新疆野生油菜种皮纹饰的遗传分析和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十字花科芸苔属植物是世界上许多地区重要的蔬菜和油料作物。中国拥有种类繁多的栽培和野生十字花科芸薹属植物。中国的油菜占世界总产量的30%左右,主要是种植甘蓝型油菜。随着转基因技术发展和商业化应用,转基因油菜的栽培面积利产量逐渐增加。目前有些国家已经在大规模栽种转基因油菜,而中国每年都大量进口追些油菜籽。當转基因逃逸时,会威胁生态环境的安全,这问题越来越受到重视。归纳发生成功的基因流必须满足以下各条件:转基因作物有一定规模的栽种面积、有足够的近缘种数量、雜交具有親利性、花期时间能够相遇、空间距離足够接近。采用来自中国各植物标本馆收集的野生近缘种分布资料、现生油菜栽培种的花期和面积数据,建立一个风险评估公式,用于评估栽种转基因油菜造成基因流的概率与风险。计算风险指数结果以四川省最高,其次为江苏省、贵州省、浙江省和上海市等,建议避免在这些地方种植转基因油菜,以减少发生转基因渗入野生遗传背景的风险。雖然新疆的野生近缘种数量最多,但是目前栽种油菜的面积较小,风险指数偏低。计算的风险指数结果能作为初步的评估参考,以减少基因流的发生机会。期待能持续收集更多野生近缘种的分布数据,做更全面的评估。
     根据中国各植物标本馆数据,新疆保留了大量的野生油菜。野生种质资源具有普通栽培品种所没有的特异基因,可作为选育新品种的材料,也可提供作为研究进化与起源的途径。芸苔属存在许多分类和进化问题,而十字花科植物的种皮纹饰结构特征,可作为种间分类鉴定的指标。本研究将结合形态学和分子生物学方法进行研究。实验材料来自中国新疆农科院(XJ)提供的野生油菜12份(XJ-4-14和拜城),采自中国新疆昭苏(ZS)野生油菜13份(ZS-2~16)。利用杂交亲和性检定、种皮纹饰、流式细胞仪和分子生物学技术来鉴定。结果发现ZS-11、ZS-13和XJ-拜城与芥菜型油菜杂交亲和性佳,皆为四倍体,具有A和B基因组,种皮表面纹饰为网状结构,推论为芥菜型油菜。其余野生油菜与野芥的杂交亲利性佳,皆为二倍体,具有S基因组,种皮表面纹饰为皱纹结构,推论为野芥。XJ-拜城发芽齐次性好,发芽率100%,黄色种皮,推测为栽培油菜的逸生种。观察杂交后代的种皮纹饰发现,纹饰特征可能受基因型和母系效应影响。本实验研究种皮纹饰的表型和基因型间的关系,可作为分类野生油菜和相似物种的方法,并且更深入进行种皮的相关研究。中国在作物野生近缘种方面还需要做更多的研究,以利于作物野生近缘种的可持续利用。
Crueifelae Brassica species are important vegetable and oil crops in the world. There are many Crueifelae Brassica cultivars and wild species in China. The rapeseed yield in China accounted for about thirty percent of world. The major cultivated crop is Brassica napus (2n=38, AACC). As transgenic technology developing and commercial applying, the varieties of transgenic rapeseed crops and its cultivated area increased. Some countries have large-scale cultivation of transgenic rapeseed crops and maybe import to China. Their safety issues currently receive more and more attention. The occurrence and frequency of intraspecific gene flow can vary according to having enough-scale cultivation of transgenic rapeseed crops, relative species density, the outcrossing rate, synchrony of flowering, and geographical proximity. Using data on rapeseed wild relatives from herbarium, flowering season and cultivated area in China a formula for the Risk Index (RI) is set up in this study. The highly risky area by the calculated result is Sichuan province, followed by Jiangsu province, Guizhou province, Zhejiang province and Shanghai, etc. It is suggested to avoid transgenic rapeseed cultivation in these locations to reduce gene flow according to the evaluation result of RI index. Xinjiang has the most wild relative species, but cultivated area This research utilizes distribution data of cultivated rapeseed and wild relatives to analysis the risk of transgenic gene-flow in China, andproposes the preventive methods.We hope to collect more data on rapeseed wild relatives to do more comprehensive evaluation.
     Using data on rapeseed wild relatives from herbarium, a large number of wild Brassica species are retain in Xinjiang.The crop wild relative has been used for cultivar development and breeding in order to improve crop production and quality. Argument remained for the species identification of wild Brassica in Xinjiang. Seed coat morphology is known to be an excellent character for taxonomic and evolutionary studies, thus understanding its structure and inheritance has been a useful support for species identification and utilization. The material was12accessions (XJ-14~14and XJ-Baicheng) provided by the Xinjiang (XJ) Agricultural Academy, and13accessions (ZS-2~16) collected in2011by the authors from Zhaosu (ZS), Xinjiang, China. This study aims to identify wild Brassica species collected from Xinjiang in China, through hybridization compatibility, seed coat microsculpturing (SCM), flow cytometry, and specific DNA markers. The results showed that wild accession ZS-11, ZS-13and XJ-Baicheng were hybridized relatively well with B.juncea, tetraploid and contained both A and B genomes specific loci, and that their SCM was reticulate pattern and similar to that of B. juncea. The other wild accessions were hybridized relatively well with Sinapis arvensis, diploid and carried S-genome specific DNA makers, and the seed coat of which was rugose pattern and similar to S. arvensis. It was worth mentioning that XJ-Baicheng maybe crop because of100%germination, large seed size, and yellow seed coat by maternal effect. Therefore, XJ-Baicheng could be an escaped cultivar of B. juncea species. Additionally, the characteristic of SCM was found to be inheritable in the interspecies hybrid progenies formed between Brassica species. It was implicated that the characteristic of seed coat pattern is related to genomic type and maternal effect. The result could provide theoretical support for the taxonomy of the wild Brassica species and is helpful in understanding the relationship between seed coat phenotypes and genetic characteristics.The sustainable utilization of the crop wild relatives in China needs to do more research.
引文
1. Olsson G. Species crosses within the genus Brassica Ⅱ. Artificial B. napes L. Hereditas,1960.46: 351-386
    2. Dier BW. Osborn TC. Genetic diversity of oilseed Bnassica napus germ plasm based on restriction fragment length polymorphism. Theor Appl Gene,1994,88:662-668
    3. Qian W, Liu R, Meng J. Genetic effects on biomass yield in interspecific hybrids between Brassica napus and B. rapa. Euphytica,2003,134 (1):9-15
    4. Anja B, Niklas K, Rod J, et al. Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor A ppl Genet,2011,123:1413-1423
    5. Sevis F, Snowdon RJ, Luhs W, et al. Molecular characterization of novel resynthesized rapeseed (.Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breeding,2003,122 (6):473-478
    6. Udall JA, Quijada PA, Polewicz H, et al. Phenotypic effects of introducing unadapted germplasm into a spring canola hybrid. Crop Science,2004,44:1990-1996
    7. Holbrook LA, Miki BL. Brassica crown gall tumorigenesis and in vitro trans formed tissue. Plant Cell Rep,1985,4:329-332
    8.卢长明,肖玲,武玉花.中国转基因油菜的环境安全性分析.农业生物技术学报,2005,3:267-275
    9.唐桂香,宋文坚,周伟军.转基因油菜的基因流及生态风险.应用生态学报,2005,16(12):2465-2468
    10.张海燕,周奕华,党本元,等.将商陆抗病毒蛋白(PAP) cDNA导入油菜获得抗病毒转基因植株.科学通报,1998,43(23):2534-2537
    11.官春云.油菜转基因育种研究进展.2002,中国工程科学,4(8):34-39
    12.何业华,熊兴华,官春云,等.根癌农杆菌介导TA29-Bamase基因转化甘蓝型油菜的研究.作物学报,2003,29(4):615-620
    13.陈锦清,朗春秀,胡张华,等.反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究.农业生物技术学报,1999,7(4):316-320
    14. Hall L, Topinka K, Huffman J, et al. Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Science,2000,48:688-694
    15. Lorenz G, Wackemagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev,1994,58:563-602
    16. Lutman PJW. The occurrence and persistence of volunteer oilseed rape (Brassica napus). Aspects of Applied Biology,1993,35:29-35
    17. Simard MJ, Legere A, Pageau D, et al. The frequency and persistence of canola (Brassica napus) volunteers in Quebec cropping systems. Weed Technology,2002,6:433-439
    18. Zhu YM, Li YD, Colbach N, Ma KP, Wei W, Mi XC. Seed losses at harvest and seed persistence of oilseed rape (Brassica napus) in different cultural conditions in Chinese farming systems. Weed Science,2012,52:317-326
    19. Momoh EJJ, Zhou WJ, Kristiansson B. Variation in the development of secondary dormancy in oilseed rape genotype under conditions of stress. Weed Res,2002,42:446-455
    20. Pekrun C, Hewitt JDJ, Lutman PJW, et al. Cultural control of volunteer oilseed rape. The Journal of Agricultural Science,1998,130 (2):155-163
    21. Chadoeuf R, Darmency H, Maillet J, et al. Survival of buried seeds of interspecific hybrids between oilseed rape, hoary mustard and wild radish. Field Crops Res,1998,58:197-204
    22. Rieger MA, Preston C, Potter T, et al. Gene flow from transgenic canola to wild radish-A model system to determine the risks. In:Proceedings of Gene Flow and Agriculture Symposium No.72. University of Keele, British Council,1999,131-136
    23.王建武,冯远娇,骆世明.转基因作物对土壤生态系统的影响.应用生态学报,2002,13(4):491-494
    24. Joaquima M. Gene flow assessment in transgenic plants. Plant Cell Tiss Organ Cult,2003,73 201-212
    25.聂呈荣,王建武,骆世明.转基因植物对农业生物多样性的影响.应用生态学报,2003,14(8):1369-1373
    26. Radosevich SR, Holt JS, Ghersa Cm. Weed Ecology:Implications for Weed Management (2nd edn). John Wiley and Sons, New York,1996
    27. Miguel AA. The Ecological Impacts of Transgenic Crops on Agroecosystem Health. Ecosystem Health,2006,1:14-23
    28. Lefol E, Danielou V, Darmency H. Predicting hybridization between t ransgenic oilseed rape and wild mustard. Field Crops Res,1996,45:153-161
    29.王舟,宋小玲,皇甫超河,等.野芥菜向抗除草剂转基因油菜基因流动的研究.南京农业大学学报,2008,31(4):49-54
    30. Moyes CL, Lilley JM, Casais CA, et al. Barriers to gene flow from oilseed rape(Brassica napus) into populations of Sinapis arvensis. Molecular Ecol,2002,11:103-112
    31. Mizushima U. Genome analysis in Brassica and allied genera.In:Brassica crops and Wild Allies: Biology and Breeding. Tokyo:Japan Scientific Societies Press,1980
    32.张国庆,周伟军,姚先伶,等.芸蔓属植物远缘杂交研究现状.山西农业科学,2001,29(4):25-30
    33.李俊,张春雷,李光明.转基因甘蓝型油菜向其近缘种的基因漂移之研究进展.中国农学通报,2009,25(3):28-35
    34.赵祥祥,陆卫平,戚存扣,等.通过杂交亲和性评估外源抗除草剂基因在十字花科植物间的流动.科学通报,2005,50(16):1731-1737.
    35. Lu CM, Kato M, Kakihara F. Destiny of a transgene escape from Brassica napus to B. rapa. Theoretical and Applied Genetics,2002,105:78-84
    36.刘忠松.油菜远缘杂交遗传育种研究进展.作物研究,1995,9(增刊):17-19
    37.刘忠松,官春云.油菜远缘杂交的主要障碍及其克服方法.作物研究,1995,9(4):1-7
    38.潘大仁.油菜(B. napus)属种间杂种后代的遗传研究.农业生物技术学报,1999,7(2)141-145
    39.刘晓霞.甘蓝型油菜杂交亲和性的研究.湖南农业科学,2007,(5):39-41
    40.孟金陵.芸苔属植物远缘杂交不亲和性的研究进展.中国油料,1987,(4):39-41
    41.孟金陵,羿国香.甘蓝型油菜与芥菜型油菜正反杂交的胚胎学研究.中国农业科学,1988,21(2):46-52
    42.刘忠松.油菜远缘杂交的遗传育种研究Ⅱ-甘监型油菜与芥菜型油菜杂交的亲利性及其杂种一代.中国油料,1994,16(3):1-5
    43. Jorgensen RB, Andersen B. Spontaneous hybridization between oilseedrape (Brassica napus) and weedy B. campestris (Brassicaceae):A risk of growing genetically modified oilseed rape. Amer. J.Bot,1994,81 (12):1620-1626
    44. Warwick SI. Legere A, Simard MJ, et al. Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol,2008,17: 1387-1395
    45. Warwick SI, Simard MJ, Legere A, et al. Hybridization between transgenic Brassica napus L. and its wild relatives:Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O. E. Schulz. TheorAppl Genet,2003,307:528-539
    46. Londo JP, Bollman MA, Sagers CL, et al. Changes in fitness-associated traits due to the stacking of transgenic glyph sate resistance and insect resistance in Brassica napus L. Heredity,2011, 3:1038-1045
    47. Gliddon C, Boudry P, Walker S. Gene flow-a review of experimental evidence. In:Enviromental impact of genetically modified crops. DETR, London.1999,65-79
    48. Thompson CE, Squire G, Mackay GR, et al. Regional patterns of gene flow and its consequences for GM oilseed rape. Gene Flow and Agriculture:Relevance for Transgenic Crops, BCPC Symposium Proceedings 1999,72:95-100
    49. Hiisken A, Dietz PA. Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (.Brassica napus L.). Transgenic Research,2007,16:557-569
    50. Mesquida J, Renard M. Study of the pollen dispersal by wind and of the importance of wind pollination in rapeseed(Brassica napus var. oleifera Metzger). Apidologie,1982,4:353-366
    51. Stringham GR, Downey RK. Effectiveness of isolation distance in seed production of rapeseed (Brassica napus).Agron Abstr,1982,136-137
    52. Lavigne C, Manac'h H, Guyard C, et al. The cost of herbicide resistance in white-chicory: ecological implications for its commercial release. Theoretical and Applied Genetics,1995,91: 1301-1308.
    53. Staniland BK, McVetty PBE, Friesen LF, et al. Effectiveness of border areas in confining the spread of transgenic Brassica napus pollen. Can. J. Plant Sci.,2000,80:521-526
    54. Timmons AM, O'brien ET, Charters YM, et al. Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp. Oleifera. Euphytica,1995-85:417-423
    55. McCartney HA, Lacey ME. Wind dispersal models of pollen from crops of oilseed rape(Brassica napus L.). Journal of Aerosol Science,1991,22:467-477
    56. Seeley TD. The Wisdom of the Hive. Boston:Harvard UniversityPress, London,1995
    57. Beckie HJ, Hall LM, Warwick SI. Impact of herbicide-resistant crops as weeds in Canada. British Crop Protection Conference,2001, Weeds:135-142.
    58. Scheffler JA, Parkinson R, Dale PJ. Evaluating the effectiveness of isolation distances for field plots of oilseed rape (Brassica napus)using a herbicide-resistance transgene as a selectable marker. Plant Breeding,1995,114:317-21.
    59. Jorgensen RB, Andersen B, Hauser TP, et al. Introgression of crop genes from oilseed rape to relative wild species-An avenue for the escape of engineered genes. Acta Hortic,1998,459: 211-217
    60. Roy NN. Species crossability and early generation plant fertility in interspecific crosses of Brassica. SABRAO J,1980,12:43-54
    61. Bing DJ, Downey RK, Rakow GFW. Potential of gene transfer among oilseed and their weedy relatives. GCIRC 8th International Rapeseed Congr.1991,1022-1027
    62. Scheffler JA, Dale PJ. Opportunities for gene transfer from transgenic oilseed rape(Brassica napus) to related species.Transgenic Res.,1994,3:263-278
    63. Scheffler JA, Parkinson R, Dale PJ. Frequency and distance of pollen dispersal from transgenic oilseed rape (Brassica napus). Transgenic Research,1993,2:356-364
    64. James C. Global review of commercialized transgenic crops.2005.
    65.方嘉禾,常如镇.中国作物及其野生近缘植物(经济作物卷).北京:中国农业出版社,2007,87
    66. UN. Genome-analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Japan J Bot,1935,7:389-452.
    67.刘后利.儿种芸薹属油菜的起源和进化.作物学报,1984,10(1):9-18.
    68.孟霞,旦巴,卓嘎,等.西藏野生油菜种质资源植株形态性状多样性分析.中国农学通报,2010,26(10):323-327
    69.马克平.作物野生近缘种的研究与保护需要重视.生物多样性,2012,20(6):641-642
    70. Maxted N, Kell SP. Establishment of a Global Network for the in situ Conservation of Crop Wild Relatives:Status and needs.fAO Commission on Genetic Resources for Food and Agricuiture. Rome, Italy.2009
    71.夏忠强.白芥×芥蓝杂种F1及芥蓝回交后代细胞遗传学分析.华中农业大学硕十论文,2008
    72. Hu Q, Ahdersen SB, Dixelius C, et al. Produetion of fertileinter generie somatic hybrids between Brassica napus and Sinapis arvensis for the enriehment of the rapeseed gene Pool. Plant Cell ReP,2002,21 (2):147-152
    73.赵福永,鲁军雄,黄杰.甘蓝型油菜与野生芥菜型油菜杂交子代的遗传分析.安徽农业科学,2001,2:718-720
    74.萨如拉,尼玛卓玛,次仁白珍.油菜种质的创新与研究.西藏农业科技,2010,32(3):20-22
    75.佟屏亚.油菜史话.农业考古,2004,1:140-143
    76. Vavilov NI. The origin, variation, immunity and breeding of cultivate plants. Chronika Botanica, 1949,13:1-54
    77.官春云.新疆野生油菜与野芥遗传性状的比较研究.作物学,1996,2:214-219
    78.李构,官春云,李少蓦,等.新疆野生油菜细胞遗传学研究-染色体的形态特征、过氧化物酶同工酶和mtDNA分析.遗传学报,1995,22(6):470-477
    79.王兆木,焦清亮.新疆油菜野生资源的地理分布及气候特点.中国油料,1988,(专辑):12-16
    80.王兆木,焦清亮,等.新疆野生油菜的考察和研究.新疆农业科学,1990,(5):204-206
    81.王兆木,焦清亮.新疆野生油菜的杂交亲和力、繁殖方法和细胞学研究.中国油料,1988,(专辑):40-43
    82.陈玉卿,徐希龙.新疆、云南野生油菜自交、群内互交及其与芸蔓属六个种杂交亲和性初步观察.中国油料,1988,(专辑):53-57
    83.伍晓明,许呢,王汉中等.甘蓝型油菜与新疆野生油菜属间杂种的获得与分子鉴定.中国油料作物学报,1999,21(4):15-16
    84.伍晓明,曾长立,胡琼,等.甘蓝型油菜与野芥属间体细胞融合杂种后代种皮纹饰亚微结构研究.中国油料作物学报,2009,31(2):123-127
    85.中国科学院.中国植物志.科学出版社,1987,33
    86.官春云.野芥(Sinapis avensis L.)在中国的发现及意义.作物研究,1995,9:39-40
    87.李栒.新疆野生油菜染色体研究进展作物研究,1995,9:15-16
    88.伍晓明,钱秀珍,李汝刚,等.利用RAPD标记研究新疆野生油菜与芸薹属油菜遗传亲缘关系.中国作物学会油料作物专业委员会.中国油料作物科学技术新进展.北京:中国农业科技出版社,1996,88-92
    89.伍晓明,许鲲,王汉中,等.新疆野生油菜、野芥和黑芥的遗传分化及系统演化研究.中国油料作物学报,2001,23(4):1-6
    90. Mulligan GA, Bailey LG. The biology of Canadian weeds.8. Sinapis arvensis L. Can. Jour. Plant Sci,1975,55:171-183
    91. Mohamed YY, Barringer SA, Splittstoesser WE, et al. The role of seed coats in seed viability. Bot Rev,1994,60:426-439
    92. Weber H, Borisjuk L, Wobus U. Controlling seed development and seed size in Vicia faba:a role for seed coat-associated invertases and carbohydrate state. Plant J,1996,10:823-834
    93. Heywood VH. Scanning electron microscopy in the study of plant materials. Micro,1969,1: 1-14.
    94. Buth GM, Ara R, Narayan A. Seed and coat anatomy of some members of tribe Arabideae (Brassicaceae). Phytomorphology,1987,37:341-348
    95.钱秀珍,伍晓明,徐秀珍.芸臺属油菜及其近缘属作物种皮纹饰亚微结构研究.作物学报, 1998,24:338-344
    96. Zeng CL, Wang JB, Liu AH, et al. Seed coat microsculpturing changes during seed development in diploid and amphidiploid Brassica species.Annals of Botany,2004,93:555-566
    97. Gunn CR. Seed topography in the Fabaceae. Seed Sci Tech,1981,9:737-757
    98. Gunn CR. Seeds of Leguminosae. In:Polhill RM, Raven PH, eds. Advance in Legume Systematics 2. Kew:Royal Botanic Gardens,1981:913-925.
    99. Barthlott W. Microstructural features of seed surfaces.In:Heywood VH, Moor DM, eds. Current. Concepts in Plant Taxonomy. London and Orlando:Academic Press.1984,95-105.
    100. Bragg LH, Bridges TL. Testa characterization of selected Caesalpinniodeae(Leguminosae)genera. Scan Electron Microsc,1984,4:1751-1758
    101.陈学林,景国海,郭辉.青藏高原东缘高寒草甸19种马先蒿属植物种皮纹饰特征及其生物学意义.草业学报,2007,2(16):60-68
    102. Balkwill K, Campbell YG. Taxonomic studies in Acanthaceae:testa microsculpturing in southern African species of Thunbergia. Bot Jour n Linn Soc,1999,131:301-325
    103. Vosa C G. Notes on Tulbaghia:5. Scanning electron microscopy of seed-coat patterns in nineteen species. J South African Bot,1983,49:251-259.
    104. Chuang Tl, Heckard LR. Seed morphology in Cordylanthus (Scrophulariaceae) and its taxonomic significance. A mer J Bot,1972,59 (2):258-265
    105. Vassal J. Scanning electron microscope studies on seed coat patterns of genus Acacia subgen. Aculeif erum Vassal. Candollea,1986,41:113-120
    106.鲁迎春,陈艺林.凤仙花属种子形态及其在分类学上的意义.植物分类学报,1991,29(3):252-257
    107.孙成仁.五味子科植物种子表面微形态及其系统学意义.植物分类学报,2002,40(2)97-109.
    108.中国科学院植物研究所.扫描电子显微镜在植物学上的应用.北京:科学出版社,1974
    109.吴国芳.植物学(下册).北京:高等教育出版社,1992
    110.张林斌,赵南先,葛学军.国产广义飞蛾藤属(旋花科)植物种子表面微形态及其分类学意义.武汉植物学研究,2003,21(2):95-102
    111.伍晓明,曾长立,胡琼,等.甘蓝型油菜与野芥属间体细胞融合杂种后代种皮纹饰亚微结构研究.中国油料作物学报,2009,31(2):123-127
    112. Vaughan JG, Whitehouse JM. Seed structure and the taxonomy of the Cruciferae. Bot J Linn Sci, 1971,64:383-409
    113. Gutterman Y. Seed Ger mination in Desert Plant. Berlin:Springerverlay,1993
    114. Sahai K. Macro- and micromorphology of seed surface of exotic pine species adapted in Indian Himalay an climate. Phytomorpholgy,1994,44 (1,2):31-35
    115. Gupta M, Pandey N, Sharma CP. Zinc deficiency effect on seed coat topography of Viciafaba L inn. Phyto mor phology,1994,44 (1,2):135-138
    116.马骥,王勋陵.骆驼蓬属种子微形态及其生态学与分类学意义.武汉植物学研究,1997,15 (4):323-327.
    117.马骥,李俊祯,孔红.我国沙区6种蒿属植物的种子微形态特征.中国沙漠,2002,22(6):586-590
    118. Weigend M, Grgerb A, Ackemann M. The seeds of Loasaceae subfam. L oasoideae (Cornales) Ⅱ:Seed morphology of "South Andean Loasas" (Loasa, Caiophora, Scyphanthus and Blumenbachia).Flora,2005,200:569-591
    119. Murley MR. Seeds of the Cruciferae of northeastern North America. Amer Midl Nat,1951,46: 1-81
    120. Koul KK, Nagpal R, Raina SN. Seed Coat Microsculpturing in Brassica and Allied Genera (Subtribes Brassicinae, Raphaninae, Moricandiinae).Ann Bot.2000,86:385-397.
    121.孙马,王跃进.中国野生葡萄染色体倍性研究.西北农业学报,2006,15(6):148-152
    122.朱道圩,杨宵,理莎莎,等.流式细胞仪在果树作物倍性鉴定上的应用.安徽农业科学,2006,34(24):6480-6482
    123. Friderique OS, Legave JM, Nicote MF, et al. Use of flow cytometry for rapid determination of ploidy level in the genus Actinidia. Sci Hort,1994,57:303-313
    124. Galbraith DW. Flow cytometric analysis of plant genomes. Methods in Cell Biol,1990,33: 549-561
    125. Dolevel J, Kubalvkovv M, Bartovs J. Flow cytometics and plant genome mapping. Chromosome Research,2004,12(1):77-91
    126.田新民,周香艳,弓娜.流式细胞术在植物学研究中的应用-检测植物核DNA含量和倍性水平.中国农学通报,2011,27(9):21-27
    127. Biradar DP, Lane RA. Heterosis and nuclear DNA content in maize. Heredity,1993,71:300-304
    128. Awoleye. Nuclear DNA COntent aid iul, itro in induced somatic polyploidization CaSSa Manlhot esuBenm Crantz breeding[J]. Euphytiea,1994,76:195-202.
    129. Awoleye. Nuclear DNA content aldiulitro in induced somatic polyploidization CaSSa Manlhot esuBenm Crantz breeding. Euphytiea,1994,76:195-202
    130.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29:1-10
    131.王俊景.芸薹属油菜核质基因组多态性研究.华中农业大学,2012,硕十论文
    132.宋廷宇,吴春燕,宋述尧,等.臺菜的花粉形态及其演化和分类的探讨.北方园艺,2010,18:144-147
    133.宋小玲,强胜.三种类型油菜(Brassica spp.)和野芥菜(B. juncea var. gracilis Tsen et Lee)杂交亲和性及F1的适合度-潜在基因转移的研究.应用与环境生物学报,2003,9(4)357-361
    134.郑卓.新疆野生油菜的利用研究.湖南农业大学,2005,博士论文
    135.孙万仓,官春云,孟亚雄,等.芸芥(Eruca sativa Mill.)与芸薹属(Brassica L.)3个油用种的远缘杂交.作物学报,2005,31(1):36-42
    136.徐书法,轩正英,冯辉.授粉条件对芸臺属作物种间杂交亲和性的影响.北方园艺,2009,12:1-6
    137.周禹,李燕,孙勃,等.芥蓝与甘蓝其他变种分类关系的研究.同艺学报,2010,37(7)1161-1168
    138. Sokal RR, Rohlf FJ. Biometry:the principles and practice of statistics in biological research. Third edition. W. H. Freeman and Company, New York,1995
    139.刘后利,付廷栋,杨小牛,等.苷兰型油菜自交不亲利系保持系及其恢复系的选育初报.华中农学院学报,1981,3:9-28
    140.陶国华,徐家炳,李银安:关于大白菜自交不亲和性稳定性问题的探讨.中国农业科学,1982,15(2):30-37
    141.方智远,孙培田,刘玉梅.甘蓝杂种优势利用和自交不亲和系选育的儿个问题.中国农业科学,1983,16(3):51-62
    142.孙万仓,范惠玲,叶剑,等.白菜型油菜自交亲和性变异分析.西北植物学报,2006,26(5):688-695
    143.范惠玲,孙万仓,武军艳,等.白芥自交亲和性分析.西北植物学报,2007,27(5):938-942
    144.刘忠松.油菜远缘杂交的遗传育种研究Ⅲ-甘蓝型油菜与芸薹属植物远缘杂交亲和性.作物研究,1994,3:27-30
    145.刘忠松,官春云.甘蓝型油菜与芥菜型油菜种间杂交的研究.中国油料作物学报,2001,23(2):82-86
    146. Dolezel J, Binarova P, Lucretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant,1989,31:113-120
    147. Galbraith DW. Flow cytometry and cell sorting:applications to higher plant systems. International Reviews in Cytology,1989,116:165-227
    148. Galbraith DW, Dolezel J, Lambert G, et al. DNA and ploidy analyses in higher plants. In:Current Protocols in Cytometry (Robinson JP et al., eds.), Wiley, New York,1998,7.6.1-7.6.22.
    149. Dolezel J, Greilhuber J, Suda J. Flow Cytometry with Plants:An Overview. In:Flow Cytometry with Plant Cells. Analysis of Genes, Chromosomes and Genomes. Wiley-VCH, Weinheim, Germany,2007,41-65.
    150. Lowe AJ, Moule C, Trick M, et al. Efficient targe-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theoretical and Applied Genetics,2004,108: 1103-1112
    151. Lowe AJ, Jones AE, Raybould AF, et al. Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Molecular Ecology Notes,2002, 2:7-11
    152. Szewc-McFadden AK, Kresovich S, Bliek SM, et al. Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theoretical and Applied Genetics,1996,93:534-538
    153. Raybould AF, Mogg RJ, Clarke RT, et al. Variation and population structure at micro-satellite and isozyme loci in wild cabbage (Brassica oleracea l.) in Dorset (UK). Genet Res Crop Evol, 1999,46:351-360
    154. Schelfhout CJ, Snowdon R, Cowling WA, et al. A PCR based B-genome-specific marker in Brassica species. Theoretical and Applied Genetics,2004,109:917-921
    155. Pankin AA, Khavkin EE. Genome-specific SCAR markers help solve taxonomy issues:a case study with Sinapis arvensis (Brassiceae, Brassicaceae).Am J Bot,2011,98 (3):e54-7
    156. La MM, Norris C, Sporle S. et al. Development of genome-specific 5S rDNA markers in Brassica and related species for hybrid testing. Genome,2010,53 (8):643-649
    157. Werker E. Seed Anatomy. Seed anatomy. Gebruder Borntraeger, Berlin, Stuttgart, Germany, 1997.
    158.马骥,王勋陵,赵松岭.骆驼蓬属种子微形态及其生态学与分类学意义.武汉植物学研究.1997,15(4):323-327
    159.萨仁,陈家瑞.豆科黄华属植物种子表面特征的研究.植物分类学报,2000,38(6):582-587
    160.杨金玲,郭庆梅,郑亦津.大豆属Soja亚属种皮微形态特征的研究.西北植物学报,2002,22(6):1465-1468
    161. Shirzadegan M, Robbelen G. Influence of seed color and hull proportion on quality properties of seed in Brassica napus L. Fette. Seifen. Anstrichmittel,1985,235-237
    162. Stringam GR. Inheritance of seed color in turnip rape. Can J Plant Sci,1980,60:331-335
    163. Tyagi MK, Chauhan JS, Kumar PR. Inheritance of seed coat colour in Indian mustard (Brassica juncea). Indian J.Agric. Sci,2000,70:784-785
    164. Xu A, Huang Z, Ma C, et al. Inheritance of seed colour and molecular markers linked to the seed color gene in Brassica juncea. Mol. Breed,2010,25 (1):57-65
    165. Shirzadegan M. Inheritance of seed colour in Brassica napus L. Z Pflanzenzuecht,1986,96: 140-146
    166. Van Deynze AE, Pauls KP. The inheritance of seed colour and vernalization requirement in Brassica napu using doubled haploid populations. Euphytica,1984,74:77-83
    167. Padmaja KL, Arumugam N, Gupta V, et al. Mapping and tagging of seed coat colour and the identification of microsatellite markers for marker-assisted manipulation of the trait in Brassica juncea. Theor. Appl. Genet,2005,111 (1):8-14
    168. Kuang A, Popova A, Xiao Y. et al. Pollination and embryo development in Brassica rapa L. in microgravity. International journal of plant sciences,2000,161:203-211
    169. Kuang A, Popova A, McClure G, et al. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity. International journal of plant sciences, 2005,166:85
    170. Wan L, Xia Q, Qiu X, et al. Early stages of seed development in Brassica napus:a seed coat-specific cysteine proteinase associated with programmed cell death of the inner integument. The Plant Journal,2002,30:1-10
    171.李崇辉,陈文艺.甘蓝型油菜黄籽分布与种皮颜色变化研究.西南农业大学学报,1998,20:256-259
    172. Hu Q, Anderson SB, Dixelius C, et al. Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool. Plant Cell Rep, 2002,21:147-152
    173.郑卓,李健,李栒.新疆野生油菜与甘蓝型油菜属间杂交亲和性及杂种分子鉴定.湖南农业大学学报,2006,32(5):465-468
    174.宋小玲,强胜.三种类型油菜(Brassica spp.)和野芥菜(B.juncea var.gracilis Tsen et Lee)杂交亲和性及F1的适合度-潜在基因转移的研究.应用与环境生物学报,2003,9(4):357-361
    175. Snowdon RJ, Winter H, Diestel A, et al. Development and characterisation of Brassica napus-Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria macuians Theor Appl Genet,2000,101 (7):1008-1014
    176. Warwick SI, Black LD. Guide to the wild germplasm of Brassica and allied crops. Part III. Interspecific and intergeneric hybridization in the tribe Brassicaceae (Cruciferae). Agriculture Canada Research Branch, Guide to Wild Germplasm of Brassica and Allied Crops (Tribe Brassiceae, Brassicaceae):Introduction,1993
    177. Mao S, HanY, Wu X, et al. Comparative genomic in situ hybridization (cGISH) analysis of the genomic relationships among Sinapis arvensis, Brassica rapa and Brassica nigra. Hereditas, 2012,149 (3):86-90
    178. Wang L, Li A, Huang, et al. The new record of Brassica nigra (L.). Acta Botanica Yunnanica. 4,1982
    179.杨杰,补万仓,武军艳,等.芥菜型油菜白交亲利性变异分析.西北农业学报,2009,18(2):131-135
    180.刘后利.儿种芸薹属油菜的起源和进化.作物学报,1984,10(1):9-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700