基于非线性系统的金沙江攀西河段水系形态及泥石流危害研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以“层次分析法”、“粗糙集理论”、“熵权法”及“分形理论”等非线性数学方法为最基本的指导思想,以3S技术和Matlab编程为实现手段,对金沙江流域的泥石流进行详细的解译、特征参数统计和实地考察。通过总结前人的经验和教训重新提出一套全新的方法对泥石流的危险度、活动强度等危险性指标进行评估,并以此为基础从形态学、运动学和能量学的角度对泥石流的危险性指标与其他特征因子之间的关系进行深入的研究。论文首次提出了一种新的组合赋权重方法。首先使用粗糙集理论对层次分析法进行优化,排除了不必要的干扰,从而避免了计算方法引起的数据随机性。进而使用熵权法计算出影响因素的主观权重。利用一个距离函数的新概念来计算权重的分配系数,从而计算出最终的因子权重值。接着提出了一套新的活动强度量化标准,使泥石流活动强度的表达可以更加的形象、具体。得到了泥石流的危险性指标之后又引入分形理论并结合GIS系统对泥石流的三维水系形态参数进行量化处理,以三维水系分形维的形式表达出来。整个计算过程都是由Matlab程序实现的。通过分析泥石流的危险度、活动强度及泥石流特征参数之间的关系,得到一套新的危险度、活动强度判断依据,使用现场调查的重点泥石流沟进行验证,验证的结果证实了上述理论的真实性和实用性。
Debris flow is a kind of very common geological disaster which often happens in mountain area. Its universality is reflected not only on the frequency of occurrence in the debris flow, but also in the geographical distribution of debris flow. Around the world, as long as there are mountainous areas, there are basically more or less debris flow disaster phenomena. In our country, about 66.7% of our land is mountains, complicated geological conditions; relatively sparse vegetation; thick and broken Quaternary cover in the surface; frequent earthquakes in some regions make China become one of the most effected countries by debris flow in the world. Therefore, the research on debris flow has great academic value and practical significance.
     In this thesis, "Rough Set Theory", "AHP" and "entropy" are taken as the guiding ideology. The risks of 239 debris flows in Chin-sha River are evaluated through optimal combination of weights of factors. Based on the specification, the activity intensity of debris flow in the study area are quantified. According to the above work, based on fractal theory, the three-dimensional water system morphology of debris flow in the study area is analyzed quantitatively. The relationship between factors including fractal dimension of water system and risk index of debris flow is analyzed. From the kinematics and morphological point of view, the results are deeply discussed which obtained the fowling inclusions.
     1. In the study area, there are 35 debris flows belonging to severe risk,187 debris flows belonging to moderate risk,17 debris flows belonging to mild risk. There are 3 debris flows belonging to very strong activity intensity,105 debris flows belonging to strong activity intensity,112 debris flows belonging to relatively strong activity intensity,19 debris flows belonging to weak activity intensity.
     2. A new idea of improving AHP by rough set theory is proposed. The comparison matrix of AHP is established using the data extraction ability of rough sets. This new method eliminates undue subjective interference by forming the matrix according to the important degree of factors.
     3. The mathematical model of debris flow risk is established by information entropy theory. The infection to the debris flow risk model by factors has been expressed in the most extent because of the good ability to deal with the chaotic system.
     4. The concept of distance model is firstly proposed to calculate the distribution index of the optimal combination weighting method which is good at showing the factors'real contribution to the debris flows and excluding unnecessary interference.
     5. Through the calculation of the risk of 239 debris flows in the study area, it can be conclude that the results calculated by the new method is basically same as the results calculated by the traditional method which confirm that the new method is scientific and reasonable.
     6. The water morphology can be expressed by fractal dimension which is a kind of irregular fractal phenomenon in the nature having its own self-similar interval. Any judgment and analysis must be related to self-similar interval without which the research on water system fractal will lose its significance.
     7. The three-dimensional structure of water system is firstly studied based on fractal dimension using Matlab to calculate the water system fractal dimension.
     8. According to above re'search, we can see that the development and changes of water system can influence the occurrence of debris flow here very deeply.
     9. From the research, it can be seen that as the amount of loose material, length ratio of sediment supply segment and fractal dimension increases, the risk and activity intensity of debris flows increases. It is necessary to study the amount of loose material, length ratio of sediment supply segment and fractal dimension together.
     10. The amount of loose material, length ratio of sediment supply segment and fractal dimension interact with each other. It is unreliable to just study some single factor.
引文
[1]唐邦兴.中国泥石流[M].北京:商务印书馆,2000.
    [2]刘希林,莫多闻.泥石流风险评价[M].成都:四川科学技术出版社,2003.
    [3]Laigle D,Cossot P. Numerical modelling of mudflow [J]. Journal of Hydraulic Engineering,1997,123(7):617-623.
    [4]Johnson A M,Rahn P.H. Mobilization of debris flows[J]. Zeitschrift fur Geomorphologie,1990,9(Supp?):168-186.
    [5]邱道宏,陈剑平,阙金声,等.基于粗糙集和人工神经网络的洞室岩体质量评价[J].吉林大学学报(地球科学版),2008,38(1):86-91.
    [6]刘希林,唐川,陈明,等.泥石流危险范围的模型预测法[J].自然灾害学报,1993,2(3):67-73.
    [7]肖云华,王清,陈剑平,等.基于粗糙集和支持向量机的融合算法在岩体质量评价中的应用[J].煤田地质与勘探,2008,36(6):49-53.
    [8]刘希林.泥石流堆积扇危险范围雏议[J].灾害学,1990,5(3):86-89.
    [9]阙金声.三峡工程涪陵区水库塌岸非线性预测研究[D].长春:吉林大学博士学位论文,2007.
    [10]张晨,陈剑平,王清,等.泥石流危险范围预测及在乌东德地区的应用[J].吉林大学学报(地球科学版),2010,40(6):1365-1370.
    [11]邱道宏.括苍山高速公路隧道岩爆非线性预测研究[D].长春:吉林大学博士学位论文,2008.
    [12]刘希林,唐川,陈明.泥石流危险范围的流域背景预测法[J].自然灾害学报,1992,1(3):56-67.
    [13]Blijenberg H M,De Graaf P J,Hendriks M R,and so on. Investigation of infiltration characteristics and debris flow initiation conditions in debris flow source areas using a rainfall simulator[J]. Hydrological Processes,1996,10:1527-1543.
    [14]Kelim X,Whipple. Predicting debris-flow runout and deposition on fans, the importance of the flac hydrograph. Erosion, Debris Flows and Environment in Mountain Regions. Proceedings of the Chengdu Symposium, July 1992,IAHS Publ,No.209,1992:337-345
    [15]Mark R,Ellen S D. Statistical and simulation models for mapping debris-flow hazard [A]. In:A. Carrara and F. Guzzetti (eds.) Geographical Information Systems in Assessing Natural Hazards[C]. Dordrecht:Kluwer Academic Publishers,1995:93-106.
    [16]Benda L. The influence of debris flows on channel sand valley floors in the Oregon Coast Range [J]. Earth Surf Proc Land,1998,15:457-466.
    [17]匡乐红,徐林荣,刘宝琛.组合赋权法确定地质灾害危险性评价指标权重[J].地下空间与工程学报,2006,6(2):1063-1067.
    [18]张晨,陈剑平,肖云华.基于神经网络对有限元强度折减法分析[J].吉林大学学报(地球利学版),2009,39(1):114-118.
    [19]STRAHLERA N. Quantitative Slope Analysis[J]. Bull Geol SoncAmer,1952, 67(1-6):571-596.
    [20]赵源,刘希林.人工神经网络在泥石流风险评价中的应用[J].地质灾害与环境保护,2005,16(2):135-138.
    [21]Varmes D J. Landslide hazard zonation:a review of principles and practice [M]. UNESCO, Paris,1984:63.
    [22]莫永强,丁德馨,肖猛.改进BP神经网络在边坡稳定性评价中的应用[J].矿冶,2006,15(2):10-12.
    [23]Romeo R W, Mario Floris. Francesco Veneri Area-scale landslide hazard and risk assessment[J]. Environmental Geology,2006,51(1):1-13.
    [24]宫会丽,宋学艳,丁香乾.基于粗糙集与人工神经网络的变压器帮障诊断[J].中国海洋大学学报,2005,35(6):1045-1048.
    [25]马洪生,郑希灵.边坡稳定性影响因素定量分析神经网络法[J].路基工程,2005,(5):42-45
    [26]舒安平,费俊祥,刘青泉.非均质泥流的输移特性[J].水利学报,2003,7(7):46-51.
    [27]杨太华,苏维箛,何凡峰.黔南曹渡河流域水系的分形分维研究[J].贵州科学,1992,10(1):61-66.
    [28]金磊.城市灾害学原理[M].北京:气象出版社,1997.
    [29]杜榕桓,康志成,陈循谦,等.云南小江泥石流综合考察与防治规划研究[M].重庆:利学技术出版社重庆分社,1987.
    [30]易顺民.泥石流堆积物的分形结构特征[J].自然灾害学报,1994,3(2):91-96.
    [31]Tamotsu Takahashi. Debris Flow.Published for International Association for Hydrautic Research by A.A.Balkma[M].Rotterdam Brookfield.1991.
    [32]Iverson R M,Reid M E,LaHusen R G. Debris-flow mobilization from landslides[J]. Annual Review of Earth Planetary Sciences,1997,25:85-138.
    [33]Johnson A M, Rahn P.H. Mobilization of debris flows[J]. Zeitschrift fur Geomorphologie,1990,9(Supp??):168-186.
    [34]杜榕桓.泥石流[A].中国科学院《中国自然地理》编辑委员会.中国自然地理(地貌)[C].北京:科学出版社,1980,301-312.
    [35]钱宁,王兆印.泥石流运动机理的初步探讨[J].地理学报,1984,39(1):1-43.
    [36]吴积善,田连权,康志成,等.刘江泥石流及其综合治理[M].北京:科学出版社,1993,1-332.
    [37]周必凡,李德基,罗德富,等.泥石流防治指南[M].北京:科学出版社,1991,80-92.
    [38]李德基.泥石流减灾理论与实践[M].北京:科学出版社,1997,158-186.
    [39]张梁,张业成,罗元华.地质灾害灾情评估理论与实践[M].北京:地质出版社,1998.
    [40]张业成.云南省东川市泥石流灾害风险分析[J].地质灾害与环境保护,1995,6(1):26-34.
    [41]白利平.北京山区泥石流灾害临界雨量研究[J].地质灾害与环境保护,2006,(4):101-104.
    [42]张跃,宿芬,邹寿平.模糊数学方法及其应用[M].北京:煤炭工业出版社,1992.
    [43]北京市地质研究所.北京地区地质灾害及防治报告[R].2006.
    [44]赵源,刘希林.泥石流灾害损失评价[J].中国地质灾害与防治学报,2005,16(3):42-53.
    [45]Johnson A M,Rodine J R. Debris flow. In:Brunsden, D,and Prior, D B, Eds. Slope Instability. John Wiley & Sons Ltd,1984,257-361.
    [46]骆源华.论泥石流灾害风险评估方法[J].中国矿业,2000,9(6):69-72.
    [47]胡封兵,高甲荣,陈子珊.泥石流风险评价[J].灾害学,2006,21(3):36-41.
    [48]汤家法,谢洪.GIS技术支持下的泥石流危险度区划研究[J].四川测绘,1999, 22(3):120-122.
    [49]艾南山.再论流域系统的信息熵[J].水土保持学报,1988,2(4):1-7.
    [50]Rothman D H, Grotzinger J,Flemings P. Scaling in turbidite deposition[J] Journal of Sedimentary Research,1994, A64:59-67.
    [51]Major J.J. Depositional processes in large-scale debris-flow experiments[J]. The Journal of Geology,1997,1(105):345-366.
    [52]吕学军,刘希林,苏鹏程.四川达曲河流域泥石流沟发育阶段的面积-高程分析[J].山地学报,2005,22(3):336-341.
    [53]Rothman D. H., Grotzinger J., Flemings, P. Scaling in turbidite deposition[J].Journal of Sedimentary Research,1994, A64:59-67.
    [54]Stoffel, Markus. Rainfall characteristics for periglacial debris flows in the Swiss Alps:past incidences-potential future evolutionsp[J]. Climatic change,2011, 105:263-280.
    [55]刘学,王兴奎,王光谦.基于Gis的泥石流过程模拟三维可视化[J].水科学进展,1999,10(4):388-392.
    [56]Gregoretti C. The initiation of debris flow at high slope:experimental results[J]. Journal of Hvdraulic Research,2000,38(2):83-88.
    [57]Coussot P. Mudflow Rheology and Dynamics[M]. Rotterdam:A A. Balkema, 1997,1-255.
    [58]刘传正,等.三峡库区地质灾害空间评价预警研究[J].水文地质工程地质,2004,(4):9-19.
    [59]Calvache M L,Vseras C, Fernandez J. Controls on fan development-evidence from fan morphometry and sedimentology, Sierra Nevada, SE Spain[J]. Geomurpholog,1997,21:69-84.
    [60]陈晓清,谢洪.基于GIS的泥石流危险度区划研究[J].土壤侵蚀与水上保持学报,1999,5(6):46-50.
    [61]Iverson R. M,Major J J. Groundwater seepage vectors and the potential for hillslope failure and debris flow mobilization[J]. Water Resources Research,1986, 22(11):1543-1548.
    [62]Blackwelder E. mudflow as a geologic agent in semi-arid mountains[J]. Geological Society of America Bulletin,1928,39:465-487.
    [63]Beaty C B. Debris Flow, alluvial fans, and a revitalized catastrophism[J]. Zeitschrft rur Geomorphologie,1974,21(Supp):39-51.
    [64]Innes J L. Debris flows [J]. Progress in Physical Geography,1983,7(1):469-501.
    [65]Costa J E. Physical geomorphology of debris flows[A]. In:J. E. Costa and P. J. Fleisher (eds.). Developments and Applications of Geomorphology[C], Berlin: Springer-Verlag,1984,268-317.
    [66]Iverson R M. The physics of debris flows[J]. Reviews of Geophysics,1997,35(3): 245-296.
    [67]王念秦,姚勇.基于模糊数学和权的最小平方法的泥石流易发性评价方法[J].灾害学,2008,23(2):5-8.
    [68]Hunt B. Newtonian fluid mechanics treatment of debris flows and avalanches[J]. Journal of Hydraulic Engineering,1994,120(12):1350-1363.
    [69]褚洪斌,母海东,王金哲.层次分析法在太行山区地质灾害危险性分区中的应用[J].中国地质灾害与防治学报,2003,14(3):125-129.
    [70]崔鹏,陈晓清,柳素清,等.风景区泥石流防治特点与技术[J].地学前缘,2007,14(6):172-179.
    [71]曾凡伟,徐刚,李青,等.坡度阀值与坡面泥石流-以重庆市北碚区为例[J].山地 学报,2004,22(5):568-571.
    [72]Richard M Leverson. The physics of Debris Flow[J]. The American Geophysical Union,1997,12(8):85-100.
    [73]谭哲强,郑敬民,等.泥石流形成原因及防止措施[J].黑龙江水利科技,2004,(1):135.
    [74]闫满存,王光谦,刘家宏.GIS支持的澜沧江下游区泥石流爆发危险性评价[J].地理科学,2001,21(4):334-338.
    [75]吴望一.流体力学[M].北京:北京大学出版社,1982:246-247.
    [76]彭云山.浅谈蒋家沟泥石流治理[J].中国林业,2004,(3):15-19.
    [77]李志斌,郑成德.滑坡、泥石流危险度评判的灰色模式识别理论与模型[J].系统工程理论与实践,2000,19(2):129-132.
    [78]陈晓清.具有风景区泥石流治理特色的土木工程措施[J].中国地质灾害与防治学报,2006,(2):82-86.
    [79]王文睿、章书成.西藏古乡沟冰川泥石流特征[M].北京:科学出版社,1985,19-35.
    [80]Scheidegger A E. The Prediction of Reach and Velocity of Catastrophic Landslides[J]. RockMechanics,1973,5(4):132-126.
    [81]Weinmeister H W. The Energy-Concept and Disaster Mitigation[J]. Austrian Journal of Forest Science,2006,123(3):141-163.
    [82]余宏明,袁宏成,唐辉明.巴东县新城区冲沟泥石流危险度评价[J].水文地质工程地质,2004, (Supp):47-49.
    [83]王兆印.泥石流龙头运动的实验研究及能量理论[J].水利学报,2001,(3):18-19.
    [84]铁永波,唐川,周春花.基于信息熵理论的泥石流沟谷危险度评价[J].灾害学,2005,20(4):43-45.
    [85]耿智慧.密云县泥石流灾害及其防治措施[J].北京水利,2001,(6):34-38.
    [86]何杰,陈宁生.粘性泥石流弯道超高在流速计算中的应用[J].成都理工学院学报,2001,28(4):425-428.
    [87]徐刚.坡而泥石流流域地貌要素的概率分布[J].自然灾害学报,2005,14(2):70-74.
    [88]Heim A. Landslide hazard mapping in the Nallu khola watershed, Central Nepal[J]. Nepal Geological Society,2000,21(4):21-28.
    [89]钟敦伦,韦方强,谢洪.长江上游泥石流危险度区划的原则与指标[J].山地研究,1994,12(2):78-83.
    [90]周必凡,李德基,罗德富,等.泥石流流速和流量计算,泥石流防治指南[M].北京:科学出版社,1991,80-82.
    [91]杨涛,邓荣贵,刘小丽.四川地区地震崩塌滑坡的基本特征及危险性分区[J].山地学报,2002,20(4):456-461.
    [92]Hollingsworlh R,Kovacs G S. Soil slumps and debris flows:preclicaion and prolecaion[J]. Bulletin of the Association of Engineering Geologists,1981,38(1): 17-28.
    [93]Allen P A. Earth Surface Processes[M]. Victoria:Blackwell Science Limited,1997, 1-404.
    [94]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [95]蒋锁红.混凝-土拱坝基础处理工程技术[M].北京:科学出版社,2005.
    [96]伍永秋.段家河流域水系的分维研究[J].中国地质灾害与防治学报,1993,4(2):31-35.
    [97]Yuen Shiu Yin, Chun Ki Fong. Fractal dimension estimation and noise filtering using Hough transforms[J]. Signal Processing,2004,84:907-917.
    [98]胡卸卸文,钟沛林.云南蒋家沟流域泥石流沟谷演变的非线性特征[J].长江流域资源与环境,2002,11(1):94-96.
    [99]HE Si-ming,WU Yong,LI Xin-po. Research on eroded start mechanism of channel debris flow[J]. Rock and Soil Mechanics,2007,28(Supp):155-159.
    [100]Hirata T,Satoh T,Ito k. Fractal structure of spatial distribution of micro fracturing in rock[J]. Geophys.J.R. Astr.Soc,1987,369-374.
    [101]李青,曾凡伟,徐刚,等.泥石流流域地貌发育阶段的定量分析-以北碚区为例[J].宜宾学院学报,2004,4(4):82-85.
    [102]Maragos Petros. Fractal aspects of speech signals:dimension and interpolation[R]. ADA249102(USA),1992.
    [103]陈剑平,王清,肖树芳,等.岩体裂隙网络分形维计算机模拟[J].工程地质学报,1995,3(3):79-85.
    [104]卢波,陈剑平,葛修润,等.节理岩体结构的分形几何研究[J].岩石力学与工程学报,2005,24(3):461-467.
    [105]郑明新,王兰生.分形理论在区域地质灾害预测中的应用[J].地质灾害与环境保护,1998,9(3):4-9.
    [106]李泳,姚福寿,胡凯衡,等.从蒋家沟泥石流阵流看泥石流堆积[J].山地学报,2003,21(6):712-715.
    [107]张杰林,刘德长,曹代勇.基于遥感数据融合的水系特征定量化分析方法及其应用[J].遥感技术与应用,2004,19(1):1-4.
    [108]程根伟,舒栋才.水文预报的理论与数学模型[M].北京-中国水利水电出版社,2009.
    [109]李春景.用Gis分析流域水系特征-以珲春河为例[J].延边大学学报(自然科学版),2005,31(4):308-311.
    [110]倪化勇.泥石流流域地貌形态的统计分形[J].水土保持研究,2006,13(6):92-93.
    [111]菊春燕,刘志辉,周绪,等.干旱、半干旱地区水系空间分布的分形特征及其流域环境的初步探讨[J].水士保持研究,2006,13(3):174-176.
    [112]潘华利,欧国强,柳金峰.泥石流沟道侵蚀初探[J].灾害学,2009,24(1):39-43.
    [113]足立胜治,德山久仁夫,中筋章人,等.土石流发生危险度の判定につせて[J].新砂防,1977,30(3).
    [114]Takahashi T. Debris Flow[M]. Rotterdam:A A.Balkema,1991,1-165.
    [115]谭万沛.中国暴雨泥石流预报研究基本理论与现状[J].上壤侵蚀与水上保持学报,1996,2(1):88-95.
    [116]Eldeen M T. Predisaster Physical Planning:Inteqration of Disaster Risk Analysis into Physical Planning-A Case Study in Tunisia[J], DISASTERS,1980, 4(2):211-222.
    [117]张晨,王清,张文,等.基于神经网络对泥石流危险范围的研究[J].哈尔滨工业大学学报,2010 42(10):1642-1645.
    [118]Hollingsworth R, Kovacs G S. Soil slumps and debris flows:prediction and protection[J]. Bulletin of the Association of Engineering Geologists,1981,38(1): 17-28.
    [119]工礼先.关于荒溪分类[J].北京林学院学报,1992.
    [120]谭炳炎.泥石流沟严重程度的数量化综合评判[J].水土保持通报,1986,6(1):51-57.
    [121]唐邦兴,吴积善.山地自然灾害(以泥石流为主)及其防治[J].地理学报,1990,45(2):202-209.
    [122]汪明武,金菊良,李丽.投影寻踪新方法在泥石流危险度评价中的应用[J].水上保持学报,2002,16(6):79-81.
    [123]张春山.北京地区泥石流灾害危险性评价[J].地质灾害与环境保护,1995,5(3):33-40.
    [124]易顺民.泥石流堆积物的分形结构特征[J].自然灾害学报,1994,3(2):91-96.
    [125]刘洪江,唐川.东川城区泥石流数字减灾系统的开发[J].云南地理环境研究,2004,16(1):33-36.
    [126]原立峰,周启刚,马则忠.支持向量机在泥石流危险度评价中的应用研究[J].中国地质灾害与防治学报,2007,18(4):29-33.
    [127]刘勇健、刘义峰.基于粗糙集的范例推理在泥石流危险性评价中的应用[J].山地学报,2008,26(2):223-229.
    [128]王晓朋,潘懋,任群智.基于流域系统地貌信息熵的泥石流危险性定量评价[J].北京大学学报(自然科学版),2007,5(2):211-215.
    [129]谷复光,王清,张晨.基于投影寻踪与可拓学方法的泥石流危险度评价[J].吉林大学学报(地球科学版),2010,40(2):373-377.
    [130]杨东,焦金鱼,田娜.基于突变理论的岷县山区泥石流危险性区划研究[J].水土保持研究,2008,15(4):5-9.
    [131]李新坡,莫多闻.应用GIS和神经网络方法进行泥石流危险度评价的研究-以云南省为例[J].水土保持研究,2005,12(4):7-9.
    [132]杨宗估,乔建平,陈晓林,等.泥石流危险度野外快速评价方法探讨[J].中国地质灾害与防治学报,2009,20(1):16-20.
    [133]陈刚,何政伟,杨洋,等.基于径向基函数神经网络的泥石流危险性评价[J].计算机应用研究,2009,26(1):241-243.
    [134]苏鹏程,倪长健.基于免疫进化算法的逻辑斯谛曲线水环境质量综合评价模型[J].山地学报,2004,22(4):22-25.
    [135]刘希林.区域泥石流危险度评价研究新进展[J].中国地质灾害与防治学报,2002,13(4):1-9.
    [136]田伟.鸟东德水电站近坝库岸泥石流的影响研究[D]长春,吉林大学,2007.
    [137]王学武,石豫川,黄润秋,等.多级模糊综合评判方法在泥石流评价中的应用[J].灾害学,2004,19(2):1-6.
    [138]张铃,张钹.模糊商空间理论(模糊粒度计算方法)[J].软件学报,2003,14(4):770-776.
    [139]王志海,胡可云等.概念格上规则提取的一般算法与渐进式算法[J].计算机学报,1999,22(1):66-70.
    [140]刘少辉,盛秋戬,吴斌,等. Rough集高效算法的研究[J].计算机学报,2003,26(5):524-529.
    [141]侯利娟,王国胤,吴渝,等.粗糙集理论中的离散化问题[J].计算机科学,2000,27(12):89-94.
    [142]张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学 E辑:信息科学,2005,35(6):628-639.
    [143]胡峰,黄海,王国胤,等.不完备信息系统的粒计算方法[J].小型微型计算机系统,2005,26(8):1335-1339.
    [144]Wolski M. Galois connection sand data analysis[J]. Fundamental informaticae, 2006.60:401-415.
    [145]苗夺谦,王国胤,刘清,等.粒计算:过去、现在与展望[M].北京:科学出版社,2007.
    [146]赵文清,朱永利,高伟.一个基于决策粗糙集理论的信息过滤模型[J].计算机工程与应用,2007,43(7):185-187.
    [147]胡方,黄建国,褚福照.基于粗糙集的武器系统灰色关联评估模型[J].兵工学报,2008,29(2):253-256.
    [148]李发文.洪灾避迁决策理论及其应用研究[D].河海大学,2005.
    [149]杜栋,庞庆华.现代综合评价方法与案例精选[M].北京:清华大学出版社,2005.
    [150]胡海军,程光旭,禹盛林,等.一种基于层次分析法的危险化学品源安全评价综合模型[J].安全与环境学报,2007,7(3):141-144.
    [151]马茂冬,韩尧.国防工业企业生产安全事故应急管理能力评估方法标准化的探讨[J].国防技术基础,2008,(6):18-20.
    [152]王志良.水资源管理多属性决策与风险分析理论方法及应用研究[D].四川大学,2003.
    [153]孙华山.安全生产风险管理[M].北京:化学工业出版社,2006,181-184.
    [154]丁继新,杨志法,尚彦军,牛玉强,刘永.区域泥石流灾害的定量风险分析[J].2006,27(7):1072-1076.
    [155]李志斌,郑成德.滑坡、泥石流危险度评判的灰色模式识别理论与模型[J].系统工程理论与实践,2000,(5):128-132.
    [156]郭金玉,张忠彬,孙庆云.层次分析法在安全科学研究中的应用[J].中国安全生产利学技术,2008,4(2):69-73.
    [157]孙光辉.信息熵与不确定性[J].青岛大学学报,2000,3(3):50-51.
    [158]王德禄,李子炜.基于信息熵理论的网络组织结构分析[J].现代管理科学,2007,(1):65-67.
    [159]秦柯.竞争情报原理[M].北京:气象出版社,2001.
    [160]曾毅,李茂席,文志军,等.西藏山南地区上地利用结构信息熵值特征及演化规律研究[J].安徽农业科学,2009,37(11):5063-5065.
    [161]胡昌平.信息管理科学导论[M].北京:高等教育出版社,2001.
    [162]何西培,何坤振.信息熵辨析与熵的泛化[J].情报杂志,2006,2(12):109-112.
    [163]陶金,付梅臣,田迪等.武安市土地利用结构信息熵时空变化分析[J].资源开发与市场,2009,25(4):298-300.
    [164]乔家君.改进的熵值法在河南省可持续发展能力评估中的应用[J].资源科学,2004,26(1):113-119.
    [165]张晨,王清,陈剑平,等.基于组合赋权法对金沙江流域泥石流的危险度评价[J].岩土力学,2011,32(3):831-836.
    [166]刘希林,唐川.泥石流危险性评价[M].科学出版社,1995.
    [167]杨新社.地球物理学中的分形与分维研究进展[J].地球科学进展,1991,6(5):31-37.
    [168]刘华杰.分形的艺术[M].湖南科技出版社,1998.
    [169]王东升,曹磊.混沌、分形及其应用[M].中国科学技术大学出版社,1995.
    [170]龙期威.金属中的分形与复杂性[M].上海科学技术出版社,1999.
    [171]王卫军,侯朝炯,柏建彪,等.综放沿空巷道底板受力变形分析及底鼓力学原理[J].岩上力学,2001,22(3):319-322.
    [172]赵凯华,朱照宣,黄畯.非线性物理导论[M].北京大学非线性科学中心,1992.
    [173]张志三.漫谈分形[M].湖南教育出版社,1993.
    [174]靳钟铭,魏锦平,靳文学.放顶煤采场前支承压力分布特征[J].太原理工大学学报,2001,32(3):216-218.
    [175]B.B.Mandelbrot. The Fractal Geometry of Nature[M]. San Francisco, Freeman, 1977.
    [176]李后强等.分型理论及其在分子科学中的应用[M].科学出版社,1993.
    [177]L.Bachelier. Random Character of Stock Price[M]. MIT press,1964.
    [178]P.Meakin. Fractal Scaling and Growth far from Equilibrium, Cambridge Univ. Press,1998.
    [179]吴自勤,王兵.薄膜生长[M].科学出版社,2001.
    [180]Yuen Shiu Yin,Chun Ki Fong. Fractal dimension estimation and noise filtering using Hough transforms[J]. Signal Processing,2004,84:907-917.
    [181]陈顺,陈凌.分形几何学[M].地震出版社,1998.
    [182]张晨,陈剑平,王清,等.基于水系三维模型及分形理论对泥石流活动强度的研究[J].岩石力学与工程学报,2010,29(6):1214-1221.
    [183]杨太华,苏维箛,何凡峰.黔南曹渡河流域水系的分形分维研究[J].贵州科学,1992,10(1):61-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700