稳态轴对称爱因斯坦—麦克斯韦伸缩子黑洞时空中标量场的衰减
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弦理论是目前唯一能够量子化引力并将引力与电磁、弱和强相互作用统一起来的自治理论。这一理论具有解释宇宙起源与运行以及现代物理中很多难题的潜力。由弦理论得到的伸缩子黑洞,其时空有着与通常广义相对论中的时空不一样的性质,其原因在于伸缩子参数的存在。因此,多年来人们对伸缩子时空的各种研究极为关注。但是,在含伸缩子时空中扰动场的演化研究方面,由于问题的复杂性,人们目前只讨论了静态球对称情况。由于稳态时空具有更普遍的性质,所以研究低能弦理论稳态轴对称解的伸缩子时空中标量场的衰减行为是非常有意义的。本文中我们将研究在该时空背景下标量场的拖尾以及似正模等问题。
     利用引入了频谱分解技术的格林函数,我们对稳态轴对称爱因斯坦—麦克斯韦伸缩子黑洞时空中无质量和有质量标量场的晚期拖尾进行了解析的研究。结果表明:无质量扰动场的晚期渐近行为将由负幂律拖尾t~(-(2l+3)主导,有质量标量扰动场的中晚期衰减行为由振荡负幂律拖尾t~(-(l+3/2))sin(μt)主导,而极晚期则由一种衰减更缓慢的振荡负幂律拖尾t~(-(5/6))sin(μt)主导。我们认为,极晚期的振荡负幂律拖尾t~(-(5/6))sin(μt)是任意四维渐近平直旋转时空中有质量标量扰动场晚期衰减的普遍形式。
     另一方面,我们利用Leaver最先提出的连续分数法对这一伸缩子时空中无质量标量似正模进行了数值的计算。我们获得了缓慢衰减的似正频率即基频,并且对它们的行为进行研究。结果表明:(1)这些标量似正模受制于伸缩子参数D、旋转参数a、多极矩l和磁量子数m;(2)在a、l和m相同的情况下,似正模基频的实部ωR随着D的减小始终是增大的,但是虚部ωI总会有一个先减小后增大的过程;(3)在D和l相同的情况下,当m≥0时,似正模基频的实部ωR和虚部ωI一般都会随着a的增加而增大,而当m<0时,似正模基频的实部ωR会随着a的增加而减小,虚部ωI则一般出现一个先减小后增大的过程;(4)在D和a相同的情况下,似正模基频的实部ωR只会随着l的增加而增大,除个别情况外,虚部ωI一般也会增大;(5)在D和l相同的情况下,当a=0即对于静态黑洞,m对似正模不存在任何影响,而当a≠0即对于
Superstring theory springing up in recent years is still the only known self-consistent theory which can quantize the gravity and unify the gravity, the electromagnetic interaction, the weak interaction and the strong interaction. This theory can explain the cosmic genesis and evolution, and figure out the problems of modern physics. In terms of the dilaton spacetimes in string theory, it has qualitatively different properties from those appearing in general relativity because of the apear-ance of dilaton. So there have been many investigations concerning the spacetimes of dilaton black hole. But people only discuss the evolution of perturbations in the static, spherically symmetric black hole geometry up to the present because of the complexity. Thus, it is worthwhile to investigate the decay of scalar fields in the background of dilaton black hole being the stationary axisymmetric solution of the so-called low-energy string theory. We will study the scalar late-time tails and quasinormal modes (QNMs) in this considered black hole.We investigate analytically the late-time tails of massless and massive scalar fields in a stationary axisymmetric Einstein-Maxwell dilaton-axion (EMDA) black hole geometry using the black-hole Green's function with the spectral decomposition method. It is shown that the asymptotic behavior of massless perturbations is dominated by the inverse power-law decaying tail t~(-(2l+3)), and the intermediate asymptotic behavior of massive perturbations is dominated by the oscillatory inverse power-law decaying tail t~(-(l+3/2)) sin(μt), but at asymptotically late times by the asymptotic tail t~(-5/6) sin(μt) which may be a quite general feature for the evolution of massive scalar fields in any four-dimensional asymptotically flat rotating black hole geometry.We also calculated numerically the massless scalar QNMs of this EMDA black hole using the continued fraction method first proposed by Leaver. We obtain the slowly damped QNMs (fundamental quasinormal frequencies) and study the peculiar behaviors of them. The main conclusions and their physical implications are the following: (1) The massless scalar fundamental quasinormal frequencies of the EMDA black hole are affected by the dilaton parameter D, the rotational parameter a, the multiple moment / and the azimuthal number m. (2) If a, l and m are fixed,
引文
[1] 王永久,广义相对论和宇宙学[M].长沙:湖南科学技术出版社,2000:436-597.
    [2] T. Regge and J. A. Wheeler, Stability of a Schwarzschild Singularity[J]. Phys. Rev., 1957, 108(4): 1063-1069.
    [3] R. Ruffoni and J. A. Wheeler, Introducing the black hole [J]. Phys. Today., 1971, 24(1): 30-41.
    [4] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation[M]. San Francisco: Freeman, 1973.
    [5] 王永久,黑洞物理学[M].长沙:湖南师范大学出版社,2000:106-468.
    [6] F. J. Zerilli, Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordstrom geometry[J]. Phys. Rev. D, 1974, 9(4): 860-868.
    [7] S. Teukolsky, ROTATING BLACK HOLES-SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS[J]. Phys. Rev. Lett., 1972, 29(16): 1114-1118.
    [8] S. Hod, Bohr's Correspondence Principle and the Area Spectrum of Quantum Black Holes [J]. Phys. Rev. Lett., 1998, 81(20): 4293-4296.
    [9] Juan M. Maldacena, The Large N Limit of Superconformal Field Theories and Supergravity [J]. Adv. Theor. Math. Phys., 1998, 2: 231-252; Int. J. Theor. Phys., 1999, 38: 1113-1133; arXiv, 1997, hep-th/9711200.
    [10] M. Giammatteo and Jiliang Jing, Dirac quasinormal frequencies in Schwarzschild-AdS space-time[J]. Phys. Rev. D, 2005, 71(2): 024007.
    [11] Jiliang Jing, Quasinormal modes of Dirac field perturbation in Schwarzschild-anti-de Sitter black hole[J], arXiv, 2005, gr-qc/0502010, accepted for publication in Phys. Rev. D.
    [12] Jiliang Jing and Qiyuan Pan, Dirac quasinormal frequencies of Schwarzschild/Reissner-Nordstrom black hole in Anti-de Sitter spacetime[J], arXiv, 2005, gr-qc/0502011, accepted for publication in Phys. Rev. D.
    [13] Pan Qi-Yuan and Jing Ji-Liang, Asymptotic Tails of Massive Scalar Fields in a Stationary Axisymmetric EMDA black hole geometry[J]. Chin. Phys. Lett., 2004, 21(10): 1873-1876; arXiv, 2004, gr-qc/0405129.
    [14] Pan Qi-Yuan and Jing Ji-Liang, Late-time tails in a stationary axisymmetric EMDA black hole geometry[J]. Chin. Phys., 2005, 14(2): 268-273.
    [15] Pan Qi-Yuan and Jing Ji-Liang, Quasinormal modes of a stationary axisym metric EMDA black hole[J]. 2005,投稿于SCI源刊,在审。
    [16] C. Vishveshwara, Scattering of gravitational radiation by a Schwarzschild black-hole[J]. Nature (London), 1970, 227(5261): 936-938.
    [17] W. Press, Long Wave Trains of Gravitational Waves from a Vibrating Black Hole[J]. Astrophys. J., 1971, 170(3): L105-L108.
    [18] V. Cardoso, Quasinormal Modes and Gravitational Radiation in Black Hole Spacetimes[J]. PhD thesis; arXiv, 2004, gr-qc/0404093.
    [19] V. Ferrari and B. Mashhoon, New approach to the quasinormal modes of a black hole[J]. Phys. Rev. D, 1984, 30(2): 295-304.
    [20] B. Schutz and C. Will, Black hole normal modes - A semianalytic approach[J]. Astrophys. J., 1985, 291(2): L33-L36.
    [21] H. Nollert and B. Schmidt, Quasinormal modes of Schwarzschild black holes: Defined and calculated via Laplace transformation[J]. Phys. Rev. D, 1992, 45(8): 2617-2627.
    [22] N. Andersson and S. Linnaeus, Quasinormal modes of a Schwarzschild black hole: Improved phase-integral treatment[J]. Phys. Rev. D, 1992, 46(10): 4179- 4187.
    [23] E. Leaver, An analytic representation for quasi-normal modes of Kerr blackholes[J]. Proc. R. Soc. London A, 1985, 402: 285-298.
    [24] R. H. Price, Nonspherical Perturbations of Relativistic Gravitational Col- lapse. I. Scalar and Gravitational Perturbations[J]. Phys. Rev. D, 1972, 5(10): 2419-2438.
    [25] R. H. Price, Nonspherical Perturbations of Relativistic Gravitational Col lapse. II. Integer-Spin, Zero-Rest-Mass Fields[J]. Phys. Rev. D, 1972, 5(10): 2439-2454.
    [26] E. W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry [J]. Phys. Rev. D, 1986, 34(2): 384-408.
    [27] J. Bicak, Gravitational collapse with charge and small asymmetries. I. Scalar perturbations [J]. Gen. Relativ. Gravit., 1972, 3(4): 331-349.
    [28] C. Gundlach, R. H. Price and J. Pullin, Late-time behavior of stellar collapse and explosions. I. Linearized perturbations [J]. Phys. Rev. D, 1994, 49(2): 883-889.
    [29] C. Gundlach, R. H. Price and J. Pullin, Late-time behavior of stellar collapse and explosions. II. Nonlinear evolution [J]. Phys. Rev. D, 1994, 49(2): 890-899.
    [30] E. S. C. Ching, P. T. Leung, W. M. Suen and K. Young, WAVE PROPAGATION IN GRAVITATIONAL SYSTEMS: LATE TIME BEHAVIOR[J]. Phys. Rev. D, 1995, 52(4): 2118-2132.
    [31] N. Andersson, Evolving test fields in a black-hole geometry[J]. Phys. Rev. D, 1997, 55(2): 468-479.
    [32] L. M. Burko and A. Ori, Late-time evolution of nonlinear gravitational col- lapse[J]. Phys. Rev. D, 1997, 56(12): 7820-7832.
    [33] S. Hod and T. Piran, Late-time evolution of charged gravitational collapse and decay of charged scalar hair. I[J]. Phys. Rev. D, 1998, 58(2): 024017.
    [34] S. Hod and T. Piran, Late-time evolution of charged gravitational collapse and decay of charged scalar hair. II[J]. Phys. Rev. D, 1998, 58(2): 024018.
    [35] S. Hod and T. Piran, Late-time evolution of charged gravitational collapse and decay of charged scalar hair. III. Nonlinear analysis[J]. Phys. Rev. D, 1998, 58(2): 024019.
    [36] S. Hod and T. Piran, Late-time tails in gravitational collapse of a self- interacting (massive) scalar-field and decay of a self-interacting scalar hair[J]. Phys. Rev. D, 1998, 58(4): 044018.
    [37] S. Hod, Late-time evolution of realistic rotating collapse and the no-hair theorem[J]. Phys. Rev. D, 1998, 58(10): 104022.
    [38] S. Hod, Radiative Tail of Realistic Rotating Gravitational Collapse[J]. Phys. Rev. Lett., 2000, 84(1): 10-13.
    [39] L. Barack and A. Ori, Late-Time Decay of Scalar Perturbations Outside Ro- tating Black Holes[J]. Phys. Rev. Lett., 1999, 82(22): 4388-4391.
    [40] L. Barack, Late time dynamics of scalar perturbations outside black holes. I. A shell toy model[J]. Phys. Rev. D, 1999, 59(4): 044016.
    [41] L. Barack, Late time dynamics of scalar perturbations outside black holes. II. Schwarzschild geometry[J]. Phys. Rev. D, 1999, 59(4): 044017.
    [42] W. Krivan, Late-time dynamics of scalar fields on rotating black hole back grounds[J]. Phys. Rev. D, 1999, 60(10): 101501.
    [43] H. Koyama and A. Tomimatsu, Asymptotic power-law tails of massive scalar fields in a Reissner-Nordstrom background[J]. Phys. Rev. D, 2001, 63(6): 064032.
    [44] H. Koyama and A. Tomimatsu, Asymptotic tails of massive scalar fields in a Schwarzschild background[J]. Phys. Rev. D, 2001, 64(4): 044014.
    [45] R. Moderski and M. Rogatko, Late-time evolution of a charged massless scalar field in the spacetime of a dilaton black hole[J]. Phys. Rev. D, 2001, 63(8): 084014.
    [46] R. Moderski and M. Rogatko, Late-time evolution of a self-interacting scalar field in the spacetime of a dilaton black hole[J]. Phys. Rev. D, 2001, 64(4): 044024.
    [47] Hongwei Yu, Decay of massive scalar hair in the background of a black hole with a global monopole[J]. Phys. Rev. D, 2002, 65(8): 087502.
    [48] H. Koyama and A. Tomimatsu, Slowly decaying tails of massive scalar fields in spherically symmetric spacetimes[J]. Phys. Rev. D, 2002, 65(8): 084031.
    [49] E. Poisson, Radiative falloff of a scalar field in a weakly curved spacetime without symmetries[J]. Phys. Rev. D, 2002, 66(4): 044008.
    [50] G. Fodor and I. Racz, Massive fields tend to form highly oscillating self- similarly expanding shells[J]. Phys. Rev. D, 2003, 68(4): 044022.
    [51] Vitor Cardoso, Shijun Yoshida, Oscar J. C. Dias and Jose P. S. Lemos, Late-time tails of wave propagation in higher dimensional spacetimes[J]. Phys. Rev. D, 2003, 68(6): 061503(R).
    [52] L. M. Burko and G. Khanna, Radiative falloff in the background of rotating black holes[J]. Phys. Rev. D, 2003, 67(8): 081502(R).
    [53] Jiliang Jing, Late-time behavior of massive Dirac fields in a Schwarzschild background[J]. Phys. Rev. D, 2004, 70(6): 065004.
    [54] Jiliang Jing, Late-time evolution of charged massive Dirac fields in the Reissner-Nordstrom black-hole background[J]. arXiv, 2004, gr-qc/0408090, accepted for publication in Phys. Rev. D.
    [55] M. A. Scheel, A. L. Erickcek, L. M. Burko, L. E. Kidder, H. P. Pfeiffer and S. A. Teukolsky, 3D simulations of linearized scalar fields in Kerr spacetime[J]. Phys. Rev. D, 2004, 69(10): 104006.
    [56] L. M. Burko and G. Khanna, Universality of massive scalar field late-time tails in black-hole spacetimes[J]. Phys. Rev. D, 2004, 70(4): 044018.
    [57] E. W. Allen, E. Buckmiller, L. M. Burko and R. H. Price, Radiation tails and boundary conditions for black hole evolutions[J]. Phys. Rev. D, 2004, 70(4): 044038.
    [58] J. Karkowski, Z. Swierczynski and E. Malec, Comments on tails in Schwarzschild spacetimes[J]. Class. Quantum Grav., 2004, 21(6): 1303-1309.
    [59] R. H. Price and L. M. Burko, Late time tails from momentarily stationary, compact initial data in Schwarzschild spacetimes[J]. Phys. Rev. D, 2004, 70(8): 084039.
    [60] Michael Purrer, Sascha Husa and Peter C. Aichelburg, News from Critical Collapse: Bondi Mass, Tails and Quasinormal Modes[J]. Phys. Rev. D, 2005, 71(10): 104005; arXiv, 2004, gr-qc/0411078.
    [61] F. J. Zerilli, Effective Potential for Even-Parity Regge-Wheeler Gravitational Perturbation Equations[J]. Phys. Rev. Lett., 1970, 24(13): 737-738.
    [62] K. S. Thorne, in Magic without Magic: John Archibald Wheeler[M]. Edited by J. Klauder, San Francisco: Freeman, 1972, p. 231.
    [63] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions [M]. New York: Dover, 1970.
    [64] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products [M]. London: Academic, 1980.
    [65] Jiliang Jing and Mulin Yan, Statistical Entropy of a Stationary Dilaton Black Holes from Cardy Formula[J]. Phys. Rev. D, 2001, 63(2): 024003.
    [66] Jiliang Jing, Thermodynamics of stationary axisymmetric EMDA black hole[J]. Nucl. Phys. B, 1996, 476: 548-555.
    [67] A. Garcia, D. Galtsov and O. Kechkin, Class of stationary axisymmetric solutions of the Einstein-Maxwell-Dilaton-Axion field equations[J]. Phys. Rev. Lett., 1995, 74(8): 1276-1279.
    [68] Jiliang Jing and ShiLiang Wang, Can Martinez's conjecture be extended to string theory?[J]. Phys. Rev. D, 2002, 65(6): 064001.
    [69] P. M. Morse and H. Feshbach, Methods of Theoretical Physics[M]. New York: McGraw-Hill, 1953.
    [70] W. H. Press, S. A. Teukolsky, B. P. Flannery and W. T. Vetterling, Numerical Recipes, The Art of Scientific Computing[M]. New York: Cambridge University Press, 1986.
    [71] Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka, Gravitational Radiation Reaction[J]. Prog. Theor. Phys. Suppl., 1997, 128: 373-406; arXiv, 1997,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700