基于磁流变悬置的发动机主动隔振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机作为一种动力装置,长期以来广泛地被车辆、船舶、飞机等运载器所采用。受技术条件限制,目前还没有一种动力装置能够取代发动机为运载器提供可靠持久的动力。但是,由于气体爆炸的冲击力和曲柄连杆机构的惯性力作用,发动机不可避免地会产生多个不同振源不同振型的复杂振动,混合叠加后的振动具有宽频、多振源和多主频的特征,这使得发动机成为汽车上的主要振源,影响汽车行驶的舒适性。因此,发动机的隔振问题受到大量研究者的关注,目前在隔振领域主要采用安装橡胶悬置或液压悬置的方法来隔离发动机振动向车身传播。但传统的橡胶悬置或液压悬置仅能在较低频范围取得隔振效果,难以满足宽频隔振降噪的要求。近年来出现的磁流变液悬置,具有阻尼力可调、响应快、功耗低、结构简单等特点,是发动机主动隔振的重要发展方向之一。目前,国内外的磁流变悬置研究还处于起步阶段,对于该类悬置的动力学模型研究还未有一个公认的准确的力学模型;另一方面发动机振源具有脉冲性,工作频域广,使得整个隔振系统具有非线性、时变性的特性,这使得隔振方法的设计和实验充满难度。
     本文针对由重庆交通大学所搭建的4缸4冲程发动机磁流变隔振实验平台,在国家自然科学基金的支助下(基金号51005264)采用理论分析、数值仿真以及实验验证的方式,对磁流变悬置的多项式建模、隔振系统的动力学建模、隔振系统的物理参数识别方法、磁流变悬置的参数优化以及发动机主动隔振中混合控制器的设计等方面进行了研究。论文的主要研究工作和结论如下:
     ①阐述了对发动机进行振动隔离的意义,并通过回顾国内外学者和公司对发动机悬置研究的历史和所达到的成果,间接证明了将磁流变技术应用于发动机隔振系统的前景。介绍了发动机隔振控制系统设计环节中重要的系统参数识别,模型建立,优化设计,控制方法选择等四个方面的国内外研究进展。简述了目前将磁流变技术应用于发动机隔振存在的问题,基于这些问题,介绍了本文具有针对性的工作内容。
     ②分析了挤压式磁流变悬置的结构和工作原理,并介绍了该类悬置的恢复力简化计算公式及其构成。在此基础上根据磁流变悬置耗能原理,提出了一种悬置动特性测试方法。通过数值模拟实验验证了该方法的有效性。利用该方法对磁流变悬置进行现场试验,得到了悬置动特性参数的拟合方程。
     ③分析了单缸发动机的不平衡力构成,推导了4缸4冲程直列式发动机在均匀点火状态下的不平衡力计算公式。建立了具有广泛意义的6自由度发动机隔振系统力学模型,并在此基础上推导了该隔振系统的6自由度系统的动力学方程。并将该动力学模型应用于4缸4冲程发动机的隔振系统,进行动力学仿真,通过对仿真结果进行分析,得到了一些对设计发动机隔振系统有益处的结论。
     ④根据磁流变悬置的阻尼力可控性,提出了一种新的发动机动力总成悬置系统的物理参数动态识别方法。该方法能在识别发动机动力总成悬置系统的惯性参数的同时识别发动机不平衡力,并通过数值仿真以及现场实验的方法验证了该方法的可靠性。
     ⑤针对磁流变悬置隔振系统的阻尼力可控而刚度不可控的特点,利用遗传优化算法优化了各悬置橡胶剖面面积,从而达到了优化各悬置初始刚度的目的。
     ⑥针对发动机磁流变隔振系统的三自由度模型,设计了时变瞬时最优控制器。并利用数值仿真验证了该控制器的有效性。基于瞬时最优控制器中最优反馈与发动机转速、加速度的关系,设计了应用于真实隔振平台的模糊控制器。从实验结果来看,基于模糊控制的发动机实验平台能有效控制发动机垂向力向基座的传播。
As a power plant, engine has widely adopted in vehicles, ships, aircraft carriers. Bytechnical conditions, it does not exist another power plant can replace the engine whichprovide a reliable and lasting power to launch vehicle. However, due to the combustionof the fuel in the cylinder inertial force caused by the impact caused and reciprocatingmember, the engine will inevitably generates a plurality of different local oscillatordifferent vibration type complex vibration, the vibration of the mixed superimposedwith broadband, multiple vibration sources andmulti-frequency characteristics, whichmakes the engine become the car on the main vibration source, Therefore, the enginevibration isolation problems are the concern of a large number of researchers, mainlythe rubber suspension or hydraulic suspension to vibration isolation. Traditional therubber suspension or hydraulic suspension which can only be obtained in the lowerfrequency range isolation effect is difficult to meet the requirements of broadbandvibration isolation. Magnetorheological fluid suspension emerged in recent years, withdamping adjustable, fast response, wide dynamic range, low power consumption,simple structure, is an important development direction of one of the engine activevibration isolation. At present, the domestic and foreign magnetorheological suspensionresearch is still in its infancy, yet accurate mechanical model of a recognized model forthe dynamics of such suspension, engine vibration source has a pulse, wide workfrequency domain, the entire vibration isolation system is a nonlinear, time-varyingsystem, which makes the isolation method of design and experimental full difficulty.
     contrary to4-cylinder4stroke engine magnetorheological control isolation platformwhich bulit in ChongQing JiaoTong universtiy, this paper subsidied by the Foundationof Natural Science to reseach the theoretical analysis,numerical simulations,andexperiments are applied to study the dynamic characteristics of an engine vibrationisolation system,the engine parameter identification methodologies,the test andmodeling methodologies of an MRF mount,the isolation control methodologies,thesimulation of engine isolation system,as well as the design of the multifunctionlaboratory platform and the realization of the engine isolation system.The maincontributions of the dissertation include the following:
     ①The significance of the engine vibration isolation via MRF mount system isexplained.The engine mounts,engine vibration isolation dynamic models,engine parameters identification,and isolation control methodologies are reviewed.Moreover,the main research works aimed at the problems in engine vibration isolation via MRFmounts are addressed.
     ②The strucure and mechanical model of the MRF suspension bass on squeezemode and the The formula of the MRF mounts react force s analysied in this paper. Asuspension dynamic characteristics test method which is verifid By numericalsimulation has been founded. By use this method to field trials, the suspension dynamiccharacteristics parameters fitting equation is identified.
     ③A dynamic model and a kinematics equation are built,which can reflect thendpitch vibration of the main vibration states of a four-cylinder engine after the analysis ofengine excitation resource. Moreover,a single-layer isolation principle is applied todiscuss engine isolation performance through engine excitation,mount damping,andstiffness.These provide the basis for the design of the vibration isolation controller.
     ④Based on the damping controllability of the magneto-rheological damper andthe relativity between the unbalanced forces and rotate speed of the engine, a newmethod for identifying inertia parameters and unbalanced forces of the engine wasproposed by measuring engine mount accelerations and support reactions on differentdamper coefficients. Compared with traditional methods, this method has the merits oftargeted, repeated test without motor lifting, all parameters identified simultaneously.The effectiveness of this method was verified by a simulation modeling and the testingof a four-cylinder four-stroke powertrain. Results show that the recognition accuracy ofinertia parameters meets the engineering needs and the unbalance force identificationresults are more realistic compared to a simplified formula.
     ⑤To obtain the better Isolation effect of MRC in Broad Frequency, it is necessaryto optimize the initial stiffness. For Motor unbalanced force and isolation systemdumping were not considered in The Traditional Optimization method, the feature ofsemi-automatic can not be reflected. Adopt a four-cylinder four-cycle in-line dieselengine, use Genetic Algorithm to Found a new method which is suitable for Stiffnessoptimization on vehicle engine isolation via MRC mounts. The new method Applyisolation system possess smaller absolute force transmissibility in abroad frequencyrange and Standards compliant of Vibration intensity when suffering Impact load.
     ⑥Found a method which feedback system velocity、acceleration and engine speedby improve instantaneous-optima-algorithm. The simulation results show this controlmethod is more effective in different work condition than traditional instantaneous-optima-control. Bass on the relation ship between react force, rote speedand accelerate which can be goted by simulation result, a new fuzzy control method isfounded.
引文
[1] Y.H.Yu, N.G.Naganathan, R.V.Dukkipati. A literature review of automotive vehicleenginemounting systems[J]. Mechanism and Machine Theory,2001,36:123-142.
    [2] A.K.W.Ahmed, M.M.Haque, S.Rakheja. Nonlinear analysis of automotive hydraulic mountforisolation of vibration and shock[J]. Int.J.of Vehicle Design,1999,22(1):116-128.
    [3] B.Marc. A new generation of engine mounts[J]. SAE Trans.840259,1984(2):230-236.
    [4] E.C.Patrick, H.T.Gerd. Hydraulic engine mount characteristics[J]. SAE Trans.840407,1984(3):25-30.
    [5] M.Clark. Hydraulic engine mount isolation[J]. SAE Trans.851650,1985(6):1-7.
    [6] N.Vahdati, M.Ahmadian. Variable volumetric stiffness fluid mount design[J]. Shock andVibration,2004,11:21-32.
    [7] J.Rabinow, The Magnetic Fluid Clutch[J]. ATEE Trans,1948,67:1308~1315.
    [8] Shulman, Z.P. et al., Structure Physical Properties and Dynamics of Magneto-rheologicalSuspensions [J].Int.J. Mutiphase Flow,1986,12(6):935~955.
    [9]王立公.轿车动力总成液压悬置隔振降噪技术的理论和应用研究[D].吉林:吉林工业大学博士论文.1996.
    [10]梁天也,史文库,唐明祥.发动机悬置研究综述[J].噪声与振动控制.2007.(1):6-7.
    [11] W.I.Kordonsky, Magneto-rheological Effect As a Base of New devices and Technologies [J].Magnetism and Magnetic Materials,1993,122:395~398.
    [12] Ralf Bolter, Design Rules for MR Fluid Actuators in Different Working Modes[J].SPIE,1997,3045:148~159.
    [13] Kordonsky. Additional Magnetic Dispersed Phase Improve the Properties[C]. Proc.of the5thInternational Conference on ER and MR Fluids.
    [14]季晓刚.汽车动力总成悬置研究的发展[J].汽车科技.2004.(1):4-6.
    [15] H.C.Lord. Vibration dampening mounting[P]. The USA Patent,1778503, Oct.14,1930.
    [16] K.A.Browne, E.A.Taylor, Engine mount[P]. The USA Patent,2175825, Oct.10,1939.
    [17] E.W.Coleman, D.M.Alstadt.Bonding rubber to metal[P]. US Patent,2900292, Aug.18,1959.
    [18] J.H.Bucksbee.The use of bonded elastomers for energy and motion control in construction[J].Rubber World,1987:38-45.
    [19] D.A.Swanson. Active Engine Mounts for Vehicles[C]. SAE Paper,932432,1993.
    [20] Brochure.[EB/OL].http://www.loggers.nl/brochure.htm1.2005.3.
    [21] Navy Search Database-Search Results.[EB/OL].http://www.navysbir.tom.2005.5.
    [22]姜洪源,董春芳,敖宏瑞,等.航空发动机用金属橡胶隔振器动静态性能的研究[J].航空学报,2004,25(2):11-15.
    [23] EI-Demerdash, Crolla D A.Hydro-pneumatic slow-active suspension with and withoutpreview control[J]. Vehicle System Dynamics,1996,25:369~286.
    [24] Ping Lee. Elastomeric Engine Mount with Hydraulic Damping[P]. The U.S.A.Patent, No.4915365,1935.
    [25] Corcoran P.E., Ticks G.H.Hydraulic Engine Mount Characteristics[C]. SAE Paper,840407,1984.
    [26] Shoureshi R, Graf P L, LiHouston T. Adaptive engine mounts[C]. SAE paper,860549,1986.
    [27]季晓刚.汽车动力总成悬置研究的发展[J].汽车科技,2004,1:4-6.
    [28]范让林,吕振华.三代液阻悬置非线性动特性的试验研究及其参数识别方法[J].机械工程学报,2006,42(5):174-181.
    [29] K.Gun. Study of passive and adaptive hydraulic engine mounts[D]. Ohio:Ph.D. Dissertation,Ohio State University,1992.
    [30] R.Singh, G.Kim, P.V.Ravindra. Linear analysis of automotive hydro-mechanical mounts withemphasis on decoupler characteristics[J]. J.Sound Vibration,1992,158(2):219-243.
    [31] L.R.Miller, M.Ahmadian, Active mounts-a discussion of future technological trends[C].Inter-noise Conference, Toronto,Canada,1992:1-6.
    [32] W.C.Flower. Understanding hydraulic mounts for improved vehicle noise,vibration and ridequalities[J]. SAE paper,850976,1985.
    [33] M.Michael, W.S.Thomas. Methods for the reduction of the reduction of noise and vibration invehicles using an appropriate engine mount system[J]. SAE Paper,942414,1994.
    [34]郦光明.发动机用电流变液力悬置的研究[D].浙江:浙江大学硕士学位论文.2005.
    [35] M.Mizuguchi, T.Suda,S. Chikamori, et al. Chassis electronic control systems for theMitsubishi Gallant[J]. SAE Paper,840258,1984.
    [36] N.K.Petek. Actively Controlled Damping Engine Mounts[C]. The U.S.A.:SAEPaper.881785,1988.
    [37] S.B.Choi, H.J.Song. Vibration Control of a Passenger Vehicle Utilizing a Semi-ActiveEREngine Mount[J]. Vehicle System Dynamics,2002,37(3):193-216.
    [38]张少华,王娟,李美艳.电流变隔振器系统的键合图分析及动特性仿真[J].北京理工大学学报,2005,25(7):570-574.
    [39]李美艳,张少华.电流变隔振器工作特性的理论分析.中国机械工程,2002,13(17):20-22.
    [40]黄承修,许沧粟,楼少敏.半主动控制电流变液压悬置隔振性能仿真研究[J].功能材料,2006,37(5):840-843.
    [41]姜波,史文库,梁天也.电流变液发动机悬置建模及模糊半主动控制仿真分析[J].噪声与振动控制,2009,1:81-89.
    [42] S.B.Choi, H.J.Song. Vibration Control of a Passenger Vehicle Utilizing a Semi-active ERengine mount[J]. Vehicle System Dynamics.2002,37(3):193-216.
    [43]李维嘉,曹青松.船舶振动主动控制的研究进展与评述[J],中国造船.Vo.l48(No.2):2007.6.
    [44] J.D.Carlson, M.J.Chrzan, F.O.James. Magneto-rheological fluid devices[P]. US Patent, No.5398917,1995.
    [45] J.D.Carlson, M R.Jolly. MR fluid elastomer and foam devices[J]. Mechatronics,2000,10(2):555-569
    [46] J.D.Carlson, M.J.Chrzan, F.O.James. Magneto-rheological fluid devices[P]. US Patent,No.5398917,1995.
    [47] J.D.Carlson, M R.Jolly. MR fluid elastomer and foam devices[J]. Mechatronics,2000,10(2):555-569.
    [48] J.D.Carlson. Magnetorheological Materials Based on Alloy Particles[P]. U.S.Patent,No.5382373,1995.
    [49] N.H.Patrick, W.L.Mark, O.B.Mark. Reversed decoupler assembly for MR mounts[P]. TheU.S.A.Patent, No.20050173211A1,11Aug.2005.
    [50]郑坚,熊超,等.磁流变液研究进展及其在军事领域应用综述[J].军械工程学院学报,2004,16(1):6-10.
    [51] S.R.Hong, S.B.Choi. Vibration Control of a Structural System Using Magneto-RheologicalFluid Mount[J]. Journal of Intelligent Material Systems and Structures,2005,16(111-12):931-936.
    [52] V.P.Gade. Control of magnetorheological engine mount[P]. United States Patent,No6754571,2004.
    [53] O.A.Robert. Magnetorheological nanocomposite elastomer for releasable attachmentapplications[P]. United States Patent, No.6877193,2005.
    [54]张纪刚,吴斌,欧进萍.渤海某平台磁流变智能阻尼隔振控制[J].沈阳建筑大学学报,2006,22(1):68-72.
    [55]涂奉臣,陈照波,李华.一种改进型磁流变阻尼器用于宽频隔振研究[J].振动工程学报2007,20(5):484-488.
    [56]裘揆,陈乐生,陈大跃.力隔振试验系统的结构设计和性能分析[J].机械工程学报,2007,43(2):168-172.
    [57]李锐,陈伟民,廖昌荣,等.发动机磁流变悬置隔振模糊控制与仿真[J].系统仿真学报,2009,21(4):944-953.
    [58] O.Claes. Active automotive engine vibration isolation using feedback control[J]. JournalofSound and Vibration.2006,294:162-176.
    [59] M.S.Brian. Design and characterization of tunable magneto-rheological fluid-elasticmounts[D]. Virginia:Master Degree Dissertations of the Faculty of the Virginia PolytechnicInstituteand State University,2008.
    [60] S.Morishita, J.Mitsui. An electronically controlled engine mounts using electro-rheologicalfluids[J]. SAE Technical Paper Series922290,1992.
    [61] E.W.Williams, S.G.Rigby, J.L. Sproston,et al.Electrorhological fluids applied to as automotiveengine mount[J]. Non-Newtonian Fluid Mech,1993,47:221-238.
    [62] J.D.Carlson, M.J.Chrzan, F.O.James. Magneto-rheological fluid devices[P]. US Patent,No.5398917,1995.
    [63] N.K.Petek, R.J.Goudie, F.P.Boyle. Actively controlled damping in electro-rheologicalfluid-filled engine mounts[J]. SAE paper881785,1988.
    [64] J.M.Ginder, et al., Shear Stress in Magneto-rheological Fluids: Role of Magnetic Saturation[J].Applied Physics Letters,1994,65:3410~3418.
    [65]李占卫,李治军.磁流变阻尼器动力学模型的研究现状[J].电气技术与自动化,2012,41(1):142~145.
    [66]李海涛,等.磁流变液机理及行为描述的理论研究现状[J].材料导报,2010,24(2):121-124.
    [67]王鸿云,等.磁流变技术及应用研究[J].材料导报,2008,26(6):92-94.
    [68]周云,等.磁流变阻尼控制理论与技术[M].北京:科学出版社,2007.
    [69] Stanway R, Sproston. Non-linear modeling of an electrorheologi-cal vibration damper[J].Electrostatics,1987,20.
    [70] W.H.Hershcel, Bulkey R. Model for time dependent behavior of fluids[J]. Proc AmericanSociety of Testing Materials,1926,26,621.
    [71]汪建晓,孟光.磁流变阻尼器用于振动控制的理论及实验研究[J].振动冲击,2001,20(2):39-46.
    [72]周强,瞿伟廉.磁流变阻尼器的两种力学模型和实验验证[J].地震工程与工程振动,2002,22(4).
    [73] Wereley,Li Pang. Dynamic characterization and analysis of magnetorheogial dampersbehavior, SPIE,1998,3227:284-302.
    [74] D.R.Gamota, F.E.Filisko. Dynamic mechanical studies of electrorheological materialsmoderate frequencies[J]. J of Rheology,1991,35(3):399-425.
    [75] Y.K.Wen. Method of random vibration of hysteretic systems[J]. Journal of EngineeringMechanics Division, ASCE,102,1976.
    [76] S.J.Dyke, L.M.Jansen. Semi-active Control Strategies for MRDampers[J], Journal ofEngineering Mechanics,2000.
    [77] B.F.Spencer, Dyke S J. Phenomenological model for magnetorheological dampers[J]. J of EngMech,1997,123(3):230-238.
    [78] Yang G. Large-scale magnetorheological fluid damper for vibration mitigation:modeling,testing and control[D]. Ph.D Dissertation University of Notre Dame, Indiana, USA,2001.
    [79]翁建生,胡海岩.磁流变阻尼器的实验建模[J].振动工程学报,2000,13(4).
    [80]徐赵东,沈亚鹏.磁流变阻尼器的计算模型及仿真分析[J].建筑结构,2003,33(1).
    [81]徐赵东,李爱群,等.磁流变阻尼器带质量元素的温度唯象模型[J].工程力学,2005,22(2).
    [82] S B Choi, S K Lee. A hysteresis model for the field dependentdaming force of amagnetorheological damper. Jurnal of Sound and Vibration,2001,245(2):375-383.
    [83]廖昌荣,余淼,等.汽车磁流变减震器神经网络模型研究[J].中国公路学报,2003,16(4):94-97.
    [84]禹见达,陈政清,等.磁流变阻尼器的非线性参数模型[J].振动与冲击,2007,26(4):14-17.
    [85]侯保林,王炅,等.一种磁流变阻尼器非参数模型[J].南京理工大学学报,2005,26(5):560-564.
    [86]廖昌荣,骆静,李锐,等.基于圆盘挤压模式的磁流变液阻尼器特性分析与试验[J].中国公路学报.2008,24(2):17-19.
    [87] Rui Li, Wei-Min Chen, Chang-Rong Liao. Hierarchical fuzzy control for engine isolation viamagneto-rheological fluids mounts[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering.
    [88] S.B.Choi, S.K.Lee, Y.P.Park. A Hysteresis Model for the Field-dependent Damping Forceof aMagneto-rheological Damper[J]. Journal of Sound and Vibration,2001,245(2):375-383.
    [89] C.Schedlinski. A survey of current inertia parameter identification methods[J]. MechanicalSystems and Signal Processing.2001,15(1):189-211.
    [90] R.A.B.Almeida, A.P.V.Urgueira, N.M.M.Maia. Identification of rigid body properties fromvibration measurements[J]. Journal of Sound and Vibration,2007,299:884-899.
    [91]苏成谦,吕振华,大型刚体惯性参数识别的三线扭摆系统实验方法改进研究[J].工程力学,2007,24(7):59-71.
    [92] J.Toivola, O.Nuutila. Comparison of Three Methods for Determining Rigid Body InertiaProperties from Frequency Response Functions[M]. Proc.of the11th International ModalAnalysis Co-Conference, IMAC,1997.
    [93] H.Lee, Y.B.Lee, Y.S.Park. Response and excitation points selection for accurate rigid-bodyinertia properties identification. Mechanical Systems and Signal Processing[J].1999,13(4):571-592.
    [94] S.M.Pandit, Z.O.Hu. Determination of rigid body characteristics from time domain modal testdata[J]. Journal of Sound and Vibration,1994,177(1):31-41.
    [95]杨为,刘欣,籍庆辉.结构刚体惯性参数识别精度研究[J].振动与冲击.2008.27(5):105-108.
    [96]原春晖.机械设备振动源特性测试方法研究[D].湖北:华中科技大学博士论文,2006.
    [97] F.D.Bartlett. The use of an equivalent forces method for the experimental quantification ofstructural sound transmission in ship[J]. Journal of Sound and Vibration,1999,226(2):305-328.
    [98] N.Giansante. A dimensionless mobility formulation for evaluation of force and momentexcitation of helicopter structure[J]. Journal of Acoustical Society of America,1982,112(3):972-980.
    [99] G.Desanghere and R.Snoeys. An Inverse Method for the Estimation of Input Forces Acting OnNon-Linear Structural Systems[J]. Journal of Sound and Vibration,1985,275:953-971.
    [100] N.Ory, S.Tanabe, T.Tatsuno. Identification of forces generated by a machine under operatingcondition[C]. Proc.of3rd IMAC,1985:920-927.
    [101]张方.实模态和复模态空间内载荷识别的级数系数平衡法研究[J].中国机械工程.1996,2(1):27-42.
    [102]袁向荣.船舶机械振动源激励力的问接估算工程方法[J].中国舰船研究.2006,1(1):26-32.
    [103]袁向荣,朱石坚.利用频响函数求外部激励的实验验证[J].噪声与振动控制,1999,5:38-43.
    [104]高宝成.基于神经网络方法的结构荷载识别[J].振动、测试与诊断,1996,5:38-43.
    [105]张方.时域自回归函数的神经网络算法的不平衡力识别[J].中国机械工程.1997,11(1):37-45.
    [106] D.C.Karnopp. Active Damping in Road Vehicle Suspension System[J]. Vehicle SystemDynamics,1983,12:291-298.
    [107] S.B.Choi, H.J.Song. Vibration Control of a Passenger Vehicle Utilizing a Semi-active ERengine mount[J]. Vehicle System Dynamics.2002,37(3):193-216.
    [108] S.J.Elliott, C.C.Boucher, P.A.Nelson, The behavior of a multiple channel active controlsystem[J]. IEEE Transactions on Signal Processing,1992,40(5):1041-1052.
    [109] Y.W.Lee. Elastomeric Engine Mount with Hydraulic Damping[P]. The U. S. A. Patent,No.4915365,1935.
    [110]刘志刚.柴油机振动自适应有源隔离技术研究[D].黑龙江:哈尔滨工程大学博士论文,2000.
    [111] X.Feng, C.F.Lin, T.J.Yu, et al. Intelligent Control Design and Simulation Using Neural Networks[C]. AIAA Guidance,Navigation and Control Conference. A Collection of TechnicalPapers, Part I, New Orleans, LA, August11-13,1997:294-299.
    [112] S.B. Choi, C.C.Cheong. Performance evaluations of a mixed mode ER engine ount viahardware-in-the-loop simulation[J]. Journal of Inelligent Material systems and S ructures,1999,10(8):671-677.
    [113]郝志勇,付鲁华.内燃机整机振动部分施控系统理论与试验研究[J].内燃机学报.2000,18(3):230-234.
    [114]王向阳.内燃机振动主动控制的应用研究[D].江苏:江苏大学硕士论文,2003.
    [115]王曦.模糊控制器在内燃机整机振动主动控制中的应用研究[J].车用发动机,2002(,2):14-21.
    [116] J.D.Fadly, M.Wahyudi, W.F.Faris. Active Vibration Isolation Controller Using EctendedMinimal Resource Allocation Neural Network[C]. Proceedings of the InternationalConference on Computer and Communication Engineering, May13-15,2008Kuala Lumpur,Malaysia.2008:47-51.
    [117]王曦,朱建新,张德庆.等.神经网络在内燃机整机振动主动控制中的应用研究[J].车用发动机,2003,(1):44-45.
    [118]华春雷,靳晓雄,蔺玉辉.汽车发动机振动主动控制试验研究[J].振动、测试与诊断.2008,28(3):294-305.
    [119]董小闵.汽车磁流变半主动悬架仿人智能控制研究[D].重庆:重庆大学博士论文.2006.
    [120]潘存治,杨绍普,邢海军.磁流变阻尼器半主动隔振系统试验研究[J].石家庄铁道学院学报,2006,19(3):36-39.
    [121]郝志勇,付鲁华.内燃机整机振动部分施控系统理论与试验研究[J].内燃机学报.2000,18(3):230-234.
    [122]孙玉国.柔性藕多维耦合系统功率流传递及控制研究[D].山东:山东大学博士论文,2001.
    [123]王曦.内燃机整机振动主动控制中模糊控制方法的研究[D].江苏:江苏大学硕士论文.2003.
    [124]朱石坚,何琳.船舶机械振动控制[M].北京:国防工业出版社.2006.
    [125]邹华.航空发动机振动试验技术及试验测试系统软件的研发[D].陕西:西北工业大学硕士论文,2006.
    [126]王立公.轿车动力总成液压悬置隔振降噪技术的理论和应用研究[D].吉林:吉林工业大学博士论文,1996.
    [127]梁天也,史文库,唐明祥.发动机悬置研究综述[J].噪声与振动控制,2007,1:6-7.
    [128]季晓刚.汽车动力总成悬置研究的发展[J].汽车科技,2004,1:4-6.
    [129] Brochure[EB/01].http://www.loggers.nl/brochure.html.2005.3.
    [130] Y.H.Yu,N.G.Naganathan,R.V.Dukkipati. A literature review of automotive vehicle enginemounting systems[J].Mechanism and Machine Theory,2001,36:123-142
    [131]张新刚.磁流变阻尼器在结构振动控制中的应用研究[D].哈尔滨:哈尔滨工程大学硕士论文,2004.
    [132] Ping Lee.Elastomeric Engine Mount with Hydraulic Damping[P]. The U. S. A. Patent,No.4915365,1935.
    [133] P.E.Corcoran, G.H.Ticks. Hydraulic Engine Mount Characteristics[C]. SAE Paper,840407,1984.
    [134] R.Shoureshi, P.L.Graf, T.LiHouston. Adaptive engine mounts[C]. SAE paper,860549,1986.
    [135]季晓刚.汽车动力总成悬置研究的发展[J].汽车科技.2004,1:4-6.
    [136]叶向好.汽车发动机动力总成悬置系统隔振性能的优化设计研究[D].浙江:浙江大学硕士论文,2005.
    [137] M.Michael, W.S.Thomas. Methods for the reduction of the reduction of noise and vibration invehicles using an appropriate engine mount system[J]. SAE Paper,942414,1994.
    [138]付华,傅周东.挤压式磁流变体减振器阻尼力的分析[J].机械工程学报,2003,39(2):62-65.
    [139]李美艳,张少华.电流变隔振器工作特性的理论分析[J].中国机械工程.2002,13(17):20-22.
    [140]姜波,史文库,梁天也.电流变液发动机悬置建模及模糊半主动控制仿真研究[J].噪声与振动控制,2009,1:81-89.
    [141]严济宽.机械振动隔振技术[M].1987
    [142] FAN Ranglin, LU Zhenhua. Fixed points on the nonlinear dynamic properties of hydraulicengine mounts and parameter identification method: Experiment and theory [J]. Journal ofSound and Vibration2007,305(4):703–727.
    [143] A.FREGOLENT A. Identification of rigid body inertia properties form experimental data[J].Mechanical Systems and Signal Processing,1996,10(6):697~709.
    [144] D.PANDIT, Z.O.HU. Determination of rigid body char-acteristics from time domain modaltest data[J].Journal of Sound and Vibration,1994,177(1):31~41
    [145]郭峰,吕振华,侯之超.动力总成刚体惯性参数的识别方法研究[J].汽车技术,2004,(8):17~21.
    [146] KLOEPPER R, OKUMA M. Experimental identification of rigid body inertia properties usingsingle-rotor unbalance excitation[J].Multi-body Dynamics2009,223(1):293-308
    [147] ANDOH F. Moment of Inertia Identification Using the Time Average of the Product of TorqueReference Input and Motor Position[J].transactions on power electronics,2007,22(6):2534-2542.
    [148]苏成谦,吕振华.大型刚体惯性参数识别的三线扭摆系统实验方法改进研究[J].工程力学2007,24(7):59-71.
    [149]李锐,陈伟明.发动机磁流变悬置隔振模糊控制与仿真[J].系统仿真学报.2009,21(4):944~947
    [150]李锐,陈伟民,廖昌荣.等.基于磁流变技术的发动机隔振控制[J].机械工程学报.2009,45(3):183~190
    [151]史文库,郑瑞清.主动控制电致伸缩液压悬置隔振特性仿真[J].吉林大学学报(工学版),2005,35(2):117-121.
    [152]史文库,蔡俊.主动控制式电磁液压悬置隔振性能研究[J].噪声与振动控制,2006,(6):1-5.
    [153]李维嘉,曹青松.船舶振动主动控制的研究进展与评述[J].中国造船.Vo.l48(No.2):2007.6.
    [154] D.C.Karnopp. Active Damping in Road Vehicle Suspension System[J]. Vehicle SystemDynamics,1983,12:291-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700