重庆四面山主要植物群落土壤抗侵蚀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重庆(三峡库区)由于特殊的自然环境和人为活动的影响,存在水土流失、地质灾害等一系列生态环境问题。虽然国家、地方各级政府加强了生态环境建设,但是存在很多问题,尤其是水土保持型植被的构建。重庆四面山位于三峡工程库区尾端,具有丰富的自然资源,然而当地旅游资源的开发和农民不合理的采伐、放牧以及开垦,使该区域的森林植被严重破坏,水土流失严重,成为三峡库区泥沙来源的主要区域之一。因此,在该区开展主要植物群落土壤抗侵蚀性规律的研究,对于该区土壤侵蚀的防治、三峡库区水土保持型植被构建和优化具有重要意义。
     结合国家“十一五”科技攻关课题“三峡库区低山丘陵区水土保持型植被构建技术试验与示范”,以重庆四面山主要植物群落为对象,采用土粒浸水实验、原状土冲刷水槽法以及室内土壤物理化学性质分析法,从土壤抗蚀性、抗冲性两个方面着手,全面系统分析了土壤抗侵蚀性的特征及其影响因素,并采用理想点综合分析评价了土壤抗侵蚀性。主要结论如下:
     (1)不同植物群落土壤抗侵蚀性及其动态变化和垂直变化存在显著差异。在土壤抗蚀性方面表现出常绿落叶阔叶混交林(85.0%)最好,暖性竹林(62.0%)最差;在土壤抗冲性方面表现出暖性竹林(28.94 L·min/g)最好,温性针叶林(5.56 L·min/g)最差。植物群落土壤的抗蚀性与时间呈二次多项式函数关系逐渐降低,而抗冲性与时间呈指数函数逐渐增大。在同一土壤剖面,不同层次土壤的抗蚀性和抗冲性均随土壤深度的增加呈下降趋势。
     (2)不同植物群落土壤抗侵蚀性受其物理、化学性质的影响有显著差异,经多元回归分析,植物群落土壤抗蚀性与非毛管孔隙度(X3)、极粗砂粒(X5,2-1mm)含量和粉粒(X1o,0.05-0.002mm)含量3个物理指标呈线性关系,其方程为:S=104.785+1.279X3-5.428X5-1.849X10与化学指标全P含量(X14)、速效K含量(X17)呈线性关系,其方程为:S=10.480+7.671X14-1.067X17
     土壤抗冲性与土壤密度(X1)、中砂粒(X7,0.5-0.25mm)含量、细砂粒(X8,0.25-0.05mm)含量、粉粒(X10,0.05-0.002mm)含量和黏粒(X11,<0.002 mm)含量(%)4个物理指标呈线性关系,其方程为:C=-62.830-12.824X1+2.928X7+0.649X8+2.182X10+0.822X11与有机质含量(X12)呈线性关系,其方程为:C=-2.572+0.291X12
     (3)植物群落土壤的抗蚀性和抗冲性之间具有密切的关系,经灰色关联分析二者关联度为0.778。经坐标综合评定法分析得到土壤抗侵蚀性强弱依次为:暖性竹林的最好,坐标综合值为0.190,常绿阔叶林(0.448)、落叶阔叶林(0.585)和常绿落叶阔叶混交林(0.618)居中,温性针叶林和暖性针叶林最差,坐标综合值分别为0.732、0.626。
Because of special natural environment and human activities, there are many ecological and environmental problems in Chongqing (Three Gorges Reservoir Area), such as soil and water loss, geological disasters. Although ecological construction has been promoted by our country and government, many problems exist, especially for the vegetation construction. Simian Mountain is located in the end of Three Gorges area. It has rich natural resources, however, the development of tourism resource, cutting, grazing and reclaiming of peasants, has let lots of trees be damaged, and made severe soil and water loss. This area has become the main source of sediment to the three Gorges Reservoir area. So research on soil anti-erosion in this area of different plant communities is significant for soil erosion control and vegetation construction in the Three Gorges Reservoir area.
     Associated with the national eleventh-five year plan of state key task of scientific and technological research "Technology Research and Demonstration of Vegetation Construction with Soil and Water conservation in Three Gorges Reservoir Area, Yangtse River Basin ", based on the experiments of dispersion of soil particals in water, scourry and analysis of soil physical and chemical characteristics, this study analyzed the soil anti-erosion characteristics and its influenceing factors of the main plant communities in Simian mountain. The main conclusions are as follows:
     (1)The soil anti-erosion characteristics are obvious different in different plant communities. Evergreen and deciduous forest community soil has the best soil anti-erodibility (85.0%), and the soil anti-erodibility of warm bamboo groves is the worst (62.0%). Warm bamboo groves soil has the best anti-scouribility (28.94 L-min/g), and the soil anti-scouribility of hurmoral coniferous forests is the worst (5.56 L·min/g). The soil anti-erodibility decreases with the increase the duration of rainfall. The soil anti-scouribility is exponentially correlated to time. The soil anti-erodibility and soil anti-scouribility decreases with depth.
     (2) Physical and chemical soil characteristics play a difference role in the soil anti-erosion characteristics of different plant communities. Soil anti-erodibility is linearly correlated to non-capillary pores(X3), content of rough sand(X5,2-1mm) and powdery(X10,0.05-0.002mm). The equation is as following: S=104.785+1.279X3-5.428X5-1.849X10 It is also linearly correlated to the content of total phosphorus(X14) and rapid available potassium(X17). The equation is:S=10.480+7.671X14-1.067X17
     Soil anti-scouribility is linearly related to the soil density(X1), the content of medium sand(X7,0.5-0.25mm), the small sand(X8,0.25-0.05mm), powdery(X10,0.05-0.002mm), and clay(X11,<0.002 mm). The equation is: C=-62.830-12.824X1+2.928X7+0.649X8+2.182X,0+0.822X11 It is also linearly correlated to the organic matter content (X12). Tts equation is:C=-2.572+0.291X12
     (3) Soil anti-erodibility has a close relationship with anti-scouribility of plant communities. The soil anti-erosion capacity of different plant communities were evaluated by comprehensive coordinate method, and the order is as follows:warm bamboo groves (0.109), evergreen broad-leaved forest (0.448), deciduous broad-leaved forest (0.585), evergreen and deciduous forest community (0.618), hurmoral coniferous forests (0.732), warm coniferous forests (0.626).
引文
[1]查小春,唐克丽.黄土丘陵区开垦地土壤抗冲性的时间变化研究[J].水土保持通报,2001,21(2):8-11
    [2]陈一兵.不同土壤抗蚀性能能研究[J].水土保持通报,1995,15(1):14-18
    [3]丁军,王兆蓦,陈欣,等.红壤丘陵区林地根系对土壤抗冲性增强效应的研究[J].水土保持学报.2002.12.16(4):9-12
    [4]丁文峰,李占斌.黄土坡面径流冲刷侵蚀试验研究[J].水土保持学报,2001,15(2):99-101
    [5]丁文峰,李占斌.土壤抗蚀性的研究动态[J].水土保持科技情报,2001(1):36-39
    [6]方学敏,万兆惠,徐永年.土壤抗蚀性研究现状综述[J].泥沙研究,1997,6(2):87-91
    [7]高维森,王佑明.黄土丘陵区柠条林地土壤抗蚀性规律研究[J].西北林学院学报,1991,6(3):70-78
    [8]郭培才,王佑民.黄土高原沙棘林地土壤抗蚀性及其指标的研究[J].西北林学院学报,1989,5(4): 80-86
    [9]郭培才,张振中.黄土区土壤抗蚀性能预报及评价方法研究[J].水土保持学报,1992,6(3):48-52
    [10]何平.重庆三峡库区地质灾害与防治对策探讨[J].重庆建筑,2003,(1):11-13
    [11]何毓蓉,廖超林,张保华,等.长江上游人工林与大然林土壤结构质量及保水抗蚀性研究[J].水土保持学报,2005,19(1):1-4
    [12]胡建忠,范小玲,王愿昌,等.黄土高原沙棘人工林地土壤抗蚀性指标探讨[J].水土保持通报,1998,18(2):25-30
    [13]胡建忠,张伟华,李文忠,等.北川河流域退耕地植物群落土壤抗蚀性研究[J].土壤学报,2004,41(6):854-863
    [14]胡建忠.黄土高原沟壑区人工沙棘林地土壤抗蚀性研究[J].沙棘1999,12(1):14-20
    [15]黄义端,田积莹.土壤内在性质对侵蚀影响的研究[J].水土保持学报,1989,3(3):9-13
    [16]蒋定生,范兴科,李新华,等.黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究[J].水土保持学报,1995,9(2):1-8
    [17]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997,45-56
    [18]蒋定生.黄土区不同利用类型土壤抗冲刷能力的研究[J].土壤通报,1979,(4):20-23
    [19]雷俊山,杨勤科,郑粉莉.黄土坡面细沟侵蚀试验研究及土壤抗冲性评价[J].水土保持通报,2004,24(2):1-4
    [20]雷俊山,杨勤科.坡面薄层水流俊蚀试验研究及土壤抗冲性评价[J].泥沙研究,2004,7(1):33-37
    [21]雷俊山,杨勤科.土壤因子研究综述[J].水土保持研究,2004,11(2):156-159
    [22]李勇,吴钦孝,朱显谟,等.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990,4(1):1-5
    [23]李勇,徐晓琴,朱显谟,等.草类根系对土壤抗冲性的强化效应[J].土壤学报,1992,29(3):302-309
    [24]李勇,徐晓琴,朱显谟,等.黄土高原植物根系强化土壤渗透力的有效性[J].科学通报,1992,(4):366-369
    [25]李勇,徐晓琴,朱显谟,等.植物根系与土壤抗冲性[J].水土保持学报,1993,7(3):11-18
    [26]李勇,朱显谟,田积莹,等.黄土高原土壤抗冲性机理初步研究[J].科学通报,1990,(5):390-393
    [27]李勇.黄土高原植物根系提高土壤抗冲性机制初步研究.中国科学(B辑).1992,(3):254-259
    [28]李占斌.黄土坡面土壤侵蚀动力过程试验研究[J].水土保持学报,2002,16(2):5-8
    [29]刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究.水土保持学报,2003,17(3):34-37
    [30]刘国彬,张光辉.原状土冲刷法与人工模拟降雨法研究土壤抗冲性对比分析[J].水土保持通报,1996,16(2):32-37
    [31]刘国彬.黄土高原土壤抗冲性研究及有关问题[J].水土保保持研究,1997,4(5):91-101
    [32]刘新宇,赵岭,王立刚,等.阿伦河流域水土保持林土壤抗蚀性能研究[J].防护林科技,2000,3(44):21-24
    [33]任改,张洪江,程金花,等.重庆四面山几种人工林地土壤抗蚀性分析[J].水土保持学报.2009,23(3):20-24
    [34]沈慧,姜凤岐,杜晓军,等.水土保持林土壤抗蚀性能评价研究[J].应用生态学报,2000,11(3):345-348
    [35]沈晶玉,周心澄,张伟华,等.祁连山南麓植物根系改善土壤抗冲性研究[J].中国水土保持科学.2004.12.2(4):87-91
    [36]石生新,赵崇伟.土壤抗冲性的研究[J].山西水利科技.1998,(3):90-93
    [37]水土保持试验规范.中华人民共和国水利电力部部标准.SD239-87,1988
    [38]唐继斗,郭宏忠.重庆三峡库区水土保持与社会主义新农村建设[J].中国水土保持,2008,(5):19-20,38
    [39]汪有科,吴钦孝,赵鸿雁,等.林地枯落物抗冲机理研究[J].水土保持学报,1993,7(1):75-80
    [40]王库.植物根系对土壤抗侵蚀能力的影响.土壤与环境,2001,10(3):250-252
    [41]王文龙,雷阿林,等.黄土丘陵区坡面薄层水流侵蚀动力机制试验研究[J].水利学报,2003(9):66-70
    [42]王一峰,张平仓,等.长江中上游地区土壤抗冲性特征研究[J].长江科学院院报,2007,24(1):12-15
    [43]王佑民,郭培才,高维森.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,8(4):11-16
    [44]王云琦,王玉杰,朱金兆.重庆给云山典型林分林地土壤抗蚀性分析[J].长江流域资源与环境,2005,14(6):775-780
    [45]王忠林,李会科,贺秀贤.渭北塬花椒地埂林土壤抗蚀抗冲性研究[J].水土保持研究,2000,7(1):33-37
    [46]吴发荣,袁位高,徐卫南,等.富春江两岸江滩林带树木根系与土壤抗蚀性能关系研究[J].浙江林业科技.1999,19(4):29-32
    [47]吴佩林,鲁奇,甘红.重庆市水土流失的影响因素及防治对策[J].长江科学院,2005,22(1):21-24
    [48]吴普特,周佩华.黄土丘陵沟壑区(Ⅲ)土壤抗冲性研究——以天水站为例.水土保持学报.1993,7(3):19-25
    [49]吴普特.黄土区土壤抗冲性研究进展及亟待解决的若干问题[J].水土保持研究,1997,4(5):59-66
    [50]吴钦孝,李勇.黄土高原植物根系提高土壤抗冲性能的研究(Ⅱ).水土保持学报,1990,4(1):11-16
    [51]吴淑安,蔡强国,马绍嘉.土壤抗蚀性实验研究[J].云南地理环境研究,1996,8(1):73-80
    [52]吴淑安,蔡强国.内蒙古东胜地区土壤抗蚀性实验研究[J].干旱区资源与环境,1996,10(2): 38-45
    [53]吴蔚东,郑诗樟,卢志红,等.百喜草对红黏土性红壤抗冲性的研究[J].江西农业大学学报,1999,21(1):71-76
    [54]奚成刚,许兆义,杨成永.集二铁路路域土壤特征及抗蚀性试验[J].研究土壤通报,2004,35(5):596-589
    [55]许厚泽.三峡工程对库区环境地质的影响:长江三峡工程对生态与环境的影响及对策研究[M].北京:科学出版社,1988
    [56]杨文元,张奇,张建华,等.紫色土丘陵区土壤抗冲性研究[J].土壤侵蚀与水土保持学报,1997,3(2):22-28
    [57]杨玉盛,何宗明,陈光水,等.不同生物治理措施对赤红壤抗蚀性影响的研究[J].土壤学报,1999,36(4):528-534
    [58]杨玉盛,何宗明,林光耀,等.不同治理模式对严重退化红壤抗蚀性影响的研究[J].土壤侵蚀与水土保持学报,1996,2(2):32-37
    [59]于大炮,刘明国,邓红兵,等.辽西地区林地土壤抗蚀性分析[J].生态学杂志,2003,22(5):10-14
    [60]曾信波.贵州紫色土上植物根系提高土壤抗冲性能的研究[J].贵州农学院学报,1995,14(2):20-24
    [61]张爱国,马志正,杨勤科,等.中国水土流失土壤因子研究进展[J].山西师范大学学报(白然科学版).2002.2,16(1):79-85
    [62]张光辉.坡面薄层流水动力学特性的试验研究[J].水科学进展,2002,13(2):160-166
    [63]张建军,张宝颖,毕华兴,等.黄土区不同植被条件下的土壤抗性[J].北京林业大学学报.2004,6(6):25-29
    [64]张建军,朱金兆,查同刚,等.晋西黄土区水土保持林地抗冲性研究[J].北京林业大学学报,1998,20(6):20-24
    [65]张金池,陈三雄,刘道平,等.浙江安吉主要植被类型土壤抗蚀性指标筛选及评价模型构建[J].亚热带水土保持,2006,18(2):1-5
    [66]张金池,康立新,卢义山,等.苏北海堤林带树木根系固土功能研究[J].水土保持学报,1994,8(2):633-637
    [67]张攀俊,张智奎.三峡工程(库区)环境管理浅析[J].重庆环境科学,.1997,19(1):35-38
    [68]张启昌,孟庆繁,兰晓龙.黄土低山丘陵土壤抗蚀性影响因素的初步研究[J].水土保持通报.1996,14(2):21-26
    [69]张振德,唐中实,肖挺,等.重庆市国土资源遥感综合调查与信息系统建设[M].北京:地质出版社,2002
    [70]章明奎,韩常灿.浙江省丘陵区土壤的抗蚀性[J].浙江农业学报,2000,12(1):25-30
    [71]赵晓光,石辉.缓坡坡面径流在土里分散阶段的作用[J].山地学报,2002,20(4):427-431
    [72]赵晓光,石辉.水蚀作用下土壤抗蚀能力的表征[J].干旱区地理,2003,26(1):12-16
    [73]赵洋毅,周运超,等.黔中石灰岩喀斯特表层土壤结构性与土壤抗蚀抗冲性.水土保持研究,2008,15(2):18-21
    [74]郑良勇,李占斌.坡面黄土陡坡土壤侵蚀特性试验研究[J].水土保持研究,2003,10(2):47-49
    [75]郑世清,周佩华,周保林.黄土高原沟壑区土壤抗冲性研究——以黄委会西峰水土保持站为例.
    水土保持通报.1994,14(1):12-16
    [76]钟章成,邱永树.重庆三峡库区主要生态环境问题与对策[J].重庆环境科学,1999,21(1):1-2
    [77]周克勤.为了三峡库区的青山绿水-重庆市林业重点工程建设回顾与展望[J].重庆改革,2003,(8):22-23
    [78]周佩华,武春龙.黄土高原土壤抗冲性的试验研究方法探讨[J].水土保持学报,1993,7(1):29-34
    [79]周佩华,郑世清,吴普特,等.黄土高原土壤抗冲性的试验研究[J].水土保持研究,1997,4(5):47-58
    [80]周正朝,上官周平.子午岭次生林植被演替过程的土壤抗冲性[J].生态学报,2006,26(10):3270-3275.
    [81]周中生,张建华,胡善铨.潘亚辉重庆市近年地质灾害的特点及防治对策[J].地下空间,2000,20(1): 27-30
    [82]朱显谟.甘肃中部土壤侵蚀调查报告[J].土壤专报,1958年第32号
    [83]邹翔,崔鹏,等.小江流域土壤抗冲性实验研究[J].水土保持学报,2004,18(2):71-73
    [84]Anderson,H W.Suspended sediment discharge as related to streamflow,topography,soil and land use[J].Trans. Am.Geophys.Union,1954,35:268-281
    [85]Bennet,H H.Some comparisons of propertifes of humid-temperate amecian soils with special reference to indicated relations between chemical composition[J].Soil Sci.,1926,21:349-375
    [86]Bouyoucos,G J.The clay ratio as a criterion of susceptibility of soils to erosion[J].J of American Society of Agronomy.1935,27:738-741
    [87]Chen X L, An S Q, Li Y, et a1The individual distribution patterns and soil elements heterogeneity during the degradation of grassland in Ordos. Acta Phytoecologica Sinica,.2003,27(4):503-509
    [88]Cook,H L.The nature and controlling variable of the water erosion process[J].Soil Sciety of American Proceedings,1936,(1):487-494
    [89]Elliot W J,Laflen J M,Aprocess based rill erosion model.Trans. of the ASAE,1993,39(1):65-72
    [90]Elliot W J,Liebnow A M, Laflen J M,Kohl K D.A compendium of soil erosion date from WEPP cropland soil field erodibility experiment,1987 and 1988.Ohio State University and Agricultural Research Service,United States Department of Agriculture.NSERL report No.3,1989
    [91]Flannagan D C,Nearing MA.USDA2 Water erosion prediction project hillslope profile and watershed model documentation.NSERL Report No.10S\USDA2 ARS Nation soil erosion research Laboratoy,West Lafa Yette,In.47901.1995
    [92]K G Renard,et al. RUSLE model description and database sensitivity.Journal of Environmental Quality,1993,22(3):458-466
    [93]Laflen J M,Elliot W J,Simanton J R.WEPP soil erodibility experiments for rangeland and cropland soil[J],J Soil and water Cons,1991,46(1):39-44
    [94]Laflen,J M,Lane,L J,Foster,G R.WEPP a new generation of erosion prediction technology. Journal of Soil and Water Conservation,1991,46(1):34-38
    [95]Middleton,H E.Properties of soils which influence soil erosion[J].USDA Tech.Bull.,1930,178:16.
    [96]Olson T C,Wischmeier W H.Soil erodibility evaluation for soil on the runoff and erosion stations[J].Soil Science Society of American Proceedings,1963,27(5):590-592
    [97]Peele,T C,et al.The effect of time and organic matter on the erodibility of cecil clay[J].Soil Sic.Soc.Am.Proc,1938,3:289-295
    [98]Wischmeier W H, J. V. Mannering.Relation of soil properties to its erodibility.Soil Sci.Am.Pro.,1969,(33):131-137
    [99]Wischmeier,W H,Smith,D D.Predicting Rainfall Erosion Losses-A Guide to Conservation Planning UADA[A].ARS, Agricultural Handbook[M].Washington,D.C.1978,No.537
    [100]Wischmeier,W H,Smith,D D.Rainfall-Erosion Losses From Cropalnd East of the Rocky Mountains,Guide for Selection of Practices for Soil and Water Conservation[A].Agricultural Handbook[M].Washington,D.C.1965,No.282
    [101]Woodburn,R,Kozachyn,J.Study of relative erodibility of a group of Mississippi gully soils[J]. Trans.Am.Geophys.Union,1956,37:749-753

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700