嗜热毛壳菌超氧化物歧化酶基因的克隆、表达及转基因烟草耐盐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超氧化物歧化酶(Superoxide Dismutase,SOD)能够催化超氧阴离子(O2.~-)发生歧化反应,在生物体防御氧化损伤的过程中,发挥着重要作用。根据酶分子中所含金属辅基的不同,超氧化物歧化酶主要可分为Cu,Zn-SOD,Mn-SOD,Fe-SOD等类型。
     超氧化物歧化酶已在食品、医药、化妆品和农业等领域中得到了广泛的应用,具有重要商业价值。但市场应用的超氧化物歧化酶主要来源于常温生物,因此酶的半衰期短,热稳定性差,储存期短,导致产品成本高,而制约超氧化物歧化酶在农业、工业中的应用。由此可见,热稳定性超氧化物歧化酶的研究和开发具有重要意义。
     嗜热毛壳菌(Chaetomium thermophilum CT2)是广泛分布的,生长上限温度较高的嗜热真菌,从这种真菌中已分离了多种嗜热酶,具有极大的研究和应用价值。本研究通过RT-PCR和Tail-PCR从嗜热毛壳菌中分离到了一个新的Mn-SOD酶基因,序列分析表明该基因全长cDNA序列为684bp,编码227个氨基酸,具有信号肽。将该基因在毕赤酵母中表达,经甲醇诱导表达6d后酶活最高可达1020U/ml,蛋白量达0.93mg/ml。经硫酸铵沉淀、DEAE-Sepharose Fast Flow阴离子交换等步骤纯化了该重组蛋白,SDS-PAGE显示该重组蛋白大小约为22.7kDa,与推测的蛋白分子量相似。重组酶的最适反应温度和最适pH值分别为60℃和6.0,该酶具有较高的热稳定性,70℃处理60min后,残余酶活为71%。
     本研究还从嗜热毛壳菌中克隆了一种Cu,Zn-SOD基因并将其在毕赤酵母中进行了高效表达。经甲醇诱导表达6d后酶活最高可达1660U/ml,蛋白量达1.54mg/ml。经硫酸铵沉淀、DEAE-Sepharose Fast Flow阴离子交换等步骤纯化了该重组蛋白,SDS-PAGE显示该重组蛋白大小约为17 kDa,该重组酶的最适反应温度和最适pH值分别为60℃和6.5。70℃处理60min后,残余酶活为65%,在80和90℃下的半衰期分别为22和7min。
     比较上述构建的重组酵母GS115(pPIC9K/mnsod)和GS115(pPIC9K/czsod)与非重组酵母(pPIC9K)在不同浓度NaCl、百草枯、甲萘醌和H_2O_2胁迫下的生长状况,验证嗜热毛壳菌mnsod及czsod基因对不同非生物胁迫的抵抗能力。结果表明嗜热毛壳菌mnsod及czsod基因对包括盐、百草枯、甲萘醌、过氧化物等多种胁迫具有抵抗能力。
     盐胁迫是自然界中主要的非生物胁迫之一,是影响植物生长发育的主要因素,盐胁迫的适应机制在许多模式生物中广泛研究。利用基因工程技术提高植物耐盐性是解决这一问题的最有效途径之一。研究抗逆相关基因的抗逆功能是基因工程抗性育种的前提。当植物遭受包括高盐、干旱、低温和高温等环境胁迫时可产生大量活性氧。活性氧进而破坏细胞内的大分子,从而使DNA裂解,造成膜的损伤或影响蛋白质的合成及稳定性等。因此,对植物来说有效的活性氧清除系统非常重要。
     植物的超氧化物歧化酶活性与其在盐胁迫下的防御能力密切相关。关于逆境胁迫下SOD活性增高的生理关系已有报道,表明植物体内的SOD活性增高可以增强其对逆境胁迫的抵抗能力。到目前为止已报道多种转SOD基因植物对盐胁迫的抗性。
     为了验证盐胁迫下嗜热毛壳菌mnsod及czsod的基因功能,将mnsod及czsod基因分别构建到35s启动子驱动的植物表达载体pROKⅡ中,通过农杆菌介导法转化烟草。经PCR、southern杂交和RT-PCR检测表明嗜热毛壳菌的mnsod及czsod基因分别整合到烟草基因组中。
     通过分析高盐胁迫下非转基因和转基因烟草的种子萌发率表明,转mnsod基因和转czsod基因的烟草种子比野生型烟草种子的萌发率高,且两种转基因烟草的根生长受到的抑制都比野生型小。说明转嗜热毛壳菌sod基因提高了烟草在种子萌发及小苗生长阶段的耐盐性。
     盐分胁迫会使植物膜系统受到伤害,导致植株的叶片MDA含量升高,膜脂过氧化作用增强。本实验中盐胁迫处理使转基因植株与野生型植物叶片的丙二醛含量都有所上升,但两种转基因烟草植株的MDA含量显著低于未转基因植株。说明转基因烟草膜脂过氧化程度低于野生型烟草,膜伤害程度较轻。该结果表明在盐胁迫下转基因植株与野生型植株相比具有明显提高的抗盐性。
     在盐胁迫条件下,转mnsod基因和转czsod基因烟草株系的SOD活性与野生型一样都呈先升高后降低的趋势,但两种转基因烟草SOD活性都比非转基因烟草高的多。研究了两种转基因烟草植株的抗病害能力,结果表明两种转基因植株对烟草炭疽病和赤星病有一定的抵抗能力,且转mnsod基因比转czsod基因烟草的抗病能力更强。
The superoxide dismutases (SOD, EC1.15.1.1) are metallo-enzymes that catalyze the dismutation of superoxide(O2.~-) to hydrogen peroxide(H_2O_2) and molecular oxygen(O2). They have play a critical role in the defense against oxidative stress. There are three general classes of SODs in organisms, which differ in their metal cofactors: copper zinc-containing SOD (Cu,Zn-SOD), manganese-containing SOD (Mn-SOD)and iron-containing SOD (Fe-SOD).
     In recent years, the important role of SOD in food, pharmaceutical, cosmeceutical industries and agriculture has been demonstrated. The SOD used in the market mainly from room temperature organisms. However, SOD is easily degraded at high temperatures and it can not be stored for long periods. Due to high production costs, poor thermal stability, low activity and yield, the application of SOD is restricted in agriculture and industrial applications. Therefore, there has been increasing interest in research and development of thermostable SODs from thermophilic organisms.
     Chaetomium.thermophilum is a widely distributed soil-inhibiting fungi of considerable interest producers of thermostable enzymes, including glucoamylase, cellulase, endocellulase, xylanase, and laccase. The fungi has great value in research and application.
     In this study, a Mn-SOD gene was isolated firstly from C.thermophilum CT2 by RT-PCR and Tail-PCR. Sequence analysis showed that the full cDNA of the gene was 684bp, encoding 227 amino acids. The gene was highly expressed in Paster.pastoris and the recombinant protein was purified by ammonium sulfate precipitation, DEAE-Sepharose Fast Flow anion exchange. SDS-PAGE showed that the recombinant protein was about 23kDa, similar to the deduced molecular weight. The optimal temperature and pH were 60℃and 6.0, separately. The enzyme was relatively thermostable, after incubated at 70℃for 60 min still remained 71% activity.
     In this study, a Cu,Zn-SOD gene from C.thermophilum was also cloned and highly expressed in Paster.pastoris, Six days after induction, this strain had the highest SOD activity of 1,660 U/ml culture, and its expression level was 1.54 mg/ml. The recombinant protein was purified by ammonium sulfate precipitation and DEAE-Sepharose Fast Flow anion exchange. SDS-PAGE showed that the recombinant protein was about 17kDa. The recombinant Cu,Zn-SOD exhibited optimum activity at pH 6.5 and 60℃. The enzyme retained 65% of the maximum activity at 70℃for 60min and the half-life was 22min and 7min at 80 and 90℃, respectively.
     The recombinant yeast GS115 (harboring pPIC9K/mnsod or pPIC9K/czsod) and control GS115 (harboring empty pPIC9K) were treated with different concentration of salt and oxidation stresses such as paraquat, mandione and H_2O_2. The results revealed that the recombinant yeast cells have a higher stress resistance than control cells. It also proved that the mnsod and czsod genes from C.thermophilum have the ability of salt and oxidation resistance.
     Salt stress is the main factor that seriously affect on plant growth and development. Therefore, there is interest in breeding transgenic plants that are tolerant of saline soil. Salt-stress adaptation mechanisms are being intensively studied in model organisms. The genetic engineering is an effective way to improve plant salt stress resistance. One of the basis for plant genetic engineering is study on the function of stress- related gene. Exposure of plants to environmental stresses, including salinity, drought, cold and high temperatures, can lead to the generation of reactive oxygen species (ROS). ROS can attack cellular macromolecules, generate lesions in DNA, cause membrane damage, and affect protein synthesis and stability, therefore it is important for plants to have effective ROS scavenging mechanisms.
     Superoxide dismutase activity is closely associated with defense ability of plants under the condition of salt stress. Physiological correlations between elevated SOD activity and stress tolerance have been reported, suggesting that the upregulation of SOD levels may enhance the stress-defense potential of plants. Various transgenic plants that express increased amounts of SODs have been generated for enhanced tolerance to environmental stress.
     To investigate the function of mnsod and czsod from C.thermophilum under salt stress in plant,the full-length mnsod and czsod cDNAs were subcloned into the expression vector pROKⅡdownstream of the 35S-CaMV promoter, respectively. The constructs were first introduced into tobacco via Agrobacterium tumefaciens LBA4404 by the freezing transformation method and verified by PCR, Southern blot and RT-PCR. It was indicated that the mnsod and czsod gene had been recombined into tobacco genome, respectively, and transgenic tobacco plants were obtained.
     On the medium containing the different concentration of NaCl, expression of mnsod or czsod gene in tobacco can showed the higher percentage of seed germination. Both of the transgenic lines exhibited increased root growth compare to WT plants.These results indicated that transgenic tobacco plants could enhance salt tolerance than the wild plants at the seed germination and seedlings growth stage.
     Salt stress resulted in membrane injury and caused MDA content and the extent of the membrance lipid perioxidation rising in plants. In this study, salt stress increased MDA content in all Plants. However,the values of transgenic plants measured were much lower than those of wild-type, which indicated that the extent of the membrance lipid perioxidation in transgenic tobacco was lighter than that in wild type tobacco. These results indicated that the transgenic plants showed enhanced salt tolerance compared with wild-type under salt stress conditions.
     Under salt stress, the activity of SOD increased first and then decreased in both wild types and transgenic tobacco plants. Furthermore, the transgenic tobacco plants always sustained higher SOD activity than wild-type plants.
     The study showed that the SOD-transformed plants exhibited increased resistance to leaf infection with the fungi Colletotrichum nicotianae and Alternaria alternate.
     The enhanced tolerance of transgenic lines to salt stress suggests that the mnsod and czsod genes from C.thermophilum are benefit for genetic engineering to improve plant tolerance to salt stress.
引文
关汉成,严自成,张树政。黑曲霉突变株葡萄糖淀粉酶的底物特异性。微生物学报, 1994,31:20-18
    班巧英,刘桂丰,姜静等。紫杆柽柳MnSOD基因在非生物胁迫中的作用。植物生理学通讯,2008,44(2):211-214
    鲍淑兰。超氧化物歧化酶与其抗衰老功能。曲阜师范大学学报,2000,26:86-88
    陈莉,周连霞,马锋旺等。转MnSOD基因仙客来植株的获得及其对高温胁迫的抗性。西北农林科技大学学报(自然科学版),2008,36(3):155-160
    崔慧斐,张天民。超氧化物歧化酶在食品和化妆品中的应用及其发酵法生产进展。药物生物技术,2000,7:187-189
    邓婷婷,李静,马根等。盐生杜氏藻锰超氧化物歧化酶(MnSOD)在大肠杆菌中的功能鉴定.四川大学学报(自然科学版),2007,44(1):176-181
    窦俊辉,喻树迅,范术丽等。SOD与植物胁迫抗性。分子植物育种,2010,8 (2): 359-364
    杜秀敏,殷文璇,张慧。超氧化物歧化酶(SOD)研究进展。中国生物工程杂志,2003, 23(1): 48-50
    方允中,李文杰。自由基与酶。北京:科学出版社,1989,71-79
    奉斌,代其林,王劲。非生物胁迫下植物体内活性氧清除酶系统的研究进展。绵阳师范学院学报,2009,28:50-53
    付畅,张恒,刘关君等。西伯利亚蓼PsMnSOD基因的耐盐碱性鉴定及其在盐碱胁迫下的表达模式。分子植物育种,2009,7(5):861-866
    高俊杰,秦爱国,于贤昌。低温胁迫下嫁接对黄瓜叶片SOD和CAT基因表达与活性变化的影响。应用生态学报,2009,20(1):213-217
    韩利芳,张玉发。烟草MnSOD基因在保定苜蓿中的转化。生物技术通报,2004,1: 39-46
    何献君,梁晓冬,吕晓峰等。超氧化物歧化酶应用研究状态。中国医药指南,2010,8(5):37-39
    胡根海,喻树迅,范术丽等。编码棉花胞质铜锌超氧物歧化酶基因的克隆与表达分析。中国农业科学,2007,40(8):1602-1609
    黄培堂,王嘉玺,朱厚础等译。分子克隆实验指南。北京:科学出版社, 2003, 1080-1087
    李洪钊,李亮助,孙强明等。巴斯德毕赤酵母表达系统优化策略。微生物学报,2003,43:288-292
    李会云,郭修武。盐胁迫对葡萄砧木叶片保护酶活性和丙二醛含量的影响。果树学报,2008,25:240-243
    李金华,王丰,廖亦龙。水稻种子活力的生理生化及遗传研究。分子植物育种,2009,7:772-777
    李敬玺,刘继兰,王选年。超氧化物歧化酶研究和应用进展。动物医学进展,2007,28(7):70-75
    罗广华。植物SOD的凝胶电泳及活性显示。植物生理学通讯,1983,6:44-45
    李文楚,章羽,陈芳艳。超氧化物歧化酶研究及应用概况。广东蚕业,2007,42:45- 49
    刘巍,郭丽,卢日峰等。基因重组人源超氧化物歧化酶抗辐射作用的研究。中国实验诊断学,2009,13(2):182-186
    阎家麒,谢文正。月桂酸修饰超氧化物歧化酶的制备及其性质研究。生物化学与生物物理进展,1994,21:154-157
    李鹤宾,王怡倩。嗜热嗜热菌超氧化物歧化酶的克隆、表达与鉴定。台湾海峡, 2007,26:543-547
    李泽浩。应用生物化学。乌鲁木齐:新疆大学出版社,1996,66-70
    凌敏,赖祥进,谢科。人Mn-SOD cDNA的克隆及其在巴斯德毕赤酵母中的表达。生物工程学报,2005,21:478-481
    马旭俊,朱大海。植物超氧化物歧化酶(SOD)的研究进展。遗传,2003,25(2): 225-231
    聂志妍,胡圣尧,袁勤生。重组蛹虫草超氧化物歧化酶对氧化压力下E.coli细胞的保护作用。药物生物技术,2008,15(5):388-392
    廖祥儒,王越。叶绿体内活性氧产生及清除的酶系统。生命的化学,2000,20(6):260-264
    秦小琼,贾士荣。植物抗氧化逆境的基因工程。农业生物技术学报,1997,5:14-23
    潘哲超,陈建斌,范静华等。稻瘟菌粗毒素对水稻防御性相关酶系的诱导。云南农业大学学报,2008,23(2):162-166
    裴红蕾,朱愉恒,陈秀瑾。SOD对放射治疗癌患者的保护作用。中华放射医学与防护杂志,2004,24(3):269-270
    时沁峰,曹威荣。超氧化物歧化酶(SOD)的研究概况。畜禽业,2009,23(4):66-68
    时忠杰,胡哲森,李荣生。水分胁迫与活性氧代谢。贵州大学学报,2002,21(2):140-145
    屠幼英。从嗜热栖热菌中提取超氧化物歧化酶的研究。微生物学通报,1992,19(1):18-32
    谢继青,李玉华,杨春梅等。超氧化物歧化酶的药理作用。中国生化药物杂志,2009,30(1):72-76
    汪本勤,陈曦,向成斌。SOD活性增高的拟南芥晚花突变体具有增强的非生物胁迫耐受性。植物学通报,2007,24(5):572-580
    王爱国,罗广华,邵从本。植物氧代谢及活性氧对细胞的伤害。中国科学院华南植物研究所集刊:第5集。北京:科学出版社,1989
    王荣华,石雷,汤庚国。渗透胁迫对蒙古冰草幼苗保护酶系统的影响。植物学通报,2003,20(3):330-335
    王岁楼,张平之,张欣等。酵母SOD形成的生理学研究。工业微生物,1997,27(3): 21-23
    魏文树,曾昭全,刘锡钧。超氧化物歧化酶的研究进展.药物生物技术,2003,10:256-260
    魏玉香,李永红,谷茂等。鸡冠花幼苗热胁迫耐性与其SOD之间的关联。西北植物学报,2008,28(10):2055-2061
    王谨,李天增,才学鹏。甲醇酵母表达外源基因的研究近况。中国兽医科技,2003,33(7):34-38
    王雅平。小麦对赤霉病抗性不同品种的SOD活性。植物生理学报,1993,19:353-358
    王勇。毕赤酵母表达外源基因研究进展。微生物学免疫学进展,2004,32(1):62-66
    向华,卫文仲,谭华荣。人Cu,Zn SOD基因的克隆和在乳酸球菌中的表面。生物工程学报,2000,16(1):6-11
    许长成,邹琦。大豆叶片旱促衰老及其与膜脂过氧化的关系。作物学报,1993,19(4): 361-363
    杨明琰,张晓琦,沈俭。微生物超氧化物岐化酶的研究进展。微生物学杂志,2004,24: 49-51
    殷铭俊,潘家祜,王尊生。重组人源性锰超氧化物歧化酶对小鼠紫外线辐射所致氧化应激的保护作用。中国临床药学杂志,2006,12(5):86-89
    曾庆平。SOD基因的组织结构,表达与分子克隆。药物生物技术, 1995,2:46-51
    赵世杰,许长城,邹奇等。植物组织中丙二醛测定方法的改进。植物生理学通讯,1991,30:207-210
    赵可夫,邹琦,李德全。盐分和水分胁迫对盐生和非盐生植物细胞脂质过氧化作用的效应。植物学报,1993,35(7):519-525
    张博润,黄英,田宇清。酵母SOD高产工程菌培养优化条件研究。微生物学通报,1994,21(4):210-213.
    张海娜,李小娟,李存东。过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响。作物学报,2008,34(8):1403-1408
    张俊梅,杜密英。极端酶的结构特征及其在食品工业中的应用。食品工程,2007,3:17-19
    章轶锋,唐善虎,秦文玲。铜锌超氧化物歧化酶的研究进展。四川畜牧兽医,2008,25:33-35.
    张艳红,寥晓全,袁勤生。重组人锰超氧化物歧化酶工程菌高效表达培养工艺的研究。中国药学杂志,2002,37(1):59-62
    张伍魁,范清林,宋礼华。毕赤酵母表达系统在外源基因表达中的研究进展及应用。中国生物工程杂志,2006,26(1):87-91
    张亚冰,刘崇怀,潘兴等。盐胁迫下不同耐盐性葡萄砧木丙二醛和脯氨酸含量的变化。河南农业科学,2006,26(4):84-86
    张亚冰,刘崇怀,孙海生等。葡萄砧木耐盐性与丙二醛和脯氨酸关系的研究。西北植物学报,2006,26(8):1709-1712
    周晓慧,Joseph N.W.李英。甜瓜蔓枯病抗性与SOD、CAT和POD活性变化的关系。中国瓜菜,2007,2:4-6
    周则迅,袁汉英,何炜。乙肝病毒表面抗原SA-28融合基因在酵母中的组成型表达。复旦学报(自然科学版),2000,39(3):264-268
    朱学艺,张承烈。植物响应水分胁迫的主要功能蛋白。西北植物学报,2003,23(3): 503-508
    邹国林,罗时文,裘名宜。小白菜线粒体锰超氧化物歧化酶的纯化和性质研究。生物化学与生物物理学报,1992,24:180-183
    Abe M., Nishidai T., Yukawa Y.. Studies on the radioprotective effects of superoxide dismutase in mice. Int J Radiat Oncol Biol Phys, 1981, (7): 205-209
    Allen R. D., Webb R. P., Schake S. A.. Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med, 1997, (23): 473-479
    Amo T., Atomi H. and Imanaka T.. Biochemical properties and regulated gene expression of the superoxide dismutase from the facultatively aerobic hyperthermophile Pyrobaculum calidifontis. J. Bacteriol, 2003, (185): 6340-6347
    Angelova M. P., Dolashka A., Ivanova E., Serkedjieva J., Slokoska L., Pashova S., Toshkova R., Vassilev S., Simeonov I., Hartman H. J., Stoeva S., Weser U. and Voelter W.. A novel glycosylated Cu/Zn-containing superoxide dismutase: production and potential therapeutic effect. Microbiology, 2001, (147): 1641-1650
    Asish K. P., Anath B. D.. Salt tolerance and salinity effects on plants. Ecotoxicol Environ Safety. 2005, (60): 324-349
    Baek K. H., Skinner D. Z.. Differential expression of manganese superoxide dismutase sequence variants in near isogenic lines of wheat during cold acclimation. Plant Cell Rep, 2006, (25): 223-230
    Bannister J. V., Bannister W. H., Rotilio G.. Aspects of the structure, function and applications of superoxide dismutase. Crit Rev Biochem, 1987, (22): 111-180
    Basu U., Good A. G., Taylor G. J.. Transgenic Brassica napus plants overexpressing aluminum-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ, 2001, (24): 1269-1278
    Beauchamp C., Fridovich I.. Superoxide dismutase: improved assay and assay applicable toacrylamide gel. Anal Biochem, 1971, (44): 276-280
    Beyer J. W., Fridovich I.. Superoxide dismutase Progress Nucleic. Acid Res. Mol. Biol, 1991, (40): 221-253
    Bostwick D. G., Alexander E. E., Singh R., Shan A., Qian J., Santella R. M., Oberley L. W., Yan T., Zhong W., Jiang X., Oberley T. D. Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer, 2000, (89):123-134
    Bowler C., Montagu V. M., InzéD. Superoxide dismutase and stress tolerance. Ann Rev Plant Physiol Mol Biol, 1992, (43): 83-116
    Bowler R. P., Nicks M., Warnick K.. Role of extracellular superoxide dismutase in bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol, 2002, (282): 719-726
    Brouwer M., Brouwer T. H., Grater W.. The paradigm that all oxygen-respiring eukaryotes have cytosol Cu Zn-superoxide dismutase and that Mn-superoxide dismutase is localized tonic the mitochondria does not apply to a large group of marine arthropods. Biochemistry, 1997, (36): 13381-13388
    Brouwer M., Brouwer T. H., Grater W.. Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport. Biochem J, 2003, (374): 219-228
    Buonaurio R., Torre G. D., Montalbini P.. Soluble superoxide dismutase (SOD) in susceptible and resistant host-parasite complexes of Phaseolus vulgaris and Uromyces phaseoli. Physiol Mol Plant Pathol, 1987, (31): 173-184
    Cao Y. J., Wei Q., Liao Y., Ling H., Li S. X., Xiang C. B., Kuai B. K.. Ectopic overexpression of AtHDG11 in tall fescue resulted in enhanced tolerance to drought and salt stress. Plant Cell Rep, 2009, (28): 579-588
    Cash A. D., Smith A. M., Perry G.. Oxidative stress mechanisms and potential therapeutic modalities in Alzheimer disease. Med Chem Rev, 2004, (1): 19-23
    Cereghino J. L., Cregg J. M.. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS microbiol Rev, 2001, (24): 45-66
    Chamber S. P., Brehm J. K., Michael N. P., Atkinson T., Minton N. P.. Physical characterization and over-expression of the Bacillus caldotenax superoxide dismutase gene. FEMS Microbiol Lett, 1992, (91): 277-284.
    Choi B. K., Bobrowicz P., Davidson R. C. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA, 2003, (100): 5022-5027
    Claire V., Gregory J. Z.. Hyperthermophilic enzymes: sources, uses, and molecularmechanisms for thermostability. Microbiol Mol Biol Rev, 2001, (65):1-43
    Clare J. J., Rayment F. B., Ballantine S. P.. High-level expression of tetanus toxin fragmentC in Pichia pasteris strains containing multiple tandem integrations of the gene. Biotechnol, 1991, (9): 445- 460
    Clare J. J., Romanos M. A., Rayment F. B., Rowedder J. E., Smith M. A., Payne M. M., Sreekrishna K., Henwood C. A.. Production of mouse epidermal growth factor in yeast: High level secretion using Pichia pastoris strains containing multiple gene copies. Gene, 1991, (105):205-212
    Cregg J. M., Cereghino J. L., Shi J. Y.. Recombiant Protein Expression in Pichia pastoris. Mol Biotechnol, 2000, (16): 23-52
    Cullen J. J., Weydert C., Hinkhouse M. M., Ritchie J., Domann F. E., Spitz D., Oberley L. W.. The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma. Cancer Res, 2003, (63):1297-1303
    Cutler R. G.. Free Radical in molecular biology, Aging and Disease. Eds. D Armstrong, 1984, (181): 325-331
    Dellomonaco C., Amaretti A., Zanoni S., Pompei A., Matteuzzi D., Maddalena R. Fermentative production of superoxide dismutase with Kluyveromyces marxianus. J Ind Microbiol Biotechnol, 2007, (34): 27-34
    Diaz V. P., Rubio M., Mesonero V., Periago P. M., Ros B. A., Marti'nez G. P., Herna'ndez J. A.. The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. J Experimental Botany, 2006, (57): 3813-3824
    Du J., Zhu Z., Li W. C.. Over-expression of exotic superoxide dismutase gene MnSOD and increase in stress resistance in maize. J Plant Physiol Mol Biol, 2006, (32):57-63
    Duan K. J., Lin M. T., Hung Y. C.. Production of GST-SOD fusion protein by recombinant E coli XL1 blue. J Chem Tech Biotechnol, 2000, (75): 722-729.
    Eckart M. R., Bussineau C. M.. Quality and authenticity of heterologous proteins synthesized in yeast. Curr Opin Biotechnol, 1996, (7): 525-530
    Elroy S. O., Bernstein Y., Groner Y.. Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation. EMBO J, 1986, (5): 615-622
    E S. J., Guo F. X., Liu S. A., Chen J., Wang Y. J., Li D. C.. Purification, Characterization, and Molecular Cloning of a thermostable Cu, Zn-SOD from the thermophilic fungus Thermoascus aurantiacus. Biosci Biotechnol Biochem, 2007, (71): 1090-1093
    Fan W. W., Wang L., Ma C. H., Dong W. Q., Li Y. C., Liu Z. H., Jia Y. S., Geng J. Y., Zhang X. Y.. The influence of the Verticillium dahliae kleb infection on the anti-enzyme, inside the body of the cotton with different root injured degree. Agricultural Sciences in China, 2007, (6): 816-824
    Feng W., Hongbin W., Bing L., Jinfa W.. Cloning and characterization of a novel splicing isoform of the iron-superoxide dismutase gene in rice (Oryza sativa L). Plant Cell Rep, 2006, (24): 734-742
    Fink R. C., Scandalios J. G.. Molecular evolution and structure function relationships of the superoxide dismutase gene families in Angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys, 2002, (399): 19-36
    Foyer D. P., Kunert K. J.. Against to oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environment, 1994, (17): 507-523
    Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem, 1995, (64): 97-112
    Gomez J. M., Hernandez J. A., Jimenez A.. Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plant. Free Radic Research, 1999, (31) (Supplment): 11-8.
    Gao X., Ren Z., Zhang H.. Overpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiology, 2003, (133): 1873-81.
    Gupta A. S., Webb R. P., Holaday A. S., Allen R. D.. Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol, 1993, (103): 1067- 1073
    Halliwell B.. Free radicals, anti-oxidants, and human disease: curiosity, cause, or consequence? Lancet, 1994, (344): 721-724
    Hallewell R. A., Masiarz R. C., Puma J. P.. Human Cu/Zn superoxide dismutase cDNA: isolation of clones synthesizing high levels of active or inactive enzyme from an expression library. Nucheic Acids Research, 1985, (13): 2017-2034
    Hassan H. M.. Microbial superoxide dismutase. Adv Genet, 1989,(26): 65-97
    He Y. Z.. Characterization of a hyperthermostable Fe-superoxide dismutase from hot spring. Appl Microbiol Biotechnol, 2007, (75): 367-376.
    Hern N. Y., Saavedral E. Z., Ochoal J. L.. Copper–Zinc Superoxide Dismutase from the Marine Yeast Debaryomyces hansenii. Yeast, 1999, (15): 657-668
    Hitzeman R. A., Hagie F. E., Levine H. L.. Expression of human gene for interferon in yeast. Nature, 1981, (293): 717-723.
    Hodges D. M, Andrews C. J, Johnson D. A, Hamilton R. I.. Antioxidant enzyme and compound responses to chilling stress and their combining abilities in differentially sensitive maize hybrids. Crop Sci, 1997, (37): 857-863
    Hollenberg C. P., Gellissen G.. Production of recombinant proteins bymethylotrophic yeasts. Curr Opin Biotechnol, 1997, (8):554-560
    Holdom M. D., Lechenne B., Hay R. J., Hamilton A. J., Monod M.. Production andcharacterization of recombinant Aspergillus fumigatus Cu,Zn superoxide dismutase and its recognition by immune human sera. J Clin Microbiol, 2000, (38): 558-562
    Jiang L., Yang H.. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol Environ Saf, 2009, (72): 1687-1693
    Lee J. H., Choi I. Y., Kil I. S., Kim S. Y., Yang E. S., Park J. W.. Protective role of superoxide dismutases against ionizing radiation in yeast. Biochim Biophys Acta, 2001, (1526): 191-198.
    Jithesh M. N., Prashanth S. R., Sivaprakash K. R., Parida A. K.. Antioxidative response mechanisms in halophytes: their role in stress defense, J Genetics, 2006, (85): 237-254
    Jithesh M. N., Prashanth S. R., Sivaprakash K. R., Parida A. K.. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh by mRNA analysis. Plant Cell Rep, 2006, (25): 865-876
    Keatovi T. S., Gligi T. L., Radulovi T. L., Jankov R. M.. Purification and partial characterization of superoxide dismutase from the thermophilic bacteria Thermothrix sp. J Serb Chem Soc, 2004, (69): 9-16
    Keller G., Warner T. G., Steiner K. S.. Cu, Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci USA, 1991, (88): 7381-7385
    Khan M. A., Van D. J., Yeung I. W.. Partial volume rat lung irradiation; assessment of early DNA damage in different lung regions and effect of radical scavengers. Radiother Oncol, 2003, (66): 95-102.
    Kim S. G., Kim S. T., Kang S. Y., Wang Y. M., Kim W., Kang K. Y.. Proteomic analysis of reactive oxygen species (ROS)-related proteins in rice roots, Plant Cell Reports, 2008, (27): 363-375
    Kim E. J., Chung H. J., Suh B.. Transcriptional and post-transcriptional regulation by nickel of sodN gene encoding nickel-containing superoxide dismutase from Streptomyces coelicolor. Muller Mol Microbiol, 1998, (27): 187-195
    Klei I. J., Harder W., Veenhuis M.. Biosynthesis and assembly of alcoholoxidase, a peroxisomalmatrix protein in methylotrophic yeast. Yeast 1991, (7): 195-209.
    Knapp S., Kardinahl S., Hellgren N., Tibbelin G., Schafer G., Ladenstein R.. Refined crystal structure of a superoxide dismutase from the hyperthermophilic archaeon Sulfolobus acidocaldarius at 2.2 A resolution. J Mol Biol, 1999, (285): 689-702
    Kowluru R. A., Atasi L., Ho Y. S.. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci, 2006, (47):1594-1599
    Krall J., Bagley A., Mullenbach G., Hallewell R., Lynch R.. Superoxide mediates the toxicity of paraquat for cultured mammalian cells. J Biol Chem, 1988, (263): 1910-1914
    Kwon S. I., An C. S.. Cloning and expression of mitochondrial MnSOD from the small radish (Raphanus sativus L). Mol Cells, 2003, (16): 194-200
    Laemmli U. K.. Clearage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, (277): 680-685
    Lim J. H., Yu Y. G., Choi I. G., Ryu J. R., Ahn B. Y., Kim S. H., Han Y. S.. Cloning and expression of superoxide dismutase from Aquifex pyrophilus, a hyperthermophilic bacterium. FEBS Lett, 1997, (406): 142-146
    Maheshwari R. G., Bharadwa J., Bhat M. K.. Thermophilic fungi: Their physiology and enzymes. Microbiol Mol Rev, 2000, (64): 461-488
    Marc W. T.. High-yield secretion of recombinant gelation by Pichia pastoris. Yeast, 1999, (15): 1087-1096
    Marikovsky M., Ziv V., Nevo N., Cerruti C. H., Mahler O.. Cu/Zn superoxide dismutase plays important role in immune response. J Immunol, 2003, (170): 2993- 3001
    Mariana M., Germa′n R., Victorio T., Roberto R.. Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regul, 2009, (57): 57-68
    Martin M. E., Byers B. R., Olson M. O., Salin M. L., Arceneaux J. E., Tolbert C.. A Streptococcus mutans superoxide dismutase that is active with either manganese or iron as a cofactor. J Biol Chem, 1986, (261): 9361-9367
    Mates J. M., Francisca M., Jimenez S.. Role of active oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol, 2000, (32): 157-170.
    McKersie B. D., Chen Y., Beus M. D., Bowley S. R., Bowler C., Inz E. D., Halluin K. B.. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol, 1993, (103): 1155-1163
    McKersie B. D., Bowley S. R., Jones K. S.. Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol, 1999, (119): 839-848.
    Mckersie D. B., Murnaghan J., Jones S. K., Bowley R. S.. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol, 2000, (122): 1427-1437
    Melov S., Ravenscroft J., Malik S., Gill M S., Walker D. W., Clayton P. E., Wallace D. C., Malfroy B., Doctrow S. R., Lithgow G. J.. Extension of life-span with superoxide dismutase/catalase mimetics. Science, 2000, (289): 1567-1569
    Mittler R.. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, (7): 405-410
    Mondola P., Seru R., Damiano S., Santillo M.. A new perspective on the role of CuZn superoxide dismutase (SOD1). CEJB, 2007, (2): 337-350.
    Nakano T., Oka K., Taniguchi N.. Manganese superoxide dismutase expression correlates with p53 status and local recurrence of cervical carcinoma treated with radiation therapy. Cancer Res, 1996, (56): 2771-2775
    Nishikawa M., Nagatomi H., Nishijima M., Ohira G., Chang B. J., Sato E., Inoue M.. Targeting superoxide dismutase to renal proximal tubule cells inhibits nephrotoxicity of cisplatin and increases the survival of cancer-bearing mice. Cancer Lett, 2001, (171): 133-138
    Oberley L. W.. Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed Pharmacother, 2005, (59): 143-146
    Ogawa K., Kanematsu S., Adada K.. Intra- and extra-cellular localization of“cytosolic”Cu/Zn -superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physio, 1996, (37): 790-799
    Perl A., Perl T. R., Gall S., Aviv D., Shalgi E., Malkine S., Galun E.. Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu-Zn-Superoxide dismutase. Appl Genet, 1993, (85): 568-576
    Pitcher L. H., Zilinskas B. A.. Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiol, 1996, (110): 583-588
    Pitzschke A., Forzani C., Hirt H.. Reactive oxygen species signaling in plants. Antioxid Redox Signal, 2006, (8): 1757-1764.
    Prashanth S. R., Sadhasivam V., Parida A.. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res, 2008, (17): 281-291
    Raimondi S., Uccelletti D., Matteuzzi D., Pagnoni U. M., Rossi M., Palleschi C.. Characterization of the superoxide dismutase SOD1 gene of Kluyveromyces marxianus L3 and improved production of SOD activity. Appl Microbiol Biotechnol, 2008, (77): 1269-1277
    Scorer C. A., Buckholz R. G., Clare J.. The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris. Gene, 1993, (136): 111-119
    Sekmen A. H., Türkan I., Takio S.. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum, 2007, (131): 399-411
    Shao H. B., Liang Z. S., Shao M. A.. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage colloids and furfaces B. Biointerfaces, 2005, (42): 107-113.
    Shen X., Zheng S., Metreveli N. S., Epstein P. N.. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 2006, (55): 798-805
    Shin D. S., Didonato M., Barondeau D. P., Hura G. L., Hitomi C., Berglund J. A., Getzoff E. D., Cary S. C., Tainer J. A.. Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. J Mol Biol, 2009, (385): 1534-1555
    Shin S. Y., Lee H. S., Kwon S. Y., Kwon S. T., Kwak S. S.. Molecular characterization of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta. Plant Physiol Biochem, 2005, (43): 55-60
    Siegei R. S.. Methylotroyphic yeast Pichia pastour produced in high-cell-density fermentation with high cell yields as vehicle for recombinant protein production. Biotechnol Bioeng, 1989, (34): 403-404
    Smirnoff N.. Plant resistance to environmental stress. Curr Opin Biotechno, 1998, (9): 214-219
    Sang C. L., Suk Y, K., Seong R. K.. Ectopic Expression of a Cold-Responsive Cu,ZnSuperoxide Dismutase Gene, SodCc1, in Transgenic Rice (Oryza sativa L.). J Plant Biol, 2009, (52):154-160
    Song F. N., Yang C. P., Liu X. M., Li G. B.. Effect of salt stress on activity of superoxide dismutase (SOD) in Ulmus pumila L. J For Res, 2006, (17): 17:13-16
    Song N. N., Zheng Y., E S. J., Li D. C.. Cloning, expression, and characterization of thermostable manganese superoxide dismutase from Thermoascus aurantiacus var. levisporus. J Microbiol, 2009, (47): 123-130
    Song X. S., Wanga Y. J., Maoa W. H., Shia K., Zhoua Y. H., Nogue'sd S., Yu J. Y.. Effects of cucumber mosaic virus infection on electrontransport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves. Physiologia Plantarum, 2009, (135): 246-257
    Stepien P., Klobus G.. Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiologia Plantarum, 2005, (125):31-40
    Stoddard B. L., Howell P. L., Ringe D., Petsko G. A.. The 0.21nm resolution structure of iron superoxide dismutase from Pseudomonas cvalis. Biochemistry, 1990, (29): 8885-8893
    Sunkar R., Kapoor A., Zhu J. K.. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell, 2006, (18): 2051-2065
    Szilagyi A., Zavodszky P.. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 2000, (8): 493-504
    Tainer J. A., Getzoff E. D., Richardson J. S., Richardson D. C.. Structure and mechanism of copper-zinc superoxide dismutase. Nature, 1983, (30): 284-289
    Takahashi S., Makino T., Asanagi M.. Recombinant plasmid for human manganesesuperoxide dismutase manufacture with Escherichia coli. Eur Pat App, 1991, (23): 462-466
    Takemura T., Hanagata N., Dubinsky Z., Karube I.. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees, 2002, (16): 94-99
    Tanaka Y., Hibino T., Hayashi Y., Tanaka A., Kishitani S., Takabe T., Yokota S., Takabe T.. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science, 1999, (148): 131-138
    Teoh M. L., Sun W., Smith B. J.. Modulation of reactive oxygen species in pancreatic cancer. Clin Cancer Res, 2007, (13): 744l-7448
    Tertivanidis K., Goudoula C., Vasilikiotis C., Hassiotou E., Perl T. R., Tsaftaris A.. Superoxide dismutase transgenes in sugarbeets confer resistance to oxidative agents, the fungus C. beticola. Transgenic Res, 2004, (13): 225-233
    Touati D.. Superoxide dismutase in bacteria and pathogen protests in Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory, 1997, (48): 447-493
    rotti A.. Toxicity antagonists in cancer therapy. Curr Opin Oncol, 1997, (9): 569-578
    Tseng M. J., Liu C. W., Yiu J. C.. Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem, 2007, (45): 822-833
    Valderas M. W., Hart M. E.. Identification and Characterization of a Second Superoxide Dismutase Gene (sodM) from Staphylococcus aureus. J Bacteriol, 2001, (183): 3399-3407
    Van B. F., Slooten L., Stassart J., Botterman J., Moens T., Van M. M., Inze D.. Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J Exp Bot, 1999, (50): 71-78
    Vanusa M., Vanessa D. M., Maria C., Ruaro P., Mara S. B.. Adaptative response to enhanced basal oxidative damage in sod mutants from Saccharomyces cerevisiae. Mol Cell Biochem, 2005, (276): 175-181
    Venkataraman S., Jiang X., Weydert C.. Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells. Oncogene, 2005, (24): 77-89
    Wang W. B., Kim Y. H., Lee H. S., Kim K. Y., Deng X. P., Kwak S. S.. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem, 2009, (47): 570-577
    Wang X., Yang H. J., Ruan L. W., Liu X., Li F., Xu X.. Cloning and characterization of a thermostable superoxide dismutase from the thermophilic bacterium Rhodothermussp.XMH10. J Ind Microbiol Biotechnol, 2008, (35): 133-139
    Wang Y. H., Ying Y., Chen J., Wang X. C.. Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Science, 2004, (167): 671-677
    Weydert C. J., Waugh T. A., Ritehie J. M.. Overexpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth. Free Radic Biol Med, 2006, (41): 226-231
    White J. A.. In vitro synthesis, importation and processing of Mn-superoxidase dismutase (SOD-3) into maize mitochondria. Biochmi Biophys Acta, 1987, 926: 16-25
    Wintjens R., Noel C., May A. C., Gerbod D., Dufernez F., Capron M., Viscogliosi E., Rooman M.. Specificity and phenetic relationships of iron- and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. J Biol Chem, 2004, (279): 9248-9254.
    Xue X. Q., Wang J., Huang B. F., Ying S. H.. A new manganese superoxide dismutase identified from Beauveria bassiana enhances virulence and stress tolerance when overexpressed in the fungal pathogen. Appl Microbiol Biotechnol, 2010, (86): 1543-1553
    Yamano S. and Maruyama T. An azide-insensitive superoxide dismutase from a hyperthermophilic archaeon, Sulfolobus solfataricus. J Biochem, 1999, (125): 186-193
    Yamano S., Sako Y., Nomura N., Maruyama T.. A cambialistic SOD in a strictly aerobic hyperthermophilic archaeon, Aeropyrum pernix. J Biochem, 1999, (126): 218-225
    Yang X.. The effect of water stress on cell protective enzyme activity and membrane lipid peroxidation in broccoli. Advances in Horticulture, 1998, (24): 567-571
    Yoo H. Y., Kim S. S., Rho H. M.. Over-expression and simple purification of human superoxide dismutase (SOD1) in yeast and its resistance to oxidative stress. J Biotechnol, 1999, (68): 29-35
    Youn H. D., Kim E. J.. A novel nickel-containing superoxide dismutase from Streptomyces spp. J Biochem, 1996, (318): 889-896
    Youn H. D, Youn H., Lee J. W., Yim Y. I., Lee J. K., Hah Y. C., Kang S. O.. Unique isozymes of superoxide dismutase in Streptomyces griseus. Arch Biochem Biophys, 1996, (334): 341-348
    Yu J., Yu X., Liu J.. A thermostable manganese-containing superoxide dismutase from pathogen Chlamydia pneumoniae. FEBS Lett, 2004, (562): 22-26
    Yu C. W., Guan Z. Q., Hong Y. L., Ying J. W., Chao W., Gui F. L., Chuan P. Y.. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep, 2010, (37): 1119-1124
    Yunoki M., Kawauchi M., Ukita N., Sugiura T., Ohmoto T.. Effects of lecithinized superoxide dismutase on neuronal cell loss in CA3 hippocampus after traumatic brain injury in rats.Surg Neurol, 2003, (59): 156-160
    Zelko I. N., Mariani T. J., Folz R. J.. Superoxide dismutase multigene family: a comparison of the Cu, ZnSOD (SOD1), MnSOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol Med, 2002, (33): 337-349
    Zhang T. C., Schmitt M. T., Mumford J. L.. Effects of arsenic on telomerase and telomeres in relation to cell proliferation and apoptosis in human keratinocytes and leukemia cells in vitro. Carcinogenesis, 2003, (24): 1811-1817.
    Zhang Y., Wang J. Z., Wu Y. J., Li W. G.. Anti-inflammatory effect of recombinant human superoxide dismutase in rats and mice and its mechanism. Acta Pharmacol Sin, 2002, (23): 439-444
    Zhang Y., Zhao W., Zhang H. J., Domann F. E.. Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. Cancer Res, 2002, (62): 1205-1212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700