电磁式主被动复合隔振器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技的发展,越来越多的场合对振动环境提出了高要求,振动控制技术在现代生产、生活中日益受到人们的重视,取得了较为丰硕的理论研究成果,并已成功应用于建筑结构抗震、机械结构减振控制、精密机械、仪器及平台稳定控制以及车辆等交通工具的舒适性改善等诸多工程领域中。传统的被动隔振技术高频减振的效果显著,但低频减振效果却不甚理想,已经不能满足减振性能的高要求。
     针对这一现状,本文以水下安静型航行器的减振降噪为主要实际背景,结合主、被动隔振各自的优点,开展了电磁式主被动复合隔振器的设计及其控制策略的研究工作。主要包括以下几个方面:电磁式主被动复合隔振器的设计与实现,基于FIR滤波器的自适应前馈控制律设计,考虑内部反馈下的自适应前馈控制律设计,主被动复合隔振性能评价方法研究以及在隔振模拟实验平台上的主动隔振实验研究。
     隔振器件是主被动复合隔振系统的关键组成部分。本文结合现有隔振理论的研究成果,提出了一种电磁式主被动复合隔振器的基本设计原则。在此基础上,以某型隔振器的设计为例,对单级被动隔振系统的特性进行了分析,并分析了引入主动隔振对单级隔振系统特性的影响,指出:当激振频率与自然频率的比值大于临界频率比时,主动隔振不会加剧隔振对象的振动,甚至在自然频率附近对隔振对象的振动还有明显的抑制作用。进而提出了一种根据动力设备负载质量,激振频段下限频率值以及临界频率比设计主被动复合隔振系统的方法,完成了主被动复合隔振器主、被动环节的设计工作。
     在电磁作动单元的设计上,本文采用磁路分析方法给出了匀强磁场假设下电磁作动单元的解析模型,通过Ansoft仿真分析并结合作动器设计制作经验,给出了电磁作动单元解析模型的适用范围。在此基础上,提出了主被动复合式隔振器电磁作动单元的设计指标及步骤。根据设计步骤,给出了使得作动器重量最小时电磁作动单元的尺寸。之后,分析了线圈时间常数对作动器性能的影响,讨论了在线圈匝数一定的情况下,线圈厚度与电磁铁重量、空心线圈时间常数之间的关系,并引入电流环矫正技术加以补偿。最后,对隔振器样机进行了电磁力实验建模,结果表明电磁作动器的性能达到了设计目标。
     目前,应用最广泛的简谐振动主动控制方法是基于FXLMS算法的自适应前馈控制算法,但是这种算法的应用需要对次级通道建模,这增加了系统实现的复杂度,且建模误差可能导致算法发散。为此,本文结合FXLMS算法和LMS算法的几何分析结果,改进了一种无需建立次级通道模型的LMS控制算法。分析了该算法直接用于多频振动控制可能存在的不足,将算法拓展到了多频振动控制的情形。
     振动主动控制中内部反馈通道的存在使得自适应滤波器的参考信号变得不稳定,在这种情况下自适应滤波器采用FIR结构是有问题的,算法的稳定性难以保证。为此,引入了同时具有零点和极点滤波器结构的FULMS算法,将其推广到了不考虑次级通道模型的情况,给出了无需建立次级通道模型的IIR-LMS算法,结合Ljung提出的常微分方程方法分析了算法的收敛性能,给出了内部反馈存在与否时算法的稳定性条件,并以隔振模拟实验平台为对象进行了仿真验证。
     本文引入了一种同时具有零点和极点的全反馈型滤波器结构,推导了无需次级通道建模的全反馈IIR-LMS算法,并将其与一般的IIR-LMS算法进行了仿真比较;将全反馈IIR-LMS算法移植到需要建立次级通道模型的情况,给出了全反馈滤FULMS算法;分析了FXLMS、FULMS以及全反馈FULMS算法中算子次序交换的影响,给出了交换误差的定义,通过估计交换误差的方法对全反馈FULMS算法进行修正,提出了基于交换误差的全反馈FULMS算法,并将修正算法与原算法进行了仿真比较。
     本文以典型隔振系统为对象,对几种传统的隔振性能评价指标,如力传递率、插入损失、振级落差、功率流等进行了分析比较,总结指出了各项传统隔振性能指标适用范围和优缺点。采用理论分析和数值模拟的方法研究了各种传统性能指标与隔振器理论设计指标之间的关系。在此基础上,提出了一种可操作性好,能够反映被动隔振和主动隔振对不同频段减振的贡献以及两者之间的相互影响的主被动复合隔振性能指标。最后,根据隔振模拟实验系统的构建情况对主被动复合隔振评价方法作了简化,使得该评价方法更为简便易行,利于工程实现。
     建立了一套隔振模拟实验系统,以电磁式主被动复合隔振器作为执行机构,设计了适用于电磁式主被动复合隔振器主动隔振控制律,采用改进的无需次级通道建模的LMS控制算法、多通道解耦控制算法以及无需次级通道建模IIR-LMS控制算法进行了振动主动控制实验。实验结果表明:本文研究的振动主动控制方法可以显著地提高隔振模拟实验系统在实验频段内的减振能力。
Along with the advances in modern science and technology, high requirement on vibration environment has been put forward in more and more fields. Vibration control technology is drawing increasing attention in modern production and life, and there has been plentiful and substantial achievements in this filed. It can be applied in seismic design of building structures, vibration and noise reduction of of the ship machinery structure, structural vibration control in aerospace, stabilization control of precision machinery, instruments and platform or ride comfort improvement of vehicle traffic tools etc. Traditional passive vibration isolation technology has a good high frequency vibration isolation effect, but the low frequency effect is not ideal. So it is unable to meet the requirements of high damping performance.
     In view of this situation, research in this dissertation is focused on how to design and control an electromagnetic active-passive composite isolator, combined with the advantages of active and passive vibration isolation, for which the vibration and noise reduction of underwater quiet type vehicle is a pratical example. The following contents are included:design and implement of electromagnetic active-passive composite isolator, design of adaptive feedforward controller based on FIR filter, design of adaptive feedforward controller when acoustic feedback exists, study on active-passive composite vibration isolation effect evaluation methods and active vibration control experiments on the experimental platform.
     Vibration isolation device is the key component of active-passive composite vibration isolation system. The basic design principles of an electromagnetic active-passive composite vibration isolator that combined with the existing vibration isolation theory are proposed. On the basis of these principles, the design process of an isolator is carried out. Characteristics on passive vibration isolation system and the influence of introducing active vibration isolation into vibration isolation system are analyzed in this dissertation. It is pointed out that when the ratio of excitation frequency and natural frequency is greater than the critical frequency ratio, the introduction of active vibration isolation will not exacerbate vibration of isolation object, even that the vibration amplitude will be inhibited near natural frequency. Then, a design method of active-passive composite isolation system based on the quality of power equipment, the lower frequency value of vibration frequency and the critical frequency ratio is derived. Finally, the active and passive links of an active-passive composite isolatior are designed.
     The analytic model of electromagnetic suspension element is presented under the assumption of uniform magnetic field, and its application filed is concluded based on the Ansoft simulation results and the design experience. Then, the design requirements and steps of an active-passive composite isolator electromagnetic actuating element are derived. According to the design steps, the electromagnetic actuating element is designed under the restriction of minimizing quality. Considering the influence of coil time constant on the actuator performance, relationship in the thickness of coil, the weight of electromagnet element and the time constant of coil is derived, and the current loop correction technology is introduced. Finally, the electromagnetic force model of the novel isolator is established, which shows that electromagnetic actuator can reach the design object.
     At present, the filtered-x LMS algorithm is the most common algorithm applied in harmonic vibration active control due to its ease of implementation. Most available active noise control algorithms, including the filtered-x LMS algorithm, require identification of the secondary path. It can cause several problems to the control system:1) it increases the complexity of the control system implementation;2) errors in identifying the secondary path may cause the adaptive algorithm to diverge. Combine with the geometric analysis of filtered x-LMS algorithm and LMS algorithm, a modified LMS algorithm that requires no secondary path identification is put forward. Finally, the shortage that the algorithm used for multi frequency vibration control is analysised, and the algorithm is expanded by utilizing multiple parallel adaptive filters.
     The reference signal for the adaptive filter can become unstable when acoustic feedback exists. The adaptive FIR filter can't be used in this case, because it is difficult to guarantee the stability of the algorithm. The filtered-U LMS algorithm which has both zeros and poles is introduced to address the problem of acoustic feedback, then a modified algorithm namely the IIR-LMS algorithm that requires no secondary path identification is proposed. The ODE method is used to study the asymptotic behavior of the IIR-LMS algorithm, considering general stationary disturbances and with/without acoustic feedback. Finally, the IIR-LMS algorithm shows good performance in simulation experiment.
     A "full-feedback" structure with both zeros and poles is introduced into adaptive IIR filter. The full-feedback IIR-LMS algorithm are proposed and compared with the general IIR-LMS algorithm, and then the full-feedback filter-U LMS algorithm is derived. A commutation error (CE) that results from a difference associated with the altered sequence in real active noise control (ANC) applications as compared with that at the derivation stage is considered. A new adaptive algorithm is developed as full-feedback filtered-U LMS/CE in an aim to eliminate the CE-associated disturbance and to liberate the restriction of slow adaptation imposed on the existing adaptive algorithms in the ANC applications. Computer simulations show that the performance of convergence is improved for the new adaptive algorithm as compared with that of the conventional algorithm.
     Several traditional isolation performance indices, such as force transmissibility, insertion loss, vibration level difference, power flow, are summarized on a typical isolation system. The relationship between traditional performance indices and theory design targets of the isolator is study through theoretical analysis and numerical simulation. Then, a new performance index for active-passive composite isolator, which is based on the correction of vibration level difference, is proposed. It can reflect contributions of the passive vibration isolation and active vibration isolation in different frequency bands as well as the interation between the two indices. Finally, the new performance index is simplified according to the vibration isolation simulation experiment system, so that it is simple for engineering realization.
     At the end of this dissertation, a vibration isolation simulation experiment system, for which the electromagnetic active-passive composite isolator is the actuator, is established. Then, active vibration control experiments, for which the modified LMS algorithm that requires no secondary path identification, the multi channel decoupling control algorithm and the IIR-LMS algorithm that requires no secondary path identification are used, are carried out. Experiment results demonstrate that that the damping effect of vibration isolation simulation experiment system in experimental frequency band is significantly improved by active vibration control methods proposed in this paper.
引文
Abreu G L C M, Ribeiro J F, Steffen V.2003. Experiments on optimal vibration control of a flexible beam containing piezoelectric sensors and actuators [J]. Shock and Vibration,10(5-6): 283-300.
    Abdel-Rohman M.1978. Structural Control by Pole-assignment Method. [D]:[Ph. D.]. Mechanical Engineering Department, MIT Leipholz H H E. Proc.of the ASCEJ.of the Eng.M ech.Div., Vol.104, No.EM5.
    Akhtar M T, Mitsuhashi W.2011. Variable step-size based method for acoustic feedback modeling and neutralization in active noise control systems [J]. Applied Acoustics,72(5):297-304.
    Bu X Z, Lin Y, Su Z Q, et al.2003. Active control of a flexible smart beam using a system identification technique based on ARMAX [J]. Smart Materials and Structures,12(5): 845-850.
    Banks H T, del Rosario R C H, Tran H T.2002. Proper orthogonal decomposition-based control of transverse beam vibrations:Experimental implementation [J]. IEEE Transactions on Control Systems Technology,10(5):717-726.
    Bai M R, Liu W.2002. Control design of active vibration isolation using μ-synthesis [J]. Journal of Sound and Vibration,257(1):157-17.
    Burgess J C.1981. Active adaptive sound control in a duct:A computer simulation [J]. Aounst. Soc.Amer.,70:715-726.
    Bjarnason E.1994. Algorithms for active noise cancellation without exact knowledge of the error-path filter [C]. Proc. IEEE Inte. Symp. on Circuits and Systems:573-576.
    陈光.2006.密集模态挠性结构的多变量实验辨识及自适应逆控制[D]:[博士].合肥:中国科学技术大学.
    陈克安.2003.有源噪声控制[M].北京:国防工业出版社.
    陈大跃,胡宗武,范祖尧.1991.振动控制的特征结构配置[J].振动工程学报,4(2):75-81.
    Costa M H, Bermudez C M.2006. A robust variable step size algorithm for LMS adaptive filters [A]. IEEE, ICASSP:93~96
    Chopra I.1996. Review of Current Status of Smart Structures and Integrated Systems [C]. Proceedings of SPIE-Volume2717, Smart Structures and Materials:SmartStructures and Integrated Systems:20-62.
    陈绍青,王永.2010.基于磁悬浮隔振器的主动隔振控制实验研究[J].东南大学学报(自然科学版),2010,S1:61-66.
    Daley S, Johnson F A, Pearson J B, et al.2004. Active vibration control for marine applications [J]. Control Engineering Practice, Vol.12:465-474.
    Daley S, Hatonen J, Owens D H.2006. Active vibration isolation in a "smart spring" mount using a repetitive control approach [J]. Control Engineering Practice, Vol.14:991-997.
    DeBrunner V E, Dayong Z.2003. Active nonlinear noise control with certain non-linearities in the secondary path [C]. Statistical Signal Processing,2003 IEEE Workshop on:2053-2057.
    段小帅,梁青,王永.2010.磁悬浮隔振器的自寻优前馈控制[J].船舶力学,14(7):795-799.
    段小帅.2010.磁悬浮隔振器的动态模型与自收敛控制[D]:[硕士].合肥:中国科学技术大学.
    Eriksson L J, Allie M C, Greiner R A.1987. The selection and application of an IIR adaptive filter for use in active sound attenuation [J]. IEEE Trans.on Acoustics, Speech and Signal Processing, ASSP-35:433-437.
    范威,郭云松,章艺等.2008.一种电磁作动器的有限元分析与测试[J].噪声与振动控制,3:27-28.
    Fuller C C, Elliott S, Nelson P A.1996. Active Control of Vibration [M]. Landon:Academic Press Limited.
    Feintuch P L, Bershad N J, Lo A K.1993. A frequency domain model for "filtered" LMS algorithms-stability analysis, design, and elimination of the training mode [J]. IEEE Trans. On Signal Processing,41:1518-1531.
    Feintuch P L.1976. An adaptive recursive LMS filter [C]. Proc IEEE,64:1622-1624.
    范威.2008.主动隔振器及其自适应控制方法研究[D]:[硕士].上海:上海交通大学.
    Goyder H G D, White R G.1980. Vibrational power flow from machines into built-up structures, part I:introduction and approximate analyses of beam and plate-like foundations [J]. Journal of Sound and Vibration,68 (1):59-75.
    Gardonio P, Elliott S J.2000. Passive and active isolation of structual vibration transmission between two plates connected by a set of mounts [J]. Journal of Sound andvibration,237 (3): 483-511.
    Gardonio P, Elliott S J.1997a. Active isolation of structural vibration on a multiple degree of freedom system, Part 1:The dynamics of the system [J]. Journal of Sound and Vibration,207: 61-93.
    Gardonio P, Elliott S J.1997b. Active isolation of structural vibration on a multiple-degree of freedom system, Part 2:Effectiveness of active control strategies [J]. Journal of Sound & Vibration,207:95-121.
    谷源涛,唐昆,崔慧娟,等.2003.独立假设下的最优变步长LMS模型和算法[J].中国科学,33(8):760-768.
    谷源涛,唐昆,崔慧娟.2003.步长选择定理及其应用一平行变步长LMS滤波器组算法[J].中国科学,33(10):947-953.
    Gontijo W A, Tobias O J, Seara R, et al.2006. FxLMS algorithm with variable step size and variable leakage factor for active vibration control [A]. SBrT:572-575.
    何琳,姚耀中.2007.潜艇声隐身技术研究进展[J].船舶科学技术,29(5):29-42.
    Harris C M.1995. Shock and vibration handbook [M]. New York:Mcgraw-Hill.
    Howard C Q, Hansen C H.2006. Active vibration isolation experiments using translational and rotational power transmission as a cost function [J]. Journal of the Acoustical Society of America,120 (4):2004-2016.
    Haykin S.2002. Adaptive Filter Theory [M].4th ed, Prentice Hall:Pearson Education, NJ.
    Itik M, Salamci M U, Ulker F D.2005. Vibration suppression of an elastic beam via sliding mode control [C]. Springer Proceedings in Physics, Vibration Problems ICOVP:237-242.
    Jenkins M D, Nelson P A.1993. Active isolation of periodic machinery vibrations [J]. Journal of Sound & Vibration,166:117-140.
    Jones R W, Olsen B L, Mace B R.2007. Comparison of convergence characteristics of adaptive IIR and FIR filters for active noise control in a duct [J]. Applied Acoustics,68(7):729-738.
    Kim S M, Pietrzko S, Brennan M J.2008. Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber [J]. IEEE Transactions on Control Systems Technology, 16(2):245-254.
    Karni S, Zeng G S.1989. A new convergence factor for adaptive filters [J]. IEEE Transaction on Circuit and Systems,36(7):1011-1012.
    Kuo S M, Morgan D R.1996. Active noise control systems [M]. America:John Wiley & Sons.
    Kim H W, Park H S, Lee S K, et al.2011. Modified-filtered-u LMS algorithm for active noise control and its application to a short acoustic duct [J]. Mechanical Systems and Signal Processing,25(1):475-484.
    Lin C E, Ker C C, Chen C L, et al.2008. Hybrid Magnetic Suspension Actuator for Motion Control Apparatus [C]. IEEE International Conference on Industrial Technology:1-8.
    Lee B H, Lee C W.2009. Model based feed-forward control of electromagnetic type active control engine-mount system [J]. Journal of Sound and Vibration,323:574~593.
    梁青,段小帅,陈绍青等.2010.基于滤波x-LMS算法的磁悬浮隔振器控制研究[J].振动与冲击,29(7):201-203.
    李盈颖,万建伟,周良柱.1999.一种改进的变步长归一化LMS算法[J].国防科技大学学报,21(1):94-96.
    Larimore M G, Treichler J R, Johnson C R.1980. SHARF:An algorithm for adapting IIR digital filters [J]. IEEE Trans. on Acoustics, Speech and Signal Processing,28:428-440.
    Liao C W, Lin J.2007. New FIR filter-based adaptive algorithms incorporating with commutation error to improve active noise control performance [J]. Automatica,43(2):325-331.
    Lin J, Liao C W.2008. New IIR filter-based adaptive algorithm in active noise control applications:Commutation error-introduced LMS algorithm and associated convergence assessment by a deterministic approach [J]. Automatica,44(11):2916-2922.
    Ljung L.1977. On positive real transfer functions and the convergence of some recursive schemes [J]. IEEE Transactions on Automatic Control,22(4):539-551.
    Massaki,蔡立新译.1977.混合型主动隔振装置的研究[J].船舶设计通讯,2:45-53.
    Mak C M, Su J X.2002. A power transmissibility method for assessing the performance of vibration isolation of building services equipment [J]. Applied Acoustics,63 (12): 1281-1299.
    马志刚,王永,王建宇.2006.柔性结构振动主动控制器的μ综合设计方法[J].中国科学技术大学学报,36(5):507-511.
    Moreira J O F, Arruda J R D, Inman J D.2001. Design of a reduced-order H∞ controller for smart structure satellite applications[J]. Philosophical Transactions:Mathematical, Physical and Engineering Sciences,359(1788):2251-2269.
    Mikhael W B, W F, Kang G, et al.1984. Optimum adaptive algorithms with applications to noise cancellation [J], IEEE Transaction on Circuits and Systems,31(3):312-315.
    Mosquera C, Fernando P G. 2000. Convergence analysis of the multiple-channel filtered-U recursive LMS algorithm for active noise control [J]. Signal Processing,80(5):849-856.
    孟令雷.2009.磁悬浮隔振器的建模与控制[D]:[硕士].合肥:中国科学技术大学.
    Montazeri A, Poshtan J.2011. A new adaptive recursive RLS-based fast-array IIR filter for active noise and vibration control systems [J]. Signal Processing,91(1):98-113.
    Mottershead J E, Tehrani M G, James S, et al.2008. Active vibration suppression by pole-zero placement using measured receptances [J]. Journal of Sound and Vibration,311(3-5): 1391-1408.
    Norwood C.1998. Submarine acoustic signature-a platform perspective [A]. Submarine Science and Technology Conference Proceedings, Stirling, Australia.
    Owens D H, Hatonen J, Daley S.2007. Robust gradient-based Iterative Learning Control [C]. IEEE International Conference on Networking, Sensing and Control:163-168.
    Park S H.2009. Control of Hybrid-type Three-pole Active and Permanent Magnetic Bearing System Using Redundant Coordinates [D]:[Ph.D.]. Korea:School of Mechanical, Aerospace and Systems Engineering.
    Pan J, Pan J Q, Hansen C H.1992. Total power flow from a vibrating rigid to a thin panel through multiple elastic mounts [J]. Journal of Acoustic Society of America,92(2):895-907.
    彭程,王永.2007.柔性梁降阶H∞控制实验研究[J].振动与冲击,26(10):64-67.
    Pan J, Hansen C H.1993. Active isolation of a vibration source from a thin beam using a single active mount [J]. Acoust. Soc. Am,94(3):1425-1435.
    Paulo S R D.2008. Adaptive Filtering Algorithms and Practical Implementation[M].3 ed. New York:Springer Science+Business Media, LLC.
    Rupp M.1997. Saving complexity of modified Filtered-X-LMS and delayed update LMS algorithms [J]. IEEE Trans. on Circuits and Systems II,44:57-60.
    孙红灵.2007.振动主动控制若干问题的研究[D]:[博士].合肥:中国科学技术大学.
    Sethi V, Song G 2005. Multimodal vibration control of a flexible structure using piezoceramics [C], Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA:851-856.
    Scribner K B, Sievers L A.1993. Active narrow band vibration isolation of machinery noise from resonant substructures [J]. Journal of Sound & Vibration,167:17-40.
    Sommerfeldt S D.1990. Adaptive control of a two stage vibration isolation mount [J]. Acoust. Soc. Am,88(2):938-944.
    Sun X, Chen D S.2002. A New infinite impulse response Filte-based adaptive algorithm for active noise control [J]. Journal of Sound and Vibration,258(2):385-397.
    Snyder S D.1994. Active control using IIR filters-a second look [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing,2:241-244.
    Tarrab M.1988. Convergence and performance analysis of the normalised LMS algorithm with uncorrelated Gaussian data [J]. IEEE Transactions on Information Theory, IT-34:680-691.
    Tian Y, Tang L X, Wen K S.2010. Study on electromagnetic actuator active engine mount with adaptive feed-forward control [C]. Informatics in Control, Automation and Robotics (CAR), 2010 2nd International Asia Conference on:112.
    吴赵发.1995.潜艇辅助机械的减振与消声技术的发展[J].机电设备,1:1-1.
    Walrod J.1999. Sensor and Actuator Networks for Acoustic Signature Monitoring and Control [A]. Undersea Defence Technology Nice, France.
    Winberg M, Hansen C, Claesson Ⅰ, et al.2003. Active control of engine vibrations in a collins class submarine [C]. Blekinge Institute of Technology Research Report No 2003:11.
    王永,董卓敏,李红征,等.2002.柔性结构振动主动控制中传感器/执行器位置优化研究[J],南京理工大学学报(自然科学版),12(26):30-35.
    王存堂,唐建中,费鸣,等.1998.大型空间柔性结构主动振动控制实现中的若干问题[J],振动与冲击,17(1):80-87.
    Wang S G, Yeh H Y, Roschke P N.2001. Roschke et al. Robust control of structural system with parametric and unstructured uncertainties [J]. Journal of Vibration and Control,7(5): 753-772.
    Winberg M, Johansson S, Lago T L.2001. Active Control of Engine Induced Noise in a Naval Application [J], ICSV,8:294-300.
    闻邦椿,艾廷廷,等.2004.内燃机整机振动模糊自适应主动控制技术研究[J].内燃机工程,25(6):55-59.
    王永,张国庆,陈光.2005.斯特林制冷机的自寻优前馈振动控制[J].振动工程学报,18(3):261-265.
    Widrow B, Shur D, Shaffer S.1981. On adaptive inverse control [C]. Proc.15th Asilomar Cof.: 185-189.
    Widrow B, Mccool J M.1976. A comparison of adaptive algorithms based on the methods of steepest descent and random search [J]. IEEE Transactions on Antennas and Propagation, 24(5):615-637.
    Wang A K, Ren W.1999. Convergence analysis of the filtered-U algorithm for active noise control. Signal Processing,73(3):255-266.
    王玉松,谭达明.1996.主动隔振控制系统的研究[J].微机发展,2:3-6.
    夏银山.2003.国外核潜艇关键技术发展研究[J].舰船科学技术,25(4):24-28.
    肖斌,杨铁军,刘志刚.2006.柴油机主动隔振液压执行器线性化控制仿真研究[J].哈尔滨工程大学学报,27(2):212-217.
    岳连玉.2003.海上武器装备的隐身技术[J].舰载武器,3:22-2.
    Yim J S, Sul S K, Ahn H J, et al.2004. Sensorless position control of active magnetic bearings based on high frequency signal injection method [C]. Applied Power Electronics Conference and Exposition, APEC 2004. Eighteenth Annual IEEE:1351-1354.
    朱石坚,何琳.2002a.舰船水声隐身技术(一)[J].噪声与振动控制,3:17-1.
    朱石坚,何琳.2002b.舰船水声隐身技术(二)[J].噪声与振动控制,4:12-15.
    赵利颇,潘存治,马强.2006.基于电磁作动器的主动隔振系统研究[J].石家庄铁道学院学报,19(2):51-54
    朱石坚,楼京俊,何其伟,等.2006.振动理论与隔振技术[J].北京:国防工业出版社.
    赵冉.2006.磁悬浮主动隔振器的建模与控制研究[D]:[硕士].合肥:中国科学技术大学.
    张磊,付永领,刘永光,等.2005.基于在线频率估计的自适应反馈主动隔振技术[J].北京航空航天大学学报,2(31):172-176.
    Zhou D Y.2005a. ANC algorithms that do not require identifying the secondary path[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing,3:125-128.
    Zhou D Y, DeBrurnner V.2007. A New Active Noise Control Algorithm That Requires No Secondary Path Identification Based on the SPR Property[C]. IEEE Transactions on Signal Processing,55:1719-1729.
    Zhou D Y, DeBrurnner V E, DeBrunner L, et al.2005b. Geometric analysis of filtered-X LMS algorithms[C].//IEEE/SP 13th Workshop on Statistical Signal Processing:127-132.
    Zhang C L, Mei D Q, Chen Z C.2003. Fuzzy Generalized Predictive Control of Micro vibration for a Micro-manufacturing Platform[C]. American Control Conference Proceedings of the 2003,5:3690-369.
    张国庆,王永,陈光.2005.一类多频线谱振动的主动控制方法[J].南京理工大学学报,29:37-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700