 1: 209-228
    70. Li K. S. Some common mistakes in probabilistic analysis of slopes[C]. Proceedings, 6th International Symposium on Landslides, Christchurch, 1992: 475-480
    71.陈祖煜.土质边坡稳定分析——原理·方法·程序[M].北京:中国水利水电出版社,2003:273-334
    72.吕泰仁,吴世伟.用几何法求构件的可靠指标[J].河海大学学报,1988,16(5):86-93
    73. Liu P. L., Kiureghian A. D. Optimization algorithms for structural reliability[J]. Structural Safety, 1991, 9: 161-177.
    74. Enevoldsen I, Sorensen J. D. Reliability-based optimization in structural engineering[J]. Sturctural Safety, 1994, 15: 169-196.
    75.冷伍月,赵善悦.用不求导数的最优化计算可靠度指标[J].先交通大学学报,1993,20(2):58-63
    76.洪昌华,恭晓南.变量相关情况下可靠度指标计算的优化方法[A].中国土木工程学会土力学及岩土工程学会编,全国第八届土力学及岩土工程学术会议论文集[C].北京:万国学术出版社,1999:121-124
    77.徐军,邵军,郑颖人.遗传算法在岩土工程可靠度分析中的应用[J].岩土工程学报,2000,22(5):586-589
    78. Wong F. S. Slope reliability and response surface method[J]. Journal of Geotechnical Engineering, 1985. 111(1): 32-53
    79.苏永华,方祖烈,高谦.用响应面法分析特殊地下岩体空间的可靠性[J].岩石力学与工程学报,2000,19(1):55-58
    80.武清玺.基于界面元模型的响应面法及其在大型结构可靠度分析中的应用[D][博士论文].河海大学,1999
    81.徐军,郑颖人.可靠度响应面有限元及其工程应用[J].地下空间,2001,21(5):354-360
    82.郭书祥,冯元生,吕震宙.随机有限元方法与结构可靠度[M].力学进展,2000,30(3):333-350
    83. Benaroya H, Rehak M. Finete element methods in probabilistic structural analysis: a selsctive review[J]. App. Mech. Rev., 1998, 41(5): 201-213
    84. Baecher G. B., Ingra T. S. Stochastic FEM in settlement predictions[J]. J. of Geotech. Eng., 1981, 107(2): 449-463
    85. Vanmarcke E. Realiability of earth slopes[J]. J. of Geotech. Eng., 1977, 103(11): 1247-1265.
    86. Phoon K. K., Quck S. T., Chow Y. K. Reliability analysis of pile settlement[J]. J. Geotech Eng., 1990, 116(11): 1717-1735.
    87. Dasgupta G Stochastic finite element analysis of soil-structural system[A]. In: Proc 4th Int. Conf. on Struct safety and Reliability. Ed: Konishi Ⅰ., 1985: 525-532
    88. Ishiik, Suzuki M. Stochastic finite element method for slope stability analysis[J]. Struct. Safety, 1987, 4: 111-129
    89.祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993
    90.徐建平,胡厚田.摄动随机有限元在顺层岩质边坡可靠性分析中的应用[J].岩土工程学报,1999,21(1):71-76
    91.傅旭东,陈晓平,刘祖德.单桩承载力可靠度的非线性摄动随机有限元分析[J].岩石力学与工程学报,2003,22(1):103-109
    92. Fredenthal A. M. The safety of structures[J]. Trans, ASCE, 1947, 112
    93.GB50068-2001,建筑结构可靠度设计统一标准[S].
    94.GB50199-94,水利水电工程结构可靠度设计统一标准[S].
    95.张青晖,沙基昌.风险分析综述[J].系统工程与电子技术,1996,2:42-45.
    96. Terzaghi K. Effect of minor geological details on the stability of dams[J]. Technical Publication NO. 215, Amercian Institute of Mining and Metallurgical Engineerings, New York: 31-44
    97. Whitman Robert V. Evaluating calculated risk in geotechnical engineering[J]. Journal of Geotechnical Engineering, 1984, 111(2): 145-188.
    98. Lacasse S., Nadim F. Uncertainties in characteristic soil properties[J]. Uncertainty in the Geological Environment: From Theory to Practice, ASCE, Reston, Va., 1996: 49-75
    99. Christian John T. Geotechnical Engineering Reliability: How well do we know, What we are doing?[J]. Journal of Geotechnical and Geoenvironmentai Engineering, 2004, 130(10): 985-1003
    100. Einstein H H. Risk and risk analysis in rock engineering[J]. Tunnelling and underground space technology, 1996, 11(2): 141-155.
    101. Duncan J. Michael. Factors of safety and reliability in geotechnical engineering[J]. Journal of Geotechnical and geoenvironmental engineering, 2000, 126(4): 307-316
    102. Baecher G. B., Christian J. T. Reliability and statistics in geotechnical engineering[M]. Wiley, Chichester, U. K., 2003
    103. Whitman Robert V. Organizing and evaluating uncertainty in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(7): 583-593
    104. Whitman Robert V. Evaluating calculated risk in geotechnical engineering[J]. Geotechnical Special Publication, 2002, 118 Ⅱ: 1958-2001
    105. Morgenstem N. R. Manageing risk in geotechnieal engineering[A]. The 3rd Casagrande lecture, Proe. 10th Pan American Conference on Soil Mechanics and Foundation Engineering, 1995, 4: 102-126
    106. U. S. Army Corps of Engineers. Risk-based analysis in geotechnical engineering for support of planning studies[P]. Technical Letter EC 1110-2-554, 1998, 2
    107.曹云,徐卫亚.系统工程风险评估方法的研究进展[J].中国工程科学,2005,7(2):88-94
    108. Li K. S., Lumb P. Probabilistic design of slopes[J]. Canadian Geotechnial Journal, 1987, 24(4): 520-535
    109. Christian J. T., Ladd C. C., Baecher G. B. Reliability applied to slope stability analysis[J]. Journal of Geotechnical Engineering, 1994, 120(12): 2180-2207
    110. Chowdhury R. N., Xu D. W. Geotechnical system reliability of slopes[J]. Reliability Engineering and System Safety, 1995, 47(8): 141-151
    111. Hassan EI-Ramly. Probabilistic analyses of landslide hazard and risks: Bridging theory and practice[D]. Ph. D. of thesis, University of Alberta, 2001.
    112. Hassan A. M., Wolff T. F. Search algorithm for minimum reliabiolity index of earth slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering ASCE, 1999, 125(4): 301-308
    113.姚耀武,陈东伟.土坡稳定可靠度分析[J].岩土工程学报,1994,16(2):80-87
    114.陈晓平,孙慕群,武起星.软基上复杂土坡稳定可靠度研究[J].岩石力学与工程学报,2004,23(6):925-929
    115. Morgan G. C., Rawlings G. E., Burman B. C. Debris from flow risk zoning at Montrose[J]. Victoria. Proc. 6th Int. Symp. On Landslides, 1992, 2: 1015-1022
    116. Fell R. Landslide risk assessment and acceptable risk[J]. Canadian Geotechnical Journal, 1994, 31: 261-272.
    117. Finlay P. J. The risk assessment of slopes[D]. Ph. D. thesis, School of Civil Engineering, University of New South Wales, 1996.
    118. Whittlestone A. P., Johnson J. D., Rogers M. E., Pine R. J. Probabilistic risk analysis of slope stability[J]. Institution of Mining & Metallurgy, Section A, 1995, 104: 19-24
    119.李东升,刘东燕.边坡可靠度风险评价分析[J].中国地质灾害与防治学报,2005,16(2):150-153
    120. Australian Geomechnics Society. Landslide Risk management concepts and guidelines[S]. Australian Geomechanics Society, Subcommittee on Landslide Risk Management, Australian Geomechanics, 2000.
    121.黄宏伟.隧道及地下工程建设风险管理研究进展[R].第二届全球华人岩土工程论坛,2005
    122. Soren Degn Eskesen, Per Tengborg, Jorgen Kampmann, Trine Hoist Veicherts. Gudidelines for tunnelling risk management: International Tunnelling Association, Working Group No. 2[J]. Tunneling and Underground Space Technology, 2004, 19(1): 217-237
    123.陈龙.城市软土盾构隧道施工期风险分析与评估研究[D][博士论文].同济大学,2004.
    124.彭雪辉.风险分析在我国大坝安全上的应用[D][硕士论文].南京水利科学研究院,2003
    125. ANCOLD. Guidelines on Risk Assessment[S]. Australian Committee on Large Dams, 1994.
    126. ANCOLD. Guidelines on Risk Assessment[S]. Australian Committee on Large Dams, 2003.
    127. ICOLD (INTERNATIONAL COMMITTEE ON LARGE DAMS) . ICOLD Guidelines on Risk Assessment for Dams[P]. Attachment by: Williams, A.: ICOLD Chairman's 1997/98 Progress Report for New Delhi Meeting, 1998, 11: 1-28.
    128. Association of State Dam Safety Officials & Federal Emergency Management Agency. Speciality workshop on risk assessment for dams[C]. Institute for Dam Safety Risk Management, Utah State University, 2001
    129. U. S. Department of the Interior Bureau of Reclamation. Dam safety risk analysis methodology[M]. Technical Service Center, Denver, Colorado, 2003
    130. Lee Jong-Seok. Uncertainty Analysis in Dam Safety Risk Assessment[D]. Ph. D thesis, Utah State University, 2002
    131.姜树海,范子武.大坝的允许风险及其运用研究[J].水利水运工程学报,2003,3:7-12
    132. Wood E. F. An analysis of flood levee reliability[J]. Water Resour. Res., 1977, 13(3): 665-671
    133. Tung Y-K., Mays L. W. Risk models for flood levee design[J]. Water Resour. Res., 1981, 17(4): 833-841
    134. Tung Y-K., Mays L. W. Optimal risk-based design of flood levee system[J]. Water Resour. Res., 1981, 14(4): 843-852
    135. Duckstein L.和Bogardi I. Application of reliability theory to hydraulic engineering design[J]. J. Hydrau. Div. Proe. ASCE, 1981, 107(HY7): 799-815
    136. Lee Han-Lin, Mays Larry W. Improved risk and reliability model for hydraulic structures[J]. Water Resources Research, 1983, 10(6): 1415-1422
    137. Tung Yeou-koung. Models for evaluating flow conveyance reliability of hydraulic structures[J]. Water Resour. Res., 1985, 21(10): 1463-1468
    138. Tung Yeou-koung. Effects of uncertainties on optimal risk-based design of hydraulic structures[J]. Water Resour. Res., 1987, 113(5): 709-722.
    139. Davis D. W. A risk and uncertainty based concept for sizing levee projects[A]. Proc. Hydroi. and Hydr. Workshop on Riverine Levee Freeboard, Monticello, Minn., 1991: 231-249
    140. Groot M. B. de, Adel H. Den, Stoutjesdijk T. P., Westenbrugge C. J. van. Risk of dike failure due to flow slides[J]. Coastal Engineering, 1995, 26(4): 241-249.
    141. Crum Douglas A. Reliability applied to levee seepage analysis[A]. Probabilistic Mechanics and structural and Geotechnical Reliability, Proceedings of the Speciality Conference, 1996: 946-949
    142. Gui Shengxiang, Zhang Renduo, Wu Jianquan. Simplified dynamic reliability models for hydraulic design[J]. Journal of Hydraulic Engineering, ASCE, 1998, 124(3): 329-333.
    143. Wolff, T. F. Geotechnical Reliability of Levees[A] Hydrology and Hydraulics Workshop on Risk-Based Analysis for Flood Damage Reduction Studies, U. S. Army Corps of Engineers, Hydrologic Engineering Center, 1997.
    144. U. S. Army Corps of Engineers (USACE). Risk-Based Analysis in Geotechnical Engineering for Support of Planning Studies[M], 1998. With two appendices. Appendix A, An Overview of Probabilistic Analysis for Geotechnical Engineering Problems. Appendix B: Evaluating the Reliability of Existing Levees.
    145. Van der Meer, Jentsje W., de Looff Harry., Glas Peter C. G. Integrated approach on the safety of dikes along the Great Dutch lakes[A]. Proceedings of the Coastal Engineering Conference., 1998, 3: 3439-3452.
    146. J. Rolf Olson. Risk modeling for a system of levees under non-stationary condition[D]. Ph. D. thesis, University of Virginia, America, 1999.
    147. Vrijling J. K. Probabilistic design of water defense systems in the Netherlands[J]. Reliability Engineering and System Safety, 2001, 74(5): 337-344
    148. Voortman H. G.. Risk-based design of large-scale flood defence systems[D]. Ph. D. thesis, Delft University of Teclmology, Netherlands, 2003
    149.朱元甡.长江南京段设计洪水位的风险分析[J].水文,1989(5):8-15
    150.冯平,李润苗.水库保护区内防洪堤的水文风险估算[J].河海大学学报,1994,22(6):98-100
    151.朱元甡、韩国宏,王如慈.南水北调中线工程交叉建筑物水毁风险分析[J].水文,1995,3:1-7
    152.王卓甫,章志强,杨高升.防洪堤结构风险计算模型探讨[J].水利学报,1998,7:64-67.
    153.赵永军,冯平,曲兴辉.河道防洪堤坝水流风险的估算[J].河海大学学报,1998,26(3):71-75.
    154.陈新民,夏佳,罗国煜.黄河下游悬河决口灾害的风险分析与评价[J].水利学报,2000,10:66-70
    155.梁在潮,李泰来.江河堤防防洪能力的风险分析[J].长江科学院院报,2001,4:7-10.
    156.吴兴征,丁留谦,张金接.防洪堤防的可靠性设计方法探讨[J].水利学报,2003,4:94-100.
    157.朱勇华,郭海晋,徐高洪等.防洪堤防洪综合风险研究[J].中国农村水利水电,2003,7:11-14.
    158.李锦辉.基于随机有限元的堤防渗透失稳风险分析及除险加固策略研究[D][硕士论文].河海大学,2004.
    159.吴兴征,丁留谦.土石坝工程的病险评价和加固决策[R].中国水利水电科学研究院防洪减灾所,2004.
    160.张贵金.岩溶地区重大水电工程防渗帷幕的风险研究[D][博士论文].南京:河海大学,2003.
    161.陈红.堤防工程安全评价方法研究[D][硕士论文].南京:河海大学,2004.
    162.朱伟,刘汉龙,高玉峰,山村和也.堤防抗震设计的原则与方法[J].水利学报,2002,10:113-118.
    163.DL 5073-2000,水工建筑物抗震设计规范[S].
    164.吴世伟.结构可靠度分析[M].北京:人民交通出版社,1990.
    165.丁留谦,孙东亚.堤防工程中几个关键研究课题[J].水利发展研究,2002,2(12):59-62
    166.姜树海.大坝防洪安全的评估和校核[J].水利学报,1998,1:18-24
    167.白永年.中国堤坝防渗加固新技术[M].北京:中国水利水电出版社,2001
    168.蔡树英,杨金忠,伍靖伟.土壤渗透参数空间变异性的试验研究[J].中国农村水利水电,2002,(11):13—17.
    169. Foster. M. A., Fell R. Use of event trees to estimate the probability of failure of embankment dams by internal erosion and piping[C]. Proc. 20th Int. Congress on Large Dams, Beijing, International Commission on Large Dams(ICOLD), Paris, Question 76, 2000, 1: 237-260.
    170. Fell R., Wan C. E, Cyganiewicz J., Foster M. Time for development of internal erosion and piping in embankment dams[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 307-314.
    171. Ojha C. S. P., Singh V. P., Adrian D. D. Determination of critical head in soil piping[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1): 511-518.
    172.周健,张刚.管涌现象研究的进展与展望[J].地下空间,2004,24(4):536-542.
    173. Gui Shengxiang, Zhang Renduo, Turner John P., Xue Xuzhang. Probabilistic slope stability analysis with stochastic soil hydraulic conductivity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(1): 1-9.
    174.白永年.中国堤坝防渗加固新技术[M].北京:中国水利水电出版社,2001.
    175.毛昶熙.渗流计算分析与控制[M].北京:中国水利水电出版社,2003.
    176.中华人民共和国建设部.水利水电工程地质勘察规范(GB50287-99)[S].北京:中国计划出版社,1999.
    177. Rocscience Inc. Slide Interpret-Slide's Help [R]. 2005
    178.贾超,刘宁,陈进.地震作用下土坡可靠度风险分析[J].岩石力学与工程学报,2005,24(4):703-707.
    179. Juang C. H., Rosowsky D. V.,Tang W. H. Reliability-based method for assessing liquefaction potential of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (8): 684~689.
    180.中华人民共和国建设部.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2002
    181.中华人民共和国建设部.岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社,2002.
    182.张善杰,唐汉,高瑞章.实用计算方法[M].南京:南京大学出版社,2000.
    183. Li Yang, Vrouwenvelder Ton, Wijnants G. H. Deterioration and maintenance of concrete bridges based on spatial variability of structural properties[C]. Serie Workshop Proceedings no. 8, Risk-based Maintenance of Civil Structures, Delft, 2003, Jan. 21st
    184.王家臣.边坡功臣随机分析原理[M].北京:煤炭工业出版社,1996.
    185.冯平,闫大鹏,耿六成等.南水北调中线总干渠防洪风险评估方法的研究[J].水利学报,2004,4:40-45.
    186.李小勇,谢康和,虞颜.土性指标相关距离性状的研究[J].土木工程学报,2003,36(8):91-108.
    187.王艳艳,吴兴征.中国与荷兰洪水风险分析方法的比较研究[J].自然灾害学报,2005,14(4):19-24.
    188. Dutta D., Herath S., Musiake K. A mathematical model for flood loss estimation[J]. Journal of Hydrology, 2003, 277(3): 24-49.
    189.洪昌华,龚晓南.相关情况下Hasofer-Lind可靠度指标的求解[J].岩土力学,21(1):68-75.
    190.傅旭东.相关变量下失效概率的计算机模拟[J].西南交通大学学报,1997,32(6):319-323.
    191.高惠璇.统计计算[M].北京:北京大学出版社,1995,7.
    192.佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面方法[J].土木工程学报,1997,30(4):51-57.
    193. Gordon A. Fenton, D. V. Griffith. Extreme hydraulic gradient statistics in stochastic earth dam[J]. Journal of Geotochnical and Geoenvironmental Engineering, 1997, 123(11): 995-1000.
    194. Li. K. S. Raymond W. M. Cheung. Discussion of "Search algorithm for minimum reliability index of earth slopes" by Hassan AM. Wolff TF. Journal of geotechnical and geoenvironmental engineering, 2001, 127(2): 197-198.
    195.陈祖煜,张广文.关于“土坡稳定可靠度分析”一文的讨论[J].岩土工程学报,1995,17(6):126-128
    196. Bhattacharya G, Jana D. Ojha S., et al. Direct search for minimum reliability index of earth slopes[J]. Computers and Geotechnics, 2003, 30(4): 455-462.
    197.陈祖煜,张广文.关于“土坡稳定可靠度分析”一文的讨论[J].岩土工程学报,1995, 17(6):126-128
    198.汪雪泉,潘坚云.华东地区地震目录的完全性分析[J].地震学刊.2002,22(3):1-4.
    199. Erich J. Plate. Flood risk and flood management[J]. Journal of Hydrology, 2002, 267(2): 2-11.
    200.陶同康.土工合成材料与堤坝渗流控制[M].北京:中国水利水电出版社,1999.
    201.陈开强,王澜,王锡臣.土工膜及其应用[J].现代塑料加工应用,2003,15(2):53-57.
    202.陶同康.复合土工膜及其防渗设计[J].岩土工程学报,1993,15(2):31-39。
    203.SL/T225-98,水利水电工程土工合成材料应用技术规范[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700