基于灰色—随机风险率的大坝风险分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大坝安全评价中常规的定值安全评价方法,由于没有考虑到设计变量的变异性,安全系数的大小并不能完全确切地表征工程的安全程度。本论文正是基于风险理论和灰色理论对上沙江水库大坝安全进行风险分析,通过较为合理的风险计算模型和风险分析方法定量地估算大坝几种主要的失事风险率,主要成果与结论如下:
     (1)研究分析了大坝溃坝模式的机理及成因,提出一种定性和定量相结合的确定大坝失事风险率的方法。并运用这种方法对上沙江水库大坝失事模式进行了风险识别,识别出该水库最可能失事的建筑物就是大坝。
     (2)基于灰色-随机风险理论建立了上沙江水库大坝坝坡失稳风险模型。以JC法为基础,编制Matlab电算程序计算了风险率,得到坝坡失稳的风险率区间[0.1285,0.1503],较好地体现和度量了风险率的不确定性,能比现行的可靠度方法提供更丰富的信息。如果按传统的条分法计算坝坡稳定安全系数,上沙江水库大坝安全系数K (1.152) > 1,表明大坝处于稳定状态。而考虑坝坡系统状态变量的分布和不确定性后,计算的坝坡有12.85%~15.03%的失稳滑动风险。反映了安全系数的大小并不能完全确切地表征大坝的安全程度。
     (3)基于灰色-随机风险理论建立了上沙江水库大坝漫顶风险模型,用JC法分别计算了设计洪水和校核洪水条件下的漫顶风险率:在现有大坝坝顶高程212.5m情况下,计算出大坝在设计洪水位和校核洪水位条件下漫顶的风险率都近似为0。当取坝顶高程为210.1m(与设计规范所要求的高程接近),计算结果为:设计洪水情况下,大坝的漫顶风险率近似为0,校核洪水情况下,大坝的漫顶风险率为区间[9.5479×10~(-9),2.0085×10~(-5)]。而我国20世纪80年代大坝的年均总体漫顶失事率为Pf =1.2710×~(-4),表明设计规范所要求的安全超高使大坝具有较大的抗洪潜力。
In the conventional method of setting safety factor assessment of dam ,the degree of safety can not be completely accurately characterized with the size of safety factor without taking into account the variability of design variables. Based on risk theory and the grey theory, this paper analyses dam risk of ShangShajiang Reservoir and adopts a more reasonable risk calculation model and risk analysis method to estimate several major dam accident risk probability, the main conclusion of the research are shown as following:
     (1) The mechanism and the causes of the hidden accident patterns of dam are analyzed and the possible hidden accident patterns are identified, the practical accident patterns are acquired by analyzing. The most likely failure building is the dam.
     (2)Based on the grey-stochastic risk theory, a risk model of slope failure of dam on the ShangShaJiang Reservoir is established. Based on the JC method, the grey-stochastic risk probability of slope failure can be calculated, the result is a risk interval [0.1285, 0.1503]. The grey-stochastic risk better reflects and measures the uncertainty of risk and it can offer more information than other reliability methods. For the stable evaluation of the dam slope discussed in this paper, the value of the safety factor, which is calculated by the traditional safety factor method, is 1.152. If K>1, that shows the dam slope is safe. However, considering the distribution of state variables and uncertainty of the dam slope system, the risk probability of the dam slope failure calculated by the grey-stochastic risk method still reach 12.85%~15.03%, so the degree of dam safety can not be completely accurately characterized with the size of safety factor.
     (3) Based on the grey-stochastic risk theory, a overtopping risk model of the ShangShaJiang Reservoir dam is established. The overtopping risk probability were calculated by using JC method in checking and designing flood level. If the height of the dam is 211.5m , the accident risk probability approximate zero. If in 210.5m (approximating the design specification height)and in design flood situation, the accident risk rate approximate zero, too. But in checking flood situation, the grey-stochastic accident risk probability is a interval [9.5479×10~(-9),2.0085×10~(-5)].In the 1980s, the average annual overall accident probability of the dam is Pf =1.2710×~(-4) in China. It is proved that the dam have greater potential to prevent flood and ultra-high security by the design specifications.
引文
[1]吴中如.中国大坝的安全和管理[J].中国工程科学,2000,(6):36-39
    [2]孙斌,田水承,常心坦.事故风险评价与风险管理模式研究[J].中国矿业,2003,1(12):23-28
    [3]陈仕亮主编.风险管理[M].成都:西南财经大学出版社,1994,8:28-56
    [4]雷胜强.国际工程风险管理与保险[M]. 北京:中国建筑工业出版社,1996:78-96
    [5]卢有杰,卢家仪.项目风险管理[M]. 北京:清华大学出版社,1998:218-236
    [6]J.莱克勒,徐玫,韦美玉.大坝安全中工程师的责任和风险管理[J].水利水电快报,1999,20(1):6-9
    [7]U.S. Commission on Large Dam (USCOLD), Committee on Failures and accidents to large Dams.Lessons from dam incidents, USA.AS-CE, New York, 1988,(11):67
    [8]Vijay P. Singh. Dam breach modeling technology[M]. Kluwer academic publishers, 1996,(4):110-112
    [9]D. L. Fread and J. M. Lewis. NWS FLDWAV MODEL. Hydrologic Research Laboratory Office of Hydrology, National Weather Service, November 1998,(2):17
    [10]加里·萨梦,戴斯·哈特福德.利用风险评估改进大坝安全项目[J].海河水利,2000,(2):13-18
    [11]N. M 列尔逊等.加拿大不列颠哥伦比亚水电局的风险分析方法[J].水利水电快报,1994,(11):3-9
    [12]G. M.塞勒蒙,师哲.大坝安全风险评估的应用经验[J].水利水电快报,1997,18(13):20-22
    [13]朱晓红译.瓦利奇大坝风险控制[J].水利水电快报,1997,18(12):17-19
    [14]楼渐逵.加拿大 BC Hydro 公司的大坝安全风险管理[J].大坝与安全,2000,(4):7-11
    [15]ANCOLD(Australian National Committee on Large Dams). Guidelines on Assessment of the Consequences of Dams Failure[R]. ANCOLD, 2000,(6):367-369
    [16]ANCOLD(Australian National Committee on Large Dams), Guidelines on Risk Assessment[R].ANCOLD, 2001,(21):354-355
    [17]ANCOLD(Australian National Committee on Large Darns), Guidelines on Risk Assessment[R].ANCOLD, 2003,(12):111-120
    [18] G.赫尔姆,A.弗雷泽,刘志明.风险评估在某大坝管理应用中的一些经验[J].水利水电快报,1999,20(4):12-14
    [19]R.I. Herweynen,马元班.福斯河上三座大坝的改造——基于风险决策的实例研究[J].水利水电快报,2002,23(24):3-7
    [20]王正旭.英国的水库安全管理[J].水利水电科技进展,2002,22(4):65-68
    [21]C.霍斯金,郎昌清.英国水库的安全检查[J].水利水电快报,2000,21(13):10-13
    [22]J.P.米尔默,T.A.约翰斯顿.英国大坝安全立法与准则展望[J].水利水电快报,1998,19(21): 10-14
    [23]威廉·哈尔克罗,郭恺丽.英国水库安全与监测[J].水利水电快报,1997,18(4):27-28
    [24]Timo Maijala. RESCDAM development of rescue actions based on dam-break flood analysis[J].Finland Environment Institute, 1999,(4):55
    [25]S. C. Kuperman.大坝安全分类新方法[J].水利水电快报,1996,17(14):8-11
    [26]安东尼奥·贝塔尼奥,德·阿尔梅达,陈桂蓉.葡萄牙大坝——流域风险管理[J].水利水电快报,2001,22 (20): 6-8
    [27]约翰.麦克朗,王建萍.泰国的大坝风险管理方法[J].水利水电快报,2001,22(17):18-21
    [28]T.阿姆达尔,刘洪波.挪威风险评估的新准则[J].水利水电快报,2001,22(21):15-18
    [29]L.延森,朱晓红.大坝应急计划的风险分析[J].水利水电快报,1999,20(3):14-18
    [30]王振强,刘玉杰,于九如,SGERT 在大型工程项目风险分析与管理中的应用研究[J].中国软科学,2002 ,(7):28-32
    [31]王兴华.二滩业主项目风险管理实践与保险在二滩工程中的应用[J].四川水力发电,2002,8(3): 71-76
    [32]杜德进,张为民,张秀丽等.风险评估在丰满水电站大坝的应用研究[J].大坝与安全,2002,(6):610
    [33]杜兴信,王哲,张惠玲等.渭河下游洪水、地震灾害综合风险分析与损失评估[J].灾害学,1997,12(2) :39-44
    [34] Wang Dong, Zhu Yuansheng. Discussion on state-of-the-art of risk analysis in flood control system [J]. Hydrology,2003,23(2):15-20
    [35]王栋,朱元牲.信息熵在水系统中的应用研究综述[J].水文,2001,(2):32-36
    [36]Mei Yadong, Tan Guangming. Risk criteria for assessment of dam hydrologic safety[J]. Water Resources and Power,2002,20(4):8-10
    [37]Jiang Shuhai. The design standard for flood prevention and safety of dam[J].Journal of Hydraulic Engineering,1999,(5):19-25
    [38]姜树海,范子武,吴时强.洪灾风险分析和设防标准的研究[J].南京水利科学研究院,2003,(4): 24-28
    [39]姜树海,范子武.大坝的允许风险及其运用研究[J].水利水运工程学报,2003,(3):7-12
    [40]姜树海.大坝防洪安全的评估和校核[J].水利学报,1998,(1):18-24
    [41]李君纯.水库大坝安全评判的研讨.南京水利科学研究院,1997,(6):58-65
    [42]李雷,李君纯等,江西省部分大、中型水库安全现状调研报告[R].水利部大坝安全管理中心、江西省水利厅水管处,2000,(2):28-32
    [43]王仁钟,李雷,王昭升等.基于风险评价的病险水库除险加固排序使用方法研究[R].南京水利科学研究院,2004,(5)
    [44]王仁钟,李雷,盛金保.水库大坝的社会与环境风险标准研究[J].安全与环境学报,2006,(1):8-11
    [45]傅琼华,段智芳. 群坝风险评估指数排序方法的探讨[J].中国水利水电科学研究院学报,2006,(2):106-110
    [46]段智芳,傅琼华,李雷.病险水库除险加固排序在江西的示范应用研究[J].江西水利科技,2007,(1):12-16
    [47]李雷,周克发. 大坝溃决导致的生命损失估算方法研究现状[J].水利水电科技进展,2006,(2):76-80
    [48] 李雷,王仁钟,盛金保. 溃坝后果严重程度评价模型研究[J].安全与环境学报,2006,(1):1-4
    [49]李典庆,常晓林. 基于贝叶斯网络的大坝安全风险分析.见:水电 2006 国际研讨会.2006:539-545
    [50]Ang A H-S, Tang W H. Probability concepts in engineering planning and design. New York: John Wiley & Sons, 1984,(22): 30-90
    [51]Schueller G I. Structural reliability recent advances. In: Schuller G I, eds. Int Conference on Structural Safety and Reliability. Now York: John and Wile & Sons, 1997,(13);1-34
    [52]Schueller G I, etal. A stag of-the art report on computational stochastic mechanics. Probabilistic Engineering Mechanics, 1997, 12( 4):197-321
    [53]Zhang X T. Proc of the first ChinxUSA Japan workshop on civil inf}rastmcture system. Shanghai: Tongji Univ Press, 1998, (23):1-200
    [54]卓家寿,刘宁.计算力学与应用的若干动态与展望[J].河海大学学报,1996, (24)(计算力学专辑):1- 9
    [55]孙钧、蒋树屏等.岩土力学反演问题的随机理论与方法[M]. 汕头;汕头大学出版社,1996,(1):19
    [56]陈斌、刘宁、卓家寿,岩土工程反分析的扩展贝叶斯法[J].岩石力学与工程学报,2004, 23(4):555-560
    [57]刘宁、卓家寿,基于三维弹塑性随机有限元的可靠度计算[J].水利学报,1996, (9):53-62
    [58]刘宁,工程随机力学及可靠性理论中的若干问题[J].河海大学学报,2000, 28 (1):1-7
    [59]Ledesma A,Gens A, Alonso E. Estimation of parameters in geotechnical back analysis-I :Maximum Likelihood Approach [J]. Computers&Geotechnique ,1996 ,18(1):1-27
    [60] Sharma M., McBean E., Thomson N. Maximum likelihood method for parameter estimation in linear model with below-detection data[J]. J. of Environmental Engineering, 1995, 121(11):776-784
    [61]Murakami A, Hasegawa T. observational prediction of settlement using Kalman filtering theory[A].Proceedings 5th International Conference on Numerical Method in Geomechanics[C]. Nagoya,1985,(15):556-558
    [62] Masaru H., Etsuro S. Structural identification by extended Kalman filter[J]. J. of Engineering Mechanics, 1984,110(12):1314-1321
    [63]Asaoka A ,Matsuo M.Bayesian approach to inverse problem in consolidation and its application tosettlement predication[A]. Proceedings 3rd International Conference on Numerical Method in Geomechanics[C]. Archen,1979:12-13
    [64]Cividini A ,Maier G,Nappi A. Parameter estimation of a static geotechnical model using a Bayesian approach[J]. lnt RockMechanics Mining Science&Geotechnical Abstract ,1983 ,20 (5) :215-226
    [65]Honjo Y, Liu W T, Soumitra G. Inverse analysis of an embankment on soft clay by extended Bayesian method[J].lnt J for Numerical and Analytical Methods in Geomechanics,1994,(18) :709-734
    [66]Beck J., Katafygiotis L. Updating models and their uncertainties (Part: Bayesian statistical framework)[J]. J. of Engineering Mechanics, 1998, I24(4):455-461
    [67]Caticha A., Preuss R. Maximum entropy and Bayesian data analysis: Entropic priordistributions[J]. Physical Review E, 2004, 70(4):1-12
    [68]Coolen F.P.A.,Coolen-Schrijner P., Rahrouh M. Bayesian reliability demonstration for failure-free periods[J]. Reliability Engineering and System Safety, 2005, 88(1):81-91
    [69]李珍照,国外大坝监测几项新技术[J].大坝观测与土工测试,1997, 2(1):16-18
    [70]薛桂玉、李珍照、李民等,水工建筑物观测数据概率分布的模糊识别方法研究[J].大坝观测与土工测试,1997, 21(2):1-3
    [71] 左 其 亭 , 吴 泽 宁 . 模 糊 风 险 计 算 模 型 及 其 应 用 研 究 [J]. 郑 州 工 业 大 学 学报,2001,22(3):78-80
    [72]吴泽宁,王敬,赵南.水资源系统灰色风险计算模型[J].郑州大学学报,2002,(3:22-26
    [73]姜树海防洪设计标准和大坝的防洪安全[J].水利学报,1999, (5):19-25
    [74]黄崇福,史培军,张远民.城市自然灾害风险评价的一级模型[J].自然灾害学报,1994,3(1):1-8
    [75]胡国华等.风险分析的灰色-随机风险率方法研究[J].水利学报,2001,NO.4:1-6
    [76]胡国华.风险分析中的不确定性问题[J].自然灾害学报,2001,(4):1-7
    [77]胡国华.灰色概率分布及其参数估计[J].湖南师大自然科学学报,2002,(2):18-22
    [78] 胡 国 华 , 夏 军 . 基 于 灰 色 概 率 的 非 突 发 性 环 境 风 险 度 量 化 方 法 [J]. 冰 川 冻土,2002,(4):433-437
    [79]胡国华,夏军,赵沛伦.河流水质风险评价的灰色-随机风险率方法[J].地理科学,2002,(2):249-253
    [80]黄伟军,丁晶.灰色先验分布研究[A].夏军主编.现代水科学不确定性研究与进展[C].成都:成都科技大学出版社,1994:178-182
    [81]汪恕诚.落实责任,科学防控制,切实做好水库安全渡汛工作.在全国水库安全渡汛工作会议上的讲话,2004:(1)
    [82]吴中如,顾冲时.重大水工混凝土结构隐患病害检测与健康诊断[M].北京:高等教育出版社,2005,(11):112-115
    [83]李雷,彭雪辉,王昭升.水库大坝溃决模式和溃坝概率分析研究[R].南京水利科学研究,2004,(2):45-65
    [84]汝乃华,牛运光.大坝事故与安全·土石坝[M]. 北京:中国水利水电出版社,2001, 13-16
    [85]马福恒,向衍,刘成栋.浙江省绍兴市汤浦水库东主坝渗漏成因分析报告[R].南京:南京水利科学研究院,2005,(12):56-62
    [86]马福恒,刘彬,刘成栋等.碗窑水库碾压混凝土重力坝渗流“疑点”分析 [J].水利水电技术,2006,37 ( 2 ) : 106-109
    [87]马福恒,向衍,袁辉等.青海省英得尔水库溃坝原因分析[R],水利部大坝安全管理中心,2006,(2):36-39
    [88]楼渐逵.溃坝模式分析.中加合作项目-水库大坝风险管理培训教材.加拿大,2006,(3):3
    [89]顾淦臣.土石坝地震工程[M].南京:河海大学出版社,1989,(10):230-231
    [90]郭雪莽,温新丽等.中国水利概论[M].郑州:黄河水利出版社,1999, (12):13
    [91]刘吉印,麻荣永.水库优化调度防洪库容的计算方法[J].河海大学学报,1990,(18):27
    [92]麻荣永.土石坝风险分析方法及应用[M].北京:科学出版社,2004,(1):13-27
    [93]Wasserman,L A . Belief function and statistical inference[J]. Can. J. Stat.,1990,18(3):197-204
    [94]P.R .Safety Evaluation and Improvement of Existing Dams. In: National Academy Press.Washington D.C. 1983, 12-15
    [95] Powlege R, Sveum DL. Overtopping Embankment Dams An Alternative in Accommodating Rare Floods.Proceedings 16th ICOLD, Q63. R35. vol Ⅳ San Francisco, 1988,(8):178-193
    [96][澳大利亚]R.J.内森等.用蒙特卡罗法估算水文风险[J].水利水电快报,2003,24(12):6-10
    [97]姜树海.洪灾风险评估和防洪安全决策[M].北京:中国水利水电出版社,2005:5-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700