芴基苯并噁嗪的合成聚合及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯并嗯嗪是在传统酚醛树脂的基础上发展起来的一种新型热固性树脂。此类树脂除具有酚醛树脂优良的耐热性和阻燃性外,还在一定程度上改善了酚醛树脂的脆性和尺寸不稳定性,最显著的优点是通过自身开环聚合形成三维网络结构,固化时无小分子释放,制品孔隙率低,其体积近似零收缩,有高的Tg和热稳定性,以及良好的机械性能、电气性能、阻燃性能和高的残碳率,因而在先进复合材料基体树脂、电子封装材料等方面有潜在应用。
     本文以苯酚和芴酮为原料,在液体酸和固体酸催化剂存在的情况下,利用微波辅助合成技术,合成了具有芴基双酚结构的单体,并与甲醛和伯胺反应,制备了系列双官能度芴基苯并噁嗪单体,通过红外光谱(IR)、核磁共振氢谱(1H NMR)和碳谱(13C NMR)对产物结构进行了表征,利用差示扫描量热仪(DSC)、IR、动态热机械分析仪(DMA)、热重仪(TGA)等对聚合反应行为、固化动力学、聚合物网络结构以及纯苯并嗯嗪和共混树脂的性能进行了研究。实验结果表明,双酚芴的优化合成工艺条件为:酚酮物质的量比8:1,β-巯基丙酸与芴酮物质的量比为0.05:1,液体酸法(硫酸、甲基磺酸)催化剂质量分数为2%-5%(占反应物料,以下同),微波辐射时间30 min,反应温度45-55℃,双酚芴收率大于83%;固体酸法(磷钨酸、强酸性阳离子交换树脂)催化剂质量分数为6%-9%,微波辐射反应时间90 min,反应温度130℃,双酚芴收率在70%以上,熔点223-224℃。其中,强酸性阳离子交换树脂法是今后发展的方向。
     以双酚芴、甲醛和伯胺(包括苯胺、邻甲苯胺、间甲苯胺、对甲苯胺、3,5-二甲基苯胺、丁胺、辛胺、环己胺、烯丙胺、炔丙胺)为原料,采用混合溶剂法制备了十种新型芴基苯并嗯嗪单体。单体优化的合成工艺条件为:双酚芴、甲醛和伯胺物质的量比为1:4:2,无水乙醇和二氧六环作为溶剂,二者的体积比为1:1,甲醛和伯胺的加成反应在5℃以下,反应时间2h,加成产物与双酚芴的成环反应温度为90-100℃,反应时间5-7 h,芴基苯并噁嗪单体收率在50%-63%之间。
     芴基苯并噁嗪呈典型1,3-苯并噁嗪热开环聚合特征,聚合物链由酚Mannich桥键、芳香胺Mannich桥键、亚甲基链以及分子间和分子内氢键组成,芳香胺间位有取代基时,其对位产生活性位,从而增加了活性交联点。通过动态DSC曲线分析确定了芴基苯并噁嗪的固化工艺条件为:170-180C/2h→200-220℃/3h→240-250℃/2h;利用Kissenger法、Ozawa法和Crane法计算了固化反应表观活化能和反应级数,芴基苯并嗯嗪的表观活化能在122~174 kJ/mol之间,反应级数近似为一级。
     芳香胺基、饱和脂肪胺基以及不饱和脂肪胺基苯并噁嗪单体的热性能研究结果表明,芴基聚苯并噁嗪树脂优异的热稳定性与芴基结构、胺取代基结构和聚合物网络结构有关。庞大的芴基引入聚苯并噁嗪结构中使得聚合物的刚性提高,聚合物链段的内旋转和热运动受到限制,极大地提高了芴基聚苯并噁嗪树脂的玻璃化转变温度和内在热稳定性;分子内和分子问氢键使聚合物链的堆积更加紧密,阻碍了聚合物链段的运动,提高了聚合物的刚性,而更多的分子间氢键数量有助于玻璃化转变温度的提高,分子内氢键对聚合物的耐热性起到重要作用;芴基苯并噁嗪结构中含有可聚合基团时,提高了聚合物的交联密度,有助于提高聚合物的初始热分解温度和残炭率,玻璃化转变温度显著提高;具有活性交联位的芳香胺基聚苯并噁嗪的交联密度有所增大,促进玻璃化转变温度的提高;脂肪族分子链含柔性侧基,使得分子间距离增大,内增塑作用增强,相互作用减弱,且随着碳链的增加,玻璃化转变温度和热稳定性显著下降,显著低于芳香胺基聚苯并噁嗪;炔丙胺基聚苯并噁嗪具有最高的热稳定性。
     环氧树脂对噁嗪环的开环反应起到催化作用,从而降低了聚合反应温度,自身也参与交联反应,使得聚合物分子内增塑作用增强,聚合物的刚性和堆积密度降低,Tg下降,热稳定性有所提高,残炭率的降低主要与苯并噁嗪的加入量有关。共混树脂的热分解过程为单一热分解机理,环氧树脂的引入对聚合物的热稳定性和加工性能有一定改善。EMI(2-乙基-4-甲基咪唑)对芴基苯并噁嗪具有催化开环聚合作用,共聚物的热稳定性和残炭率高于相应的纯树脂以及芴基苯并噁嗪/E-51共混树脂,芴基苯并噁嗪树脂-环氧树脂-EMI三元共混树脂聚合反应经历3个阶段,EMI不仅对共混树脂起到催化作用,降低固化温度,还使聚苯并噁嗪和环氧树脂固化物形成均相共聚物,提高了共混树脂的交联密度和相容性,固化树脂无相分离现象,综合性能优于相应的纯树脂和同样比例未加EMI的共混树脂体系,有望在高性能树脂基体、电子封装、层压材料、绝缘材料以及阻燃材料等领域得到应用。
Polybenzoxazines, as a class of thermosetting phenolic resins formed by the thermal ring-opening of the corresponding benzoxazines monomers without any catalyst, have demonstrated various attractive properties such as high thermal stability, high char yields, high glass transition temperature (Tg), near-zero volumetric change upon curing, good mechanical and dielectric properties, low water absorption, and low flammability. These unique characteristics make the polybenzoxazines a better candidate over epoxies and traditional phenolic resins in the electronics, aerospace, and other industries.
     9,9-bis(4-hydroxyphenyl)-fluorene (BHPF) was synthesized from phenol and fluorenone as raw materials in the presence of liquid acids and solid acids as catalyst by microwave-assisted synthesis technology. A series of difunctional fluorene-based benzoxazine monomers were synthesized from the reaction of BHPF with formaldehyde and primary amines. Their chemical structures were confirmed by FTIR, 1H and 13C NMR analyses. The polymerization behaviors, curing dynamics, and network structure of the precursors and polymers were monitored by differential scanning calorimetry (DSC) and FT-IR. The mechanical performance and thermal properties of neat polybenzoxazines and blending resins were evaluated with DSC, Dynamic Mechanical Analyzer (DMA) and Thermogravimetric Analyzer (TGA).
     The experimental results show that the yields of BHPF was more than 83% under the optimal process conditions that the molar ratio of phenol to fluorenone was 8 to 1, the mass percentage of catalysts including sulfuric acid and methylsulphonic acid was 2-5% of the total reactants, reaction temperature was 45-55℃and reaction time was 30 min. When solid acids such as phosphotungstic acid and strongly acid cation exchange resin were used as catalyst, the yields of BHPF was more than 70% under the optimal process conditions that the mass percentage of catalysts was 6-9%, reaction temperature was 130℃and reaction time was 90 min. The melting point of BHPF was 223-224℃. The synthetic method using strongly acid cation exchange resin as catalyst will be the direction of development in the futrue.
     New fluorene-based bezoxazine monomers was synthesized under the optimal process conditions that the molar ratio of BHPF, formaldehyde, and primary amine including aniline, o-toluidine, m-toluidine,p-toluidine,3,5-di-methyl-toluidine, n-butylamine, n-octylamine, cyclohexylamine, allylamine, and propargyl amine was 1:4:2, the mixtures of dioxane and anhydrous ethanol, which the volume ratio is 1:1, were used as solvent, the addition reaction temperature between formaldehyde and primary amine was less than 5℃, the addition reaction time was 2 h, the ring-closing reaction temperature between addition product and bisphenol fluorene was 90-100℃, the ring-closing reaction time was 5-7 h. The yields of fluorene-based bezoxazine monomers were 50-63%.
     The fluorene based polybenzoxazines show the typical curing characteristic of oxazine ring-opening for difunctional benzoxazines centred at 231-250℃. The chain segments of polymers consist of phenolic Mannich bridge network, arylamine Mannich bridge, arylamine methylene bridge, intramolecular hydrogen bonding, and intermolecular hydrogen bonding. The pendant arylamine rings activated in the para position can undergo an aminomethylation reaction during the polymerization. The curing kinetics and curing craft of fluorene-based bezoxazines was investigated using non-isothermal DSC. and determined by Kissinger, Ozawa and Crane methods. The activation energy of fluorene-based bezoxazines calculated by Kissinger and Ozawa method is 122-174 kJ/mol. The reaction order is approximate 1. The step curing profil of fluorene-based bezoxazines is as follows:170-180℃/2 h,200-220℃/3 h,240-250℃/2 h.
     The introduction of bulky fluorene moieties into the benzoxazine chains must arise from the higher rigidity of fluorene skeleton in the chain backbone, which restrains the internal rotations and thermal motion of polymer segments. As a result, the Tg values of fluorene-based polybenzoxazines are higher than those of the relative bisphenol A-based polybenzoxazines. In addition, the tighter packing of the polymer chains due to the strong intermolecular and intramolecular hydrogen bonding has significant influence on the Tg of the fluorene containing polybenzoxazines, which confines segmental mobility and contributes to a rigidity of the polymer chains. The aromatic amine-fluorene-based polybenzoxazines are more chemically cross-linked and have tighter packing and higher crosslinking density than the linear aliphatic aminebased polybenzoxazines. The polybenzoxazines containing polymerized groups possess higher crosslinking density. Therefore, the Tg values of polymers increase dramatically. The Tg values of aliphatic amine-fluorene-based polybenzoxazines containing flexible pendant groups significantly decrease as the increases of the length of aliphatic groups.
     The thermal stability of fluorene-based polybenzoxazines is connected with the fluorenyl structure, substituent structure of amines, and network structure of polymers. The introduction of rigid fluorene skeleton with bulky pendent Cardo moieties into benzoxazine monomers can improve the inherent thermal stability of the thermosets dramatically. Furthermore, the intramolecular hydrogen bonding of the polymer chains, while intermolecular hydrogen bonds typically weaken significantly above Tg, has a tendency to stabilize the molecule. These may contribute to the improvement of thermal stability of the fluorene based polybenzoxazines. The introduction of polymerized groups such as allyl and propargyl into benzoxazine chains can improve the crosslinking density of polymers, and be conductive to the improvement of initial thermo-decomposing temperature and char yield. The thermal stability of propargyl amine-fluorene-based polybenzoxazine is the highest in all fluorene-based polybenzoxazines. The polybenzoxazines derived from aromatic amines attributed to the high aromatic content have the better thermal stability than those derived from aliphatic amines.
     Epoxy resins can catalyze the ring-opening of benzoxazines to reduce polymerizing temperature, and involve in the crosslinking reaction. The results lead to enhancement of the internal plasticization of polymer molecular, decrease of the rigidity and packing of the polymer chains, drop of the Tg values, and improvement of thermal stability. The decrease of char yields is relative to the dosages of benzoxazines. There is a single decomposition mechanism for the blending resins of benzoxazines/epoxy resins. The introduction of epoxy resins into polybenzoxazine system can improve the thermal stability and processability of polymers at a certain extent.
     2-ethyl-4-methyl-imidazole (EMI) can catalyze the ring-opening of benzoxazines. The thermal stability and char yields of copolymers consisting of benzoxazines and EMI are higher than those of the neat polybenzoxazines and blending resins of fluorene-based benzoxazines and E-51 epoxy resins. The polymerization resction for ternary blending resins, containing fluorene-based benzoxazines, E-51 epoxy resins, and EMI, undergos three stages. EMI has profit to the formation of homogeneous copolymers and the improvement of crosslinking density and compatibility of blending resins in the ternary system. There is no phenomena of phase separation. The comprehensive performances of the ternary blending resins are better than those of neat corresponding benzoxazines and blending resins of fluorene-based benzoxazines and E-51 epoxy resins without EMI, which may be a good candidate for high performance composite matrices, electronic encapsulation materials, laminate materials, insulation materials and fire resistant materials, etc.
引文
[1]Ghosh NN, Kiskan B, Yagci Y. Polybenzoxazines—New high performance thermosetting resins Synthesis and properties [J]. Prog Polym Sci,2007,32: 1344-1391P
    [2]Yagci Y, Kiskan B, Ghosh NN. Recent Advancement on Polybenzoxazine—A Newly Developed High Performance Thermoset [J]. J Polym Sci A:Polym Chem,2009,47:5565-5576P
    [3]Ning X, Ishida H. Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol-A based benzoxazines and their polymers [J]. J Polym Sci B:Polym Phys,1994,32:1121-1129P
    [4]Velez-Herrera P, Doyama K, Abe H, Ishida H. Synthesis and Characterization of Highly Fluorinated Polymer with the Benzoxazine Moiety in the Main Chain [J]. Macromolecules,2008,41:9704-9714P
    [5]Espinosa MA, Galia M, Cadi V. Novel phosphorilated flame retardant thermosets:epoxy-benzoxazine-novolac systems [J]. Polym,2004,45: 6103-6109P
    [6]Kazama S, Teramoto T, Haraya K. Carbon dioxide and nitrogen transport properties of bis(phenyl)fluorene-based Cardo polymer membranes [J]. J Membrane Sci,2002,207:91-104P
    [7]刘文彬.芴基环氧树脂及固化剂的合成与性能研究[D].哈尔滨:哈尔滨工程大学博士论文,2008
    [8]Riemann A, Ude W. Method for making 9,9-bis-(4-hydroxyphenyl)-fluorene [P]. US Patent 4675458,1987-06-23
    [9]Morgan PW. Aromatic Polyesters with Large Cross-Planar Substituents [J]. Macromolecules,1970,3:536-544P
    [10]村濑裕明,山田光昭,须田康裕等.芴衍生物的制造方法[P].CN:1617845,2005-03-18
    [11]Massirio S, Besio M, Gagliano M, et al. Process for preparing bisphenol fluorene compounds [P]. US Patent 5248838,1993-09-28
    [12]Wehmeyer RM, Walters ME, Tasset EL, et al. Process for making polyphenols from ketones or aldehydes and phenols [P]. US Patent 5463140, 1995-10-31
    [13]Knebel J, Kerscher V, Ude W. Method for making aromatic bisphenols [P]. US Patent 4931594,1990-06-05
    [14]Bowman RG, Inbasekaran MN. Process for the preparation of bishydroxy aromatic compounds [P]. US Patent 5304688,1994-04-19
    [15]刘文彬,王军,邱琪浩等.强酸性阳离子交换树脂催化合成双酚芴的方法[P].中国发明专利:CN 200710071661.3,2007-01-19
    [16]刘文彬,王军,嵇雷等.磁性固体超强酸催化合成双酚芴的方法[P].中国发明专利:CN 100436391C,2008-11-26
    [17]王军,刘文彬,李占双等.用杂多酸催化合成双酚芴方法[P].中国发明专利:CN 1291959C,2006-12-27
    [18]刘文彬,王军,嵇雷等.固载杂多酸催化合成双酚芴的方法[P].中国发明专利:CN 200610151172.4,2006-12-20
    [19]Jordan, Robert C, Portelli, et al. Fiber reinforced composites with improved glass transition temperatures [P]. US Patent 4882370,1989-11-21
    [20]Yefim Blyakhman. High Performance epoxy resin systems containing trimethylquinoline oligomers [P]. US Patent 5464702,1995-11-07
    [21]Quinn CB. Bis-phenoxyphthalic acid anhydrides [P]. US Patent 3944583, 1976-03-16
    [22]肖通虎,王丽娜,曹义鸣等.分子筛-聚合物共混气体分离膜研究进展[J].膜科学与技术,2005,25(5):85-91页
    [23]孙彩霞,马磊,徐杰等.一种新型的燃料电池用质子交换膜——磺化聚酰亚胺膜[J].化工进展,2005,24(5):493-497页
    [24]Stephen EB, James PG, Philip CY, et al. Crosslinkable carbonate polymers of dihydroxyaryl fluorene [P]. US Patent 5516877,1996-05-14
    [25]Suresh S, Robert JG Jr, Stephen EB, et al. A novel polycarbonate for high temperature electro-optics via azo bisphenol amines accessed by Ullmann coupling [J]. Polymer,2003,44 (18):5111-5117P
    [26]Simone A, Mauro A. High purity 9,9-bis-(hydroxyphenyl)-fluorene and method for the preparation and purification thereof [P]. US Patent 6620979, 2003-09-16
    [27]Shen S, Ishida H. Synthesis and characterization of polyfunctional naphthoxazines and related polymers [J]. J Appl Polym Sci,1996,61: 1595-1605P
    [28]Liu Jingping. Synthesis, Characterization, Reaction Mechanism and Kinetics of 3,4-dihydro-2H-1,3-benzoxazine and Its Polymers [D]. US Cleveland: Case Western Reverse University Ph. D. Thesis,1995
    [29]Allen DJ, Ishida H. Effect of phenol substitution on the network structure and properties of linear aliphatic diamine-based benzoxazines [J]. Polymer, 2009,50:613-626P
    [30]Ishida H, Allen DJ. Physical and mechanical characterization of near-zero shrinkage polybenzoxazines. J Polymer Science B:Polymer Physics,1996, 34:1019-1030P
    [31]Wang Y X, Ishida H. Sythesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2H-1,3-benzoxazines[J]. Macromolecules,2000, 33:2839-2847P
    [32]Kim HJ, Brunovska Z, Ishida H. Molecular characterization of the polymerization of acetylene-functional benzoxazineresins [J]. Polymer,1999, 40:1815-1822P
    [33]Ishida H, Low HY. A Study on the Volumetric Expansion of Benzoxazine-Based Phenolic Resin [J]. Macromolecules,1997,30: 1099-1106P
    [34]Liu J, Ishida H. A new class of phenolic resins with ring-opening polymerization. The polymeric materials encyclopedia [M].Florida:CRC Press,1996:484-494P
    [35]顾宜.苯并恶嗪树脂——一类新型热固性工程塑料[J].热固性树脂,2002,17(2):31-34页
    [36]Chen Q, Xu RW, Dingsheng Yu. Preparation of Nanocomposites of Thermosetting Resin from Benzoxazine and Bisoxazoline with Montmorillonite [J]. J Appl Polym Sci,2006,100:4741-4747P
    [37]余鼎声,史子兴,徐日炜等.苯并嗯嗪/蒙脱土插层体系和苯并嗯嗪体系的动态固化行为比较[J].高等学校化学学报,2002,23:2188-2191页
    [38]白会超,王继辉,冀运东.耐高温苯并恶嗪的合成与表征[J].宇航材料工艺,2008(3):45-48页
    [39]潘光艳,任皓,齐会民等.氰基苯并噁嗪/环氧树脂共混体系的性能研究[J].化工新型材料,2008,36(11):81-83页
    [40]刘锋,赵西娜,陈轶华.酚醛改性苯并噁嗪树脂及其复合材料性能[J].复合材料学报,2008,25(5):57-63页
    [41]陈晔,崔燕军,王新灵等.聚氨酯/苯并恶嗪互穿聚合物网络的合成及表征[J].上海交通大学学报,2002,36(5):719-721页
    [42]郭茂,凌鸿,郑林等.苯并嗯嗪和双马来酰亚胺共混树脂性能的研究[J].热固性树脂,2008,23(1):4-7页
    [43]和亚莉,李玲,董风云.高性能苯并嗯嗪树脂的研究进展[J].绝缘材料,2006,39(4):5-9页
    [44]Men WW, Lu ZJ. Synthesis and characterization of 4,4'-diamino- diphenyl methane-based benzoxazines and their polymers[J]. J Applied Polymer Science,2007,106:2769-2774P
    [45]Wang L, Zheng SX. Morphology and thermomechanical properties of main-chain polybenzoxazine-block-polydimethylsiloxane multiblock copoly-mers [J]. Polymer,2010,51:1124-1132P
    [46]Aversa MC, Giannetto P, Caristi C, et al. Behaviour of an N-(o-hydroxy-benzyl)-β-amino-acid in the presence of dehydrating agents. Synthesis of a 3,4-dihydro-2H-1,3-benzoxazine [J]. J Chem Soc, Chem Commun,1982:469-470P
    [47]Kanatomi H, Murase I. Reaction of salicylamine with alpha-dicarbonyl compounds.2.Formation of 2,2-bibenz-1,3-oxazines [J]. Bull Chem Soc Japan,1970,43:226-231P
    [48]Ishida H. Process for preparation of benzoxazine compounds in solventless systems [P]. US Patent 5543516,1996-08-06
    [49]顾宜.粒状苯并噁嗪中间体及制备方法[P].中国专利:CN 1139104A,1997-01-01
    [50]Lin CH, Chang SL, Hsieh CW, et al. Aromatic diamine-based benzoxazines and their high performance thermosets [J]. Polymer,2008,49:1220-1229P
    [51]Sponton M, Lligadas G, Ronda JC,et al. Development of a DOPO-containing benzoxazine and its high-performance flame retardant copolybenzoxazines [J]. Polym Degrad Stab,2009,94:1693-1699P
    [52]Agag T, Jin L, Ishida H. A new synthetic approach for difficult benzoxazines:Preparation and polymerization of 4,4'-diaminodiphenyl sulfone-based benzoxazine monomer [J]. Polymer,2009,50:5940-5944P
    [53]谢倩,包春磊,鲁在君.新型苯并噁嗪中间体的合成及其固化行为研究[J].华南热带农业大学学报,2005,11(2):17-19页
    [54]Wang YX, Ishida H. Cationic ring-opening polymerization of benzoxazines [J]. Polymer,1999,40:4563-4570P
    [55]Kasapoglu F, Cianga I,Yagci Y, et al. Photoinitiated cationic polymerization of monofuncitonal benzoxazine [J]. J Polym Sci A:Polym Chem,2003,41: 3320-3328P
    [56]Dunkers J, Ishida H. Reaction of benzoxazine-based phenlic resins with strong and weak carboxylic acids and phenols as catalysts [J]. J Appl Polym Sci,1999,37:1913-1921P
    [57]Russell V M, Koenig J L, Low H Y, et al. Study of the characterization and curing of benzoxazines using C-13 solid-state nuclear magnetic resonance[J]. Appl Polym Sci,1998,70:1413-1425P
    [58]Burke WJ.3,4-dihydro-1,3-2H-benzoxazines:Reaction of p-substituted phenols with N,N-dimethylolamines [J]. Am Chem Soc,1949,71:609-612P
    [59]Burke WJ, Bishop JL, Mortensen GEL, et al. A New Aminoalkylation Reaction. Condensation of Phenols with Dihydro-1,3-aroxazines [J]. J Org Chem,1965,30 (10):3423-3427P
    [60]Ishida H, Rodriguez Y. Catalyzing the Curing Reaction of a New Benzoxazine-Based Phenolic Resin [J]. Journal of Applied Polymer Science, 1995,58:1751-1760P
    [61]高念,朱永飞,顾宜.氯化镧对苯并噁嗪热稳定性的影响及机理研究[J].热固性树脂,2009,24(3):39-42,45页
    [62]Su YC, Chen WC, Chang FC. Investigation of the Thermal Properties of Novel Adamantane-Modied Polybenzoxazine [J]. J Appl Polym Sci,2004,94: 932-940P
    [63]Ghetiya RM, Kundariya DS, Parsania PH, Patel VA. Synthesis and Characterization of Cardo Bisbenzoxazines and their Thermal Polymerization [J]. Polym-Plast Technol Eng,2008,47:836-841P
    [64]杨坡,盛兆碧,顾宜.含嗯唑环芳香二胺型苯并嗯嗪的制备与表征[C].中国天津:全国高分子学术论文报告会,2009:91页
    [65]张炳伟,徐日炜,丁雪佳等.新型烯丙基苯并噁嗪的合成及其固化过程的研究[J].北京化工大学学报,2004,31(2):41-44页
    [66]Chernykh A, Agag T, Ishida H. Novel benzoxazine monomer containing diacetylene linkage:An approach to benzoxazine thermosets with low polymerization temperature without added initiators or catalysts [J]. Polymer, 2009,50:3153-3157P
    [67]Kim HJ, Brunovska Z, Ishida H. Dynamic Mechanical Analysis on Highly Thermally Stable Polybenzoxazines with an Acetylene Functional Group [J]. J Appl Polym Sci,1999,73:857-862P
    [68]Kiskan B, Yagci Y. Synthesis and characterization of thermally curable polyacetylenes by polymerization of propargyl benzoxazine using rhodium catalyst [J]. Polymer,2008,49:2455-2460P
    [69]Agag T, Takeichi T. Synthesis and Characterization of Novel Benzoxazine Monomers Containing Allyl Groups and Their High Performance Thermosets [J]. Macromolecules,2003,36:6010-6017P
    [70]Kumar KSS, Nair CPR, Radhakrishnan TS, et al. Bisallyl benzoxazine: Synthesis, polymerisation and polymer properties [J]. Eur Polym J,2007,43: 2504-2514P
    [71]Kiskan B, Aydogan B, Yagci Y. Synthesis, Characterization, and Thermally Activated Curing of Oligosiloxanes Containing Benzoxazine Moieties in the Main Chain [J]. J Polym Scie A:Polym Chem,2009,47:804-811P
    [72]Ishida H, Ohba S. Synthesis and characterization of maleimide and norbornene functionalized benzoxazines [J]. Polymer,2005,46:5588-5595P
    [73]赵庆来,曾科,韩勇等.含马来酰亚胺和烯丙基醚的苯并噁嗪的合成与性能[J].高分子材料科学与工程,2007,23(3):51-54页
    [74]白会超,王继辉,冀运东.耐高温苯并嗯嗪的合成与表征[J].宇航材料工艺,2008(3):45-48页
    [75]曹国萍.含腈基类苯并嗯嗪树脂单体、复合材料的性能研究[J].成都:电子科技大学,2008:17页
    [76]Chaisuwan T, Ishida H. High-performance maleimide and nitrile-functionalized benzoxazines with good processibility for advanced composites applications [J]. J Appl Polym Sci,2006,101:548-558P
    [77]Sponton M, Ronda JC, Galia M, et al. Development of flame retardant phosphorus- and silicon-containing polybenzoxazines [J]. Polym Degrad Stab, 2009,94:145-150P
    [78]Sponton M, Ronda JC, Galia M, et al. Studies on thermal and flame retardant behaviour of mixtures of bis(m-aminophenyl)methylphosphine oxide based benzoxazine and glycidylether or benzoxazine of Bisphenol A [J]. Polym Degrad Stab,2008,93:2158-2165P
    [79]刘欣,顾宜.苯并噁嗪—环氧化合物—胺类催化剂体系开环聚合反应的研究[J].2002,18(2):168-173页
    [80]张建,刘向阳,顾宜.高性能苯并噁嗪模压复合材料的研究[J].塑料工业,2009,37(3):78-81页
    [81]刘锋,赵西娜,冯雪梅.酚醛改性苯并噁嗪树脂耐烧蚀材料的研究[J]. 热固性树脂,2007,22(6):4-8页
    [82]徐丽,司徒粤,胡剑峰等.三元共聚改性酚醛树脂的固化行为及性能[J].高校化学工程学报,2009,23(4):655-660页
    [83]叶朝阳,顾宜.苯并噁嗪中间体/蛭石插层纳米复合物热固化行为的研究[J].高分子学报,2004(2):208-212页
    [84]单家佳,程晓君,吴一弦等.苯并噁嗪/不完全笼型倍半硅氧烷复合材料的固化动力学研究[J].合成材料老化与应用,2008,37(3):11-15页
    [85]张世杰,张炜,郭亚林.纳米炭粉改性炭布/苯并噁嗪复合材料性能研究[J].玻璃钢/复合材料,2009(2):29-32页
    [86]Ishida H, Rimdusit S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochimica Acta,1998,320:177-186P
    [87]和亚莉,李玲,董风云.高性能苯并噁嗪树脂的研究进展[J].绝缘材料2006,39(4):5-9页
    [88]李玲,陈剑楠.BMI改性苯并噁嗪树脂及其复合材料研究[J].工程塑料应用,2009(6):20-23页
    [89]和亚莉,李玲,董凤云.活性单体对苯并噁嗪树脂性能的影响[J].高分子材料科学与工程,2007,23(6):152-155页
    [90]李胜方,付即芳,王洛礼.双噁唑啉的制备及改性酚醛和苯并噁嗪树脂的研究[J].化学与生物工程,2003,21:105-109页
    [91]刘锋,赵恩顺,马庆柯.含硼苯并噁嗪玻璃布层压板的研制[J].热固性树脂,2009,24(2):23-25页
    [92]Zhu YJ, Wang Wei-Wei, Qi RJ, et al. Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids [J]. Angew Chem,2004,43:1410-1414P
    [93]许波.微波技术应用于酯化反应的研究进展[J].北京石油化工学院学报, 2005,13(4):37-39页
    [94]Wiesbrock F, Hoogenboom R, Schubert US. Microwave-assisted polymer synthesis:State-of-the-art and future perspectives [J]. Macromolecular Rapid Communications,2004,25(20):1739-1764P
    [95]Hiroki K, Morii N, Yamashita H, et al. Efficient Microwave-Assisted Synthesis of 9,9-Bis[4-(2-hydroxyethoxy)phenyl] fluorene from 9-Fluorenone and 2-Phenoxy- ethanol [J]. Synthetic Communications,2007,37(24): 4407-4413P
    [96]Barlow S, Marder SR. Single-Mode Microwave Synthesis in Organic Materials Chemistry [J]. Advanced Functional Materials,2003,13(7):517-518P
    [97]Yadav GD, Kirthivasan N. Synthesis of bisphenol-A comparison of efficacy of ion exchange resin catalysts vis-a-vis heteropolyacid supported on clay and kinetic modelling [J]. Applied Catalysis A:General,1997,154:29-53P
    [98]Gaylord M Kissinger, Sheldon J Shafer, Harish R Acharya, et al. Combination ion exchange resin bed for the synthesis of bisphenol A [P]. US Patent 6486222,2002-11-26
    [99]侯信,黄文强,何炳林.强酸性阳离子交换树脂的热稳定性[J].离子交换与吸附,1995(5):465-472页
    [100]徐秉声,张广禄,霍稳周等.大孔耐温强酸阳离子交换树脂催化剂的研究[J].石油炼制与化工,1995(4):21-26页
    [101]秦金来,张文雯,何明阳等.双酚A催化剂技术进展[J].化工进展,2004(7):710-717页
    [102]Panozzo S, Vial J, Kervella Y, et al. Fluorene-fluorenone copolymer: stable and efficient yellow-emitting material for electroluminescent devices [J]. Journal of Applied Physics,2002,92(7):3495-3502P
    [103]Fukuda M, Sawada K, Yoshino K. Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics [J]. J Polym Sci A:Polym Chem, 1993,31:2465-2671P
    [104]Ishida H, Low HY. Synthesis of benzoxazine functional silane and adhesion properties of glass-fiber-reinforced polybenzoxazine composites [J]. J Appl Polym Sci,1998,69:2559-2567P
    [105]Jin L, Agag T, Ishida, H. Bis(benzoxazine-maleimide)s as a Novel Class of High Performance Resin:Synthesis and Properties [J]. Eur Polym J 2010,46: 354-363P
    [106]Dunkers J, Ishida H. Vibrational assignments of 3-alkyl-3,4-dihydro-6-methyl-2H-1,3-benzoxazines in the fingerprint region [J]. Spetrochim Acta, 1995,51:1061-1074P
    [107]朱淮武.有机分子结构波谱解析[M].北京:化学工业出版社,2005:245-253页
    [108]Laobuthee A, Chirachanchai S, Ishida H, et al. Asymmetric Mono-oxazine: An Inevitable Product from Mannich Reaction of Benzoxazine Dimers [J]. J Am Chem Soc,2001,123:9947-9955P
    [109]Huang JX, Zhang J, Wang F, et al. The curing reactions of ethynyl-functional benzoxazine [J]. Reactive & Functional Polymers,2006, 66:1395-1403P
    [110]Jubsilp C, Damrongsakkul S, Takeichi T. Curing kinetics of arylamine-based polyfunctional benzoxazine resins by dynamic differential scanning calorimetry [J]. Thermochimica Acta,2006,447:131-140P
    [111]Ishida H, Rodriguez Y. Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry [J]. Polymer,1995,36(16): 3151-3158P
    [112]He Y. DSC and DEA studies of underfill curing kinetics [J]. Thermochimica Acta,2001,367-368:101-106P
    [113]信春玲,杨小平,余鼎声.非等温DSC研究聚苯并噁嗪/炭纤维复合材料的固化动力学[J].高分子材料科学与工程,2005,21(6):185-188页
    [114]Takeichi T, Kano T, Agag T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets [J]. Polymer,2005,46:12172-12180P
    [115]裴顶峰,顾宜,李在兰等.以双酚A为基础的双苯并噁嗪中间体的开环固化反应动力学研究[J].高分子材料科学与工程,1997,13(3):41-44页
    [116]Takeichi T, Guo Y, Rimdusit S. Performance improvement of polybenzoxazine by alloying with polyimide:effect of preparation method on the properties [J]. Polymer,2005,46:4909-4916P
    [117]Garea SA, Iovu H, Nicolescu A, Deleanu C. Thermal polymerization of benzoxazine monomers followed by GPC, FTIR and DETA [J]. Polymer Testing,2007,26:162-171P
    [118]Ishida H, Sanders DP. Regioselectivity and network structure of difunctional alkyl-substitued aromatic amine-based polybenzoxazines [J]. Macromolecules,2000,33:8149-8157P
    [119]Kim HD, Ishida H. A Study on Hydrogen-Bonded Network Structure of Polybenzoxazines [J]. J Phys Chem A,2002,106:3271-3280P
    [120]Dunkers J, Zarate EA, Ishida H. Crystal Structure and Hydrogen-Bonding Characteristics of N,N-Bis(3,5-dimethyl-2-hydroxybenzyl) methylamine, A Benzoxazine Dimer [J]. J Phys Chem,1996,100:13514-13520P
    [121]Kim HD, Ishida H. Model Compounds Study on the Network Structure of Polybenzoxazines [J]. Macromolecules,2003,36:8320-8329P
    [122]Kissinger D E. Reaction kinetic in differential thermal analysis [J]. Analytical Chemistry,1957,29(11):1702-1706P
    [123]Ozawa T. A New Method of Analyzing Thermogravimetric Data [J]. Bulletin of the Chemical Society of Japan,1965,38(11):1881-1886P
    [124]史子兴,王一中,余鼎声.聚苯并恶嗪单体固化行为的非等温DSC法研究[J].玻璃钢/复合材料,2000(3):14-17页
    [125]金光日,华幼卿.高分子物理(第三版)[M].北京:化学工业出版社,2007:137页
    [126]Choi SW, Ohba S, Brunovska Z, et al. Synthesis, characterization and thermal degradation of functional benzoxazine monomers and polymers containing phenylphosphine oxide [J]. Polym Degrad Stab 2006;91:1166-78P
    [127]Low HY, Ishida H. Mechanistic study on the thermal decomposition of polybenzoxazines:Effects of aliphatic amines [J]. J Polym Sci B:Polym Phys 1998,36:1935-1946P
    [128]潘鹏举,单国荣,黄志明等.2-乙基-4-甲基咪唑固化环氧树脂体系动力学模型[J].高分子学报,2006(1):21-24页
    [129]宋霖,向海,朱蓉琪等.咪唑催化苯并噁嗪树脂固化的研究[J].热固性树脂,2005,20(4):17-20页
    [130]Sponton M, Ronda JC, Galia M, et al. Cone calorimetry studies of benzoxazine-epoxy system same retarded by chemically bonded phosphorus or silicon [J]. Polymer Degradation and Stability,2008,93:2158-2165P
    [131]丁遗福,李华,刘墨君等.吸水过程对环氧树脂的动态松弛行为的影响[J].高等学校化学学报,2002,23:965-969页
    [132]田巧.适用于RTM成型的耐烧蚀苯并噁嗪树脂的研究[D].成都:四川大学硕士论文,2006:36-40页
    [133]Kimura H, Matsumoto A, Sugito H, et al. New thermosetting resin from poly(p-vinylphenol) based benzoxazine and epoxy resin [J]. Journal of Applied Polymer Science,2001,79,555-565P
    [134]向海.RTM成型用高性能苯并噁嗪树脂的分子设计、制备及性能研究[D].成都:四川大学博士论文,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700