用于铝板检测的电磁超声导波换能器优化设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金板材是国防、工业中重要的基础性材料,板材质量直接决定了其下游产业众多产品的质量。作为控制板材质量的必要手段,传统的压电超声检测技术因严重依赖于耦合剂,而在检测精度、检测效率、环境适应性等方面受到限制。电磁超声导波技术具有检测时无需耦合剂、检测效率高、环境适应性强等优势,对于提高铝合金板材检测水平具有重要意义。然而,作为电磁超声导波技术的核心器件,电磁超声换能器(EMAT)不仅输出信号相对较弱,而且存在多模式、频散特性不利影响,制约了该技术的进一步推广。为了改善EMAT性能,本文对用于铝合金板材缺陷检测的两种电磁超声导波换能器(电磁超声表面波换能器和电磁超声兰姆波换能器)的优化设计技术开展了深入研究。
     针对工程中常用的曲折线圈结构的电磁超声表面波换能器,提出一种电磁超声表面波换能器三维建模方法。该方法在考虑交变磁场影响基础上,将有限元方法与基于“点力”的解析方法相结合,建立了一个涵盖EMAT电场、磁场、力场和声场的三维模型,有效弥补了当前EMAT模型精度和完整性较低的不足,为研究EMAT优化设计技术奠定了基础。实验结果表明,所建模型具有较高精度,模型理论计算与实测结果最大偏差约为4.3%。
     针对电磁超声表面波换能器主要存在的信号强度较弱问题,在EMAT模型三维仿真分析基础上,提出了基于正交试验设计的表面波EMAT优化设计方法,获得了换能器参数与表面波信号强度的关系,确定了信号最强时的EMAT最优参数组合,并提出了电磁超声表面波换能器的基本设计准则。实验结果表明,优化后的电磁超声信号幅值提高为原始信号的2.62倍。
     针对电磁超声兰姆波换能器主要存在的多模式、频散特性不利影响,通过建立电磁超声兰姆波激发方程,提出了降低电磁超声兰姆波多模式特性影响的“双交点法”和削弱兰姆波频散现象的“零斜率准则”,获得了兰姆波EMAT的最优工作频率和线圈导线间距;在此基础上,针对兰姆波信号强度较弱问题,提出了基于正交试验设计的电磁超声兰姆波换能器优化设计方法,获得了换能器其余可控设计参数与信号强度的关系,确定了换能器的最优参数组合,并提出了电磁超声兰姆波换能器的基本设计准则。实验结果表明,优化后电磁超声兰姆波信号的多模式和频散现象不仅得到显著抑制,而且兰姆波信号幅值也增强为原始信号的2.16倍。
     最后,针对铝合金板材缺陷检测的实际工程背景,设计并开发了电磁超声实验测试装置。该装置主要包括高频大功率发射电路,高增益低噪声接收电路,基于USB的8通道12位高速数据采集电路以及基于LabWindows CVI的PC机软件等部分。实验结果表明,该装置能够有效验证本文理论研究成果的正确性,并已初步具备铝合金板材缺陷检测能力。该装置的成功研制为进一步研究基于电磁超声的铝合金板材自动检测技术奠定了良好基础。
Aluminum plates are fundamental materials for national defense and industry, whose quality directly determines that of numerous downstream products. As a necessary quality-control method for aluminum plates, the piezoelectric ultrasonic detecting method is greatly confined in terms of its accuracy, efficiency and environmental adaptability due to its over-dependence on couplant. Electromagnetic ultrasonic guided wave (EUGW) technique, possessing many advantages such as high detection efficiency, strong environmental adaptability and being free of couplant, is of great significance for the improvement of aluminum plate inspection level. However, as the key component of EUGW technique, electromagnetic acoustic transducers’(EMATs) output signal is weak, and they are influenced by the multi-modes and dispersion effects of guided waves, which limit the further development of the technique. In order to improve the performance of EMATs, this paper extensively studies the optimal design technique of two kinds of guided wave EMATs, including surface wave EMATs and Lamb wave EMATs for aluminum plate inspections.
     This paper proposes a novel 3-D modeling method for meander-line-coil surface wave EMATs with special attention to the influence of dynamic magnetic field. The modeling method combines finite element method with an analytical calculation method which is based on“point force”. A 3-D model is established based on the proposed method, and it covers all physical fields involved in EMAT transduction process, including eddy current field, magnetic field, Lorentz force field and sound field. Compared with previous EMAT models, the accuracy and the integrity of the established model are significantly improved, which serves as a good foundation for the study of the optimal design technique of EMATs. Experiment shows that the accuracy of the model is comparatively high, and the largest variation between the model calculation and the experimental value is about 4.3%.
     Aiming at enhancing the signal strength of electromagnetic surface waves, this paper proposes an optimal design method for surface wave EMATs based on 3-D simulation analysis and orthogonal test method. Through this method, the relationship between EMAT parameters and the signal strength is obtained, the optimal EMAT parameters are acquired, and the basic designing principle for surface wave EMATs is established. Experiment indicates that, after optimization, the surface wave amplitude has increased to 262%.
     Aiming at minimizing the influence of multi-modes and dispersion effect of Lamb waves, this paper puts forward a“two intersection points”method for decreasing the multi-modes influence and proposes a“zero-slope”principle for minimizing dispersion phenomenon by establishing electromagnetic Lamb wave excitation equations. Combining the“two intersection points”method with the“zero-slope”principle, the optimal operating frequency and spacing interval of coil are obtained. Moreover, with the purpose of enhancing the signal strength of electromagnetic Lamb waves, this paper proposes an optimal design method based on orthogonal test method, with which, the relationship between EMAT parameters and signal strength is obtained, the optimal values of other EMAT parameters are acquired, and the basic designing principle for Lamb wave EMATs is established. Experiment reveals that, after optimization, the multi-modes and dispersion phenomena have been obviously suppressed, and the amplitude of Lamb waves has increased to 216%.
     Finally, according to the background of the aluminum plate inspection, this paper develops an electromagnetic-ultrasonic-guided-wave experimental and testing device. This device chiefly consists of a high frequency and large power transmitting circuit, high gain and low noise receiving circuits, an 8-channel 12-bit high-speed data acquisition circuit based on USB, and a PC software based on LabWindows CVI. Experiment indicates that the device can effectively verify the validity of the theories proposed in this paper, and it possesses a preliminary defect detection ability, which establishes a good foundation for the further research on the aluminum plate automatic inspection technique based on electromagnetic ultrasounds.
引文
1钟利.东北轻合金有限责任公司特种铝合金板带材产品战略研究.哈尔滨工业大学硕士论文. 2007: 1
    2王戈,王祝堂. 2007年中国铝加工业述评(2).轻合金加工技术. 2008, 36(8): 1~5
    3林高用.高性能7X75系铝合金厚板加工技术相关基础研究.中南大学博士论文. 2006: 4~27
    4张利,杨建伟,程辉,张磊.超声波水浸探伤中探头距工件的最佳距离及调整. 2006: 47~49
    5美国无损检测学会.美国无损检测手册(超声卷)上册.世界图书出版公司, 1996: 334~411
    6 H. Ogi. Field Dependence of Coupling Efficiency between Electromagnetic Field and Ultrasonic Bulk Waves. J. Appl. Phys. 1997, 82(8): 3940~3949
    7 J. L. Rose, M. J. Avioli, P. Mudge, and R. Sanderson. Guided wave inspection potential of defects in rail. NDT&E International. 2004, (37): 153~161
    8 X. Zhao. Quantitative Defect Characterization via Guided Waves. Pennsylvania: Pennsylvania State University. 2003: 100~108
    9 B. W. Maxfield, A. Kuramoto, J. K. Hulbert. Evaluating EMAT Designs for Selected Applications. Materials Evaluation. 1987, (45): 1165~1183
    10 D. Maclauchlan, S. Clark, B. Cox, et al. Recent Advancements in the Application of EMATs to NDE. 16th World Conference on NDT. Montreal. 2004: 1154~1162
    11 R. Murayama. Driving Mechanism on Magnetostrictive Type EMAT for Symmetrical Vertical-Mode Lamb and for Shear Horizontal-Mode Plate Wave. Ultrasonics. 1996, (34): 729~736
    12 R. Ludwig. Numerical Implementation and Model Predictions of a Unified Conservation Law Description of the EMA Transduction Process. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1992, 39(4): 481~488
    13 B. Dutton, S. Boonsang, R. Dewhurst. A New Magnetic Configuration for a Small in-Plane Electromagnetic Acoustic Transducer Applied to Laser-Ultrasound Measurements Modeling and Validation. Sensors and Actuators. 2006, 125: 249~259
    14 B. Dutton, S. Boonsang, R. Dewhurst. Modeling of Magnetic Fields to Enhancethe Performance of an in-Plane EMAT for Laser-Generated Ultrasound. Ultrasonics, 2006, (44): 657~665
    15 M. Kaltenbacher, R. Lerch, H. Laudes, et al. Computer Optimization of EMATs. IEEE Ultrasonics Symposium. 1998: 1029-1034
    16姚君,范弘,贾慧明.电磁超声表面波声场指向性的试验研究.钢铁. 2005, 40(1): 55~57
    17 H. Ogi, M. Hirao, and T. Ohtani. Flaw Detection by Line-Focusing Electromagnetic Acoustic Transducers. IEEE Ultrasonics Symposium. 1997: 653~656
    18 H. Ogi, M. Hirao, and T. Ohtani. Line-focusing of Ultrasonic SV Wave by Electromagnetic Acoustic Transducer. J. Acoustic. Soc. Amer.. 1998, (103): 2411~2415
    19 H. Ogi, M. Hirao, and T. Ohtani. Line-Focusing Electromagnetic Acoustic Transducers for the Detection of Slit Defects. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control. 1999, 46(2): 341~346
    20 T. Ohtani, H. Ogi, M. Hirao. Focal Type Electromagnetic Acoustic Transducer and Flaw Detection and Method. Europe: EP 0867718A2, 1998
    21 K. Mirkhani, C. Chaggares, C. Masterson, et al. Optimal Design of EMAT Transmitters. NDT&E International. 2004, (37): 181~193
    22朱红秀,吴淼,刘卓然.用于钢管缺陷检测的电磁超声传感器优化设计研究.仪器仪表学报. 2006, 27(12): 1734~1737
    23 J. Morrison, S. Dixon, M. Potter, et al. Lift-off Compensation for Improved Accuracy in Ultrasonic Lamb Wave Velocity Measurements Using EMATs. Ultrasonics. 2006, (44): 401~404
    24 X. Jian, S. Dixon, S. Palmer. In-plane and Out-of-plane Particle Velocity Measurement Using EMATs. 2005 IEEE Ultrasonics Symposium. 2005: 1276~1279
    25 S. Huang, W. Zhao, Y. Zhang, S. Wang. Study on the Lift-off Effect of EMAT. Sensors and Actuators A: Physical. 153, 2009: 218~221
    26 J. Houck, H. Bohm, B. Maxfield, et al. Direct Electromagnetic Generation of Acoustic Waves. Physical Review Letters. 1967, 19(5): 224~226
    27 M. Gaerttner, W. Wallace. Experiments Relating to the Theory of Magnetic Direct Generation of Ultrasound in Metals. Physical Review. 1969, 184(3): 702~704
    28 J. Quinn. Electromagnetic Generation of Acoustic Waves and the Surface Impedance of Metals. Phys. Letters. 1967, (25A): 522~523
    29 M. Villeret, S. Rodriguez, E. Kartbeuser. Electromagnetic Generation ofUltrasonic Waves in Metals. Physical Review. 1988, 37(5): 2692~2694
    30 R. Ludwig, Z. You. R. Palanisamy. Numerical Simulations of an Electromagnetic Acoustic Transducer-Receiver System for NDT Applications. IEEE Transactions on Magnetics. 1993, 29(3): 2081~2089
    31 R. B. Thompson. A Model for the Electromagnetic Generation and Detection of Rayleigh and Lamb Waves. IEEE Transactions on Sonics and Ultrasonics. 1973, 20(4): 340~346
    32 R. B. Thompson. A Model for the Electromagnetic Generation of Ultrasonic Guided Waves in Ferromagnetic Metal Polycrystals. IEEE Transactions on Sonics and Ultrasonics. 1978, 25(1): 7~15
    33 R. B. Thompson. Mechanisms of Electromagnetic Generation and Detection of Ultrasonic Lamb Waves in Iron-Nickel Alloy Polycrystals. J. Appl. Phys. 1977, 48(12): 4942~4950
    34 R. B. Thompson. The Relationship between Radiating Body Forces and Equivalent Surface Stresses: Analysis and application to EMAT Design. Journal of Nondestructive Evaluation, 1980, 1 (3): 79~85
    35 R. B. Thompson. Physical Principles of Measurements with EMAT Transducers. Physical Acoustics, 1990. 19: 157~200
    36 K. Kawashima. Theory and Numerical Calculation of the Acoustic Field Produced in Metal by an Electromagnetic Acoustic Transducer. J. Acoust. Soc. Am. 1976, 60(5): 1089~1099
    37 K. Kawashima. Quantitative Calculation and Measurement of Longitudinal and Transverse Ultrasonic Wave Pulses in Solid. IEEE Transactions on Sonics and Ultrasonics. 1984, 31(2): 83~94
    38 K. Kawashima. Electromagnetic Acoustic Wave Source and Measurement Calculations of Vertical and Horizontal Displacements of Surface Waves. IEEE Transactions on Sonics and Ultrasonics. 1985, 32(4): 514~522
    39陈秋颖,王小民,李明轩,毛捷.电磁声换能器的辐射声场研究.声学学报. 2009, 34 (1): 318~324
    40 R. Ludwig, W. Lord. A Finite-element Formulation for the Study of Ultrasonic NDT Systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1988, 35(6): 809~820
    41 Z. You, M. Lusk, R. Ludwig, et al. Numerical Simulation of Ultrasonic Wave Propagation in Anisotropic and Attenuative Solid Materials. IEEE Transactions on ultrasonics, Ferroelectrics, and Frequency Control. 1991, 38(5): 436~445
    42 X. Dai, R. Ludwig, R. Palanisamy. Numerical Simulation of Pulsed Eddy-current Nondestructive Testing Phenomena. IEEE Transactions on Magnetics. 1990,26(6): 3089~3096
    43 R. Ludwig, X. Dai. Numerical Simulation of EMAT in the Time Domain. J. Appl. Phys. 1991, 69(1): 89~98
    44 R. Ludwig. Theoretical Basis for a Unified Conservation Law Description of the Electromagnetic Acoustic Transduction Process. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1992, 39(4): 476~480
    45 R. Lerch. Finite Element Analysis of Piezoelectric Transducers. 1988 IEEE Ultrasonics Symposium. 1988: 643~654
    46 R. Lerch. Simulation of Piezoelectric Devices by Two-and Three Dimensional Finite Elements. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1990, 37(2): 233~247
    47 R. Simkovics, H. Landes, M. Kaltenbacher, et al. Nonlinear Finite Element Analysis of Piezoelectric transducers. 1999 IEEE Ultrasonics Symposium. 1999: 1057~1060
    48 R. Lerch, H. Landes, H. Kaarmann. Finite Element Modeling of the Pulse-echo Behavior of Ultrasound Transducers. 1994 IEEE Ultrasonics Symposium. 1994: 1021~1026
    49 M. Kaltenbacher, R. Lerch, H. Laudes, et al. Computer Optimization of EMATs. 1998 IEEE Ultrasonics Symposium. 1998: 1029~1034
    50 M. Kaltenbacher, K. Ettinger, R. Lerch, et al. Finite Element Analysis of Coupled Electromagnetic Acoustic Systems. IEEE Transactions on Magnetics. 1999, 35(3): 1610~1613
    51 R. Lerch, H. Landes, M. Kaltenbacher. CAPA User Manual, Tech. Rept. 3.1, University of Linz, Altenberger Street. A-4040 Linz, 1998
    52 R. Lerch, M. Kaltenbacher, H. Landes, et al. Advanced Computer Modeling of Magnetomechanical Transducers and Their Sound Fields. 2000 IEEE Ultrasonics Symposium. 2000: 747~758
    53 R. Shapoorabadi, A. Sinclair, A. Konrad. Finite Element Determination of the Absolute Magnitude of an Ultrasonic Pulse Produced by an EMAT. 2000 IEEE Ultrasonics Symposium. 2000: 737~741
    54 R. Shapoorabadi, A. Konrad, A. Sinclair. Improved FEM for EMAT Analysis and Design. IEEE Transactions on Magnetics. 2001, 37(4): 2821~2823.
    55 R. Shapoorabadi. Electromagnetic Acoustic Transducer Analysis by the Finite Element Method. Doctoral Dissertation of University of Toronto. 2002: 1~148
    56 R. Shapoorabadi, A. Konrad, A. Sinclair. Comparison of Three Formulations for Eddy Current and Skin Effect Problems. IEEE Transaction of Magnetics. 2002, 38(2): 617~620
    57 R. Shapoorabadi, A. Konrad, A. Sinclair. Computation of Current Densities in the Receiving Mode of EMATs. Journal of Applied Physics. 2005, 97(10Q106): 1~3
    58 R. Shapporabadi, A. Konrad, A. Sinclair. The Governing Electrodynamic Equations of EMATs. Journal of Applied Physics. 2005, 97(10E102): 1~3
    59 X. Jian, S. Dixon, R. Edwards. Ultrasonic Field Modeling for Arbitrary Non-contact Transducer Source. Proc. of SPIE. 2005, 5852: 515~519
    60 X. Jian, S. Dixon, S. B. Palmer. In-plane and Out-of-plane Particle Velocity Measurement Using EMATs. 2005 IEEE Ultrasonics Symposium. 2005: 1276~1279
    61 D. Hutchins, D. Wilkins, G. Luke. Electromagnetic Acoustic Transducers as Wideband Velocity Sensors. Appl. Phys. Lett. 1985, 46(4): 634~635
    62 X. Jian, S. Dixon, K. Grattan, et al. A Model for Pulsed Rayleigh Wave and Optimal EMAT Design. Sensors and Actuators. 2006, 128: 296~304
    63 X. Jian, S. Dixon, R. S. Edwards, et al. Coupling Mechanism of EMATs for Ultrasonic Generation. J. Acoust. Soc. Am. 2006, 119(5): 2693~2701
    64 X. Jian, S. Dixon, R. Edwards, et al. Coupling Mechanism of an EMAT. Ultrasonics. 2006, 44: 653~656
    65 R. Murayama. Study of Driving Mechanism on Electromagnetic Acoustic Transducer for Lamb Wave Using Magnetostrictive Effect and Application in Drawability Evaluation of Thin Steel Sheets. Ultrasonics. 1999, 37: 31~38
    66 R. Murayama, K. Mizutani. Conventional Electromagnetic Acoustic Transducer Development for Optimum Lamb Wave Modes. Ultrasonics. 2002, 40: 491~495
    67 R. Murayama, S. Makiyama, M. Kodama, et al. Development of an Ultrasonic Inspection Robot Using and Electromagnetic Acoustic Transducer for a Lamb Wave and an SH-plate Wave. Ultrasonics. 2004, 42: 825~829
    68 H. Salzburger, G. Dobmann, H. Mohrbacher. Quality Control of Laser Welds of Tailored Blanks Using Guided Waves and EMATs. IEE Proc.-Sci. Meas. Technol. 2001, 148(4): 143~148
    69 L. Rayleigh. On Waves Propagated along the Plane Surface of an Elastic Solid. Proc. London Math. Soc. 1885, 17: 4-11
    70 I. A. Viktorov. Rayleigh and Lamb Waves: Physical Theory and Applications. Plenum Press. New York. 1967: 1~142
    71 B. A. Auld. Acoustic Field and Waves in Solids (Volume II). Wiley-Interscience Publication. 1973: 71~81
    72 W. Luo, J. L. Rose. Guided wave thickness measurement with EMATs. Guided Waves. 2003, 45(1): 1~5
    73 X. Qi, J. L. Rose, C. G. Xu. Ultrasonic Guided Wave Nondestructive Testing forHelicopter Rotor Blades, 17th World Conference on Nondestructive Testing. Shanghai. 2008: 154~157
    74张广纯,陆原,李希英等.电磁超声自动探伤技术.中国发明专利. 1993: CN102220X
    75 S. Prak, H. Jeong, Z. Lim. Development of Mobile Robot Systems for Automatic Diagnosis of Boiler Tubes in Fossil Power Plants and Large Size Pipelines. Proceedings of the 2002 IEEE/RSJ. 2002: 1880~1885
    76 R. Murayama, K. Misumi. Development of a Non-contact Stress Measurement System During Tensile Testing Using the Electromagnetic Acoustic Transducer for a Lamb Wave. NDT&E International. 2006, (39): 299~303
    77 J. L. Rose, J. Mu, Y. Cho. Recent Advances on Guided Waves in Pipe Inspection.
    17th World Conference on Nondestructive Testing. Shanghai. 2008: 356~358
    78 R. Thompson, G. Alers, M. Tennison. Application of Direct Electromagnetic Lamb Wave Generation to Gas Pipeline Inspection. New York: Ultrasonic Symposium Proceedings. 1972: 91~93
    79 P. Cawley, D. Alleyne. The Use of Lamb Waves for the Long Range Inspection of Large Structures. Ultrasonics. 1996, 34(2): 287~290
    80 M. Hirao, H. Ogi. An SH-Wave EMAT Technique for Gas Pipeline Inspection NDT&E International. 1999, (32): 127~132
    81 J. Gauthier, V. Mustafa, A. Chabbaz. EMAT Generation of Horizontally Polarized Guided Shear Waves for Ultrasonic Pipe Inspection. ASME International Pipeline Conference. 1998: 327~334
    82 W. Luo, J. Rose, H. Kwun. Circumferential Shear Horizontal Wave Axial-Crack Sizing in Pipes. Res. Nondestruct. Eval. 2004, 15(4): 1~23
    83 X. Zhao, J. Rose. Guided Circumferential Shear Horizontal Waves in an Isotropic Hollow Cylinder. J. Acoust. Soc. Am. 2004, (115): 1912~1916
    84 X. Zhao, K. Venugopal, G. Mei. In-Line Nondestructive Inspection of Mechanical Dents on Pipelines with Guided Shear Horizontal Wave Electromagnetic Acoustic Transducers. Journal of Pressure Vessel Technology. 2005, (127): 304~309
    85 S. W. Kercel, R. W. Tucker, V. K. Varma. Pipeline Flaw Detection with Wavelet Packets and GAs. Proc. of SPIE. 2003, (5103): 217~226
    86 H. Yamada, Y. Yano, T. Udagawa. Development of the Phased Array System for Angle Beam Testing. NIPPON Steel Technical Report. 2004, (89): 28~32
    87 M. Onozuka, J. Alfile, P. Aubert, et al. Manufacturing and Maintenance Technologies Developed for a Thick-wall Structure of the ITER Vacuum Vessel. Fusion Engineering and Design. 2001, (55): 397~410
    88 M. Klann, T. Beuker. Pipeline Inspection with the High Resolution EMAT ILI-Tool: Report on Field Experience. Proceedings of 6th International Pipeline Conference. 2006: 10156~10162
    89 T. Beuker, R. Alers, B. Brown, et al. SCC Detection and Coating Disbondment Detection Improvements Using the High Resolution EMAT ILI-Technology. Proceedings of IPC 2004. 2004: 697~701
    90 T. Beuker, J. Damaschke. In-line Inspection with High Resolution EMAT Technology Crack Detection and Coating Disbondment. Proceedings of 20th INTERNATIONAL Pipeline Pigging, Integrity Assessment & Repair. Houston. 2008: 461~468
    91 H. J. Salzburger, L. Wang, X. R. Gao. In-motion ultrasonic testing of the tread of high-speed railway wheels using the inspection system AUROPA III. 17th World Conference on Nondestructive Testing. Shanghai. 2008: 426~430
    92 T. Hayashi, W. Song, J. Rose. Guided Wave Dispersion Curves for a Bar with an Arbitrary Cross-Section, a Rod and Rail Example. Ultrasonics. 2003, (41): 175~183
    93 J. Rose, M. Avioli, P. Mudge, et al. Guided Wave Inspection Potential of Defects in Rail. NDT&E International. 2004, (37): 153~161
    94 C. Myounglee, J. Rose, Y. Cho. A Guided Wave Approach to Defect Detection under Shelling in Rail. NDT&E International. 2009, (42): 174~180
    95 R. Edwards, S. Dixon and X. Jian. Characterisation of Defects in the Railhead Using Ultrasonic Surface Waves. NDT&E International. 2006, (39): 468~475
    96 Y. Fan, S. Dixon, R. Edwards, et al. Ultrasonic Surface Wave Propagation and Interaction with Surface Defects on Rail Track Head. NDT&E International. 2007, (40): 471~477
    97 R. Edwards, S. Dixon, X. Jian. Depth Gauging of Defects Using Low Frequency Wideband Rayleigh Waves. Ultrasonics. 2006, (44): 93~98
    98 R. Edwards, A. Sophian, S. Dixon, et al. Dual EMAT and PEC Non-Contact Probe: Applications to Defect Testing. NDT&E International. 2006, (39): 45~52
    99 A. Chahbaz. Development of a Mobile Inspection System for Rail Integrity Assessment. Transportation Development Centre Safety and Security Transport Canada. 2000, (6): 3~10
    100 I. Vitaly, V. Alexander. Development of Instruments for NDT of Rail-tracks with Use of Contactless Electromagnetic Acoustic Emission Transducers (EMATs). 17th World Conference on Nondestructive Testing, Shanghai, China. 2008: 255~262
    101 R. A. Shoureshi, S. Lim, E. Dolev, etal. Electro-magnetic-acoustic transducersfor automatic monitoring and health assessment of transmission lines. Journal of Dynamic Systems, Measurement, and Control. 126, 2004: 303-308
    102 M. Kropf, M. Pedrick, X. Wang, etal. Advancement of wave generation and signal transmission in wire waveguide for structural health monitoring applications. Proceeding of SPIE. 2005, 5770: 135-141
    103 H. Jia, H. Fan. Development of EMA Guided Wave Technique for Testing of Wires. 17th World Conference on Nondestructive Testing. Shanghai. 2008: 492~498
    104 D. N. Alleyne and P. Cawley. The Interaction of Lamb Waves with Defects. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1992, 39(3): 381~397
    105 P. Wilcox, M. Lowe and P. Cawley. The Effect Of Dispersion on Long-Range Inspection Using Ultrasonic Guided Waves. NDT&E International. 2001, 34: 1~9
    106 D. N. Alleyne and P. Cawley. Optimization of Lamb Wave Inspection Techniques. NDT & E International. 1992, 25(1): 11~22
    107 R. S. C. Monkhouse, P. W. Wilcox, M. Lowe, R. P. Dalton, P. Cawley. The Rapid Monitoring of Structures Using Interdigital Lamb Wave Transducers. Smart Mater. Struct. 2000, (9): 304~309
    108 P. D. Wilcox, M. Lowe, P. Cawley. Mode and Transducer Selection for Long Range Lamb Wave Inspection. Journal of Intelligent Material Systems and Structures. 2001, (12): 559~565
    109 P. D. Wilcox. A Rapid Signal Processing Technique to Remove the Effect of Dispersion from Guided Wave Signals. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2003, 50(4): 419~427
    110 R. Murayama, K. Fujusawa, H. Fukuoka, et al. Nondestructive Evaluation of Material Properties with EMAT (Formability in Cold Rolled Steel Sheets and Residual Stress in Railroad Wheel). 1989 IEEE Ultrasonics Symposium. 1989: 1159~1162
    111 E. Papadakis, R. Thompson, D. Bluhm, et al. Ultrasonic Instrument to Predict Drawability of Sheet Metal. 1990 Ultrasonics Symposium. 1990: 1007~1015
    112 M. Ege, J. Schroder, A. Kirikov. Ultrasonic Testing of Hot Plates Using EMAT Technology. ECNDT 2006, Germany, 2006-Tu.4.8.2: 1~8
    113 A. Kirikov, V. Britvin, A. Kashin. Industrial Ultrasonic Examination of Plates with EMAT. 17th World Conference on Nondestructive Testing, Shanghai, 2008, 889: 1~10
    114张广纯,范弘,贾慧明.几种钢管探伤方法可靠性分析.钢铁. 2002, 37 (9): 56~60
    115贾慧明,范弘,张伟代,等.在役火车车轮踏面探伤方法研究.冶金分析. 2006, (26): 217~221
    116彭贵新,韩延芝,罗禄生,等.热钢板在线自动化电磁超声探伤系统.中国发明专利. 1996: CN1063848C
    117王淑娟,赵再新,翟国富.基于电磁超声的火车车轮裂纹检测系统.仪表技术与传感器. 2005, 11: 27~29
    118康磊.用于火车车轮在线检测的电磁超声装置的研究.哈尔滨工业大学硕士学位论文. 2006: 1~83
    119潘伟才.基于FPGA的电磁超声检测系统的研究.哈尔滨工业大学硕士学位论文. 2008: 1~80
    120李智超.基于洛伦兹力机理的电磁超声换能器建模及仿真研究.哈尔滨工业大学硕士学位论文. 2010: 1~67
    121汪开灿.基于电磁超声的钢轨缺陷检测系统的研究.哈尔滨工业大学硕士学位论文. 2010: 1~79
    122信鹏皓.电磁超声表面波换能器换能效率的研究.哈尔滨工业大学硕士学位论文. 2010: 1~90
    123蒋韬.金属板材中电磁超声导波检测技术的研究.哈尔滨工业大学硕士学位论文. 2010: 1~72
    124冯剑钊,米武军,王淑娟.基于电磁超声的轮对踏面缺陷在线检测装置.科技创新导报. 2009, (30): 71~72
    125彭建平,王黎,高晓蓉.基于EMAT技术的轮对踏面探伤仪.仪表技术与传感器. 2009, 1: 18~20
    126杨理践,于宁,刑燕好.电磁超声探伤回波信号的硬件处理.无损检测. 2010, 32 (2): 131~134
    127高松巍,李冰,刑燕好.电磁超声在钢管探伤中的应用.沈阳工业大学学报. 2009, 31 (5): 582~600
    128于宁.钢管电磁超声探伤数据处理技术的研究.沈阳工业大学硕士学位论文. 2009: 1~73
    129李冰.钢管电磁超声探伤方法的研究.沈阳工业大学硕士学位论文. 2009: 1~79
    130张志钢,阙沛文,雷华明.表面波电磁声换能器及电声学特性的研究.声学技术. 2006, 25 (2): 119~123
    131雷华明.电磁超声换能器机理研究及其在管道检测中的应用探索.上海交通大学博士论文. 2005: 1~145
    132张志钢,阙沛文,雷华明.兰姆波的电磁超声磁致伸缩式激励及其特性.上海交通大学学报. 2006, 40 (1): 133~137
    133 Lei Huaming, Que Peiwen.“Smart”Ultrasonic Pig Design and its Signal Processing Research. Journal of Harbin Institute of Technology. 2008, 15 (1): 65~70
    134王珅,黄松岭,赵伟.基于虚拟仪器技术的电磁超声数据采集和分析软件设计.仪表技术与传感器. 2009, 5: 37~39
    135张永生,黄松岭,赵伟,等.基于电磁超声的钢板裂纹检测系统.无损检测. 2009, 31 (4): 307~310
    136宋卫华,王小民,李明轩.电磁超声多界面检测信号去噪方法研究.声学学报. 2007, 32 (3): 226~231
    137宋卫华,王小民,李明轩.电磁超声界面回波瞬时图谱分析与神经网络识别.声学学报. 2007, 32 (4): 333~337
    138冷涛,李明轩,黄振俨,等.电磁声实验平台的研制与实验研究.声学学报. 2009, 34(5): 437~444
    139任晓可.电磁超声技术在钢板缺陷检测中的研究.天津大学硕士论文. 2008: 1~84
    140李莺莺.油气管道在线内检测技术若干关键问题研究.天津大学博士论文. 2006: 1~161
    141 J. L. Rose. Ultrasonic Waves in Solid Media. Cambridge University Press, 1999: 1~110
    142张海澜.理论声学.高等教育出版社, 2007: 1~472
    143 J. D. Achenbach. Wave Propagation in Elastic Solids. North-Holland Publishing Company, 1973: 165~198
    144 H. Lamb. On the Propagation of Tremors over the Surface of an Elastic Solid. Phil. Trans. R. Soc. Ser. 1904, 203: 1~42
    145 H. Nakano. Some Problems Concerning the Propagations of the Disturbance in and on Semi-infinite Elastic Solid. Geophys. Mag. 1930, 2: 189~348
    146方开泰,马长兴.正交与均匀试验设计.科学出版社, 2001: 35~231
    147马成良,张海军,李素平.现代试验设计优化方法及应用.郑州大学出版社, 2007: 121~159
    148杜功焕,朱哲民,龚秀芬.声学基础.第2版.南京大学出版社, 2001: 517
    149 S. Dixon, S. B. Palmer. Wideband Low Frequency Generation and Detection of Lamb and Rayleigh Waves Using Electromagnetic Acoustic Transducers(EMATs). Ultrasonics. 2004, 42: 1129~1136
    150 P. D. Wilcox, M. J. Lowe, P. Cawley. The Excitation and Detection of Lamb Waves with Planar Coil Electromagnetic Acoustic Transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2005, 52 (12): 2370~2383
    151 R. Reeder.宽带ADC变压器耦合前端设计. Analog Dialogue. 2005:39~40
    152王建新,杨世风,隋美丽. LabWindows/CVI测试技术及工程应用.化学工业出版社. 2006:1~3
    153曾庆勇.微弱信号检测.浙江大学出版社, 1986:1~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700