液压挖掘机动力系统匹配及节能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工程机械品种和数量的不断增多,国内外对工程机械尾气排放、噪声等限制愈加严格;随着人们环保意识的日益增强,使环保节能型产品的研制开发成为工程机械发展的趋势。在能源危机及绿色环保的今天,对液压挖掘机的节能研究已成为一个非常具有发展前景的课题。本文正是在此背景下并借助国家863课题,以提高液压挖掘机的动力性和经济性为研究目的,开展了对液压挖掘机动力系统匹配及节能控制的研究,论文的主要工作如下:
     论述了液压挖掘机动力系统匹配与控制的研究现状,分析了液压挖掘机的特点及施工工况,给出了发动机—液压泵—负载—操作手之间的相互关系和信息传递方式以及五种动力系统匹配不当造成能量损失的形式及原因。结合现有液压挖掘机的特性及节能控制技术的发展趋势构建了基于车载PLC和PC104总线系统的硬件平台和VxWorks嵌入式软件平台的液压挖掘机动力系统控制方案。
     建立了发动机有效扭矩、转速与每循环供油量之间的传递函数。提出了液压泵最大排量的1/4以上是其经济工作区,并作为功率控制的依据。分析了LUDV(是德文的缩写对应的英文为Load IndependentFlow Distribution Control System)系统的特性和效率,建立了电液比例系统的数学模型并对其简化,提出了工作装置等效质量和液压缸承受反向负载力的估算公式,并对液压系统参数Kq进行了辨识。
     建立了铲斗末端的位姿表达式和工作装置转角与驱动液压缸长度的关系式,成功判断出挖掘机的四个工作循环以及液压缸的溢流工况。建立了负载阻力与系统压力之间的关系式,并对铲斗作空载水平直线运行时液压缸的受力进行了仿真分析。对液压挖掘机在空载、固定载荷和实际挖掘三种工况下的压力进行了分析,采用加权平均滤波法对信号进行处理,利用泵出口压力的概率分布并结合工作装置的位姿对负载工况进行辨识。
     分析了影响发动机油耗的负载特性。用分段函数对理想位移控制曲线进行拟合,采用斜坡函数控制方法对执行器的速度进行控制,提出自动怠速控制应满足的三个指标,采用自适应控制方法对PWM信号占空比的控制范围、最短斜坡时间和自动怠速转速进行优化。
     根据发动机最常使用的三个转速区间,通过对发动机供油量控制,液压泵的功率控制,负载传感阀的压差控制以及比例减压阀的出口压力控制四种控制方式的协调匹配,提出了变p-Q曲线的功率协调匹配控制方法实现发动机-泵-负载的经济性协调匹配控制。提出了恒功率与变功率协调匹配控制的方法,夹逼发动机的工作区域,实现系统动力性协调匹配控制。
     分析了在不同安装方式和不同环境下发动机的工作特性,以液压泵的压力,转速差和转速差的变化率作为输入,泵功率控制电流和负载压差控制电流作为输出,采用模糊控制对动力系统的匹配与节能控制方法进行了优化。
     搭建了液压挖掘机测试平台,用液压泵的输出功率与发动机耗油量的比值作为评价液压挖掘机经济性的指标。对原装系统液压挖掘机和采用节能控制系统的挖掘机在轻载、490kg固定载荷和实际挖掘三种工况下发动机的耗油量和液压泵的出口压力和流量进行测试,试验结果表明,无论是稳定负载,还是波动负载,采用论文所提出的匹配和控制方法,在不同转速和不同工况下都可以提高系统效率,特别是在实际挖掘工况,能节约至少8%的能量,证明了所采用的控制策略的正确性和有效性。而且论文将所研究的算法运用到其它吨位的机型中,也收到良好效果,为研究方法的进一步推广奠定了基础。
     总之,论文以实现挖掘机动力性和经济性为目的,将发动机—液压泵—负载—操作手作为整体考虑,提出自动怠速控制、变p-Q曲线控制、恒功率与变功率协调匹配控制以及模糊控制等方法,解决了由系统匹配不当造成能量损失的问题,最后将研究的理论结果应用到实际挖掘工况,取得了比较好的节能效果。论文为液压挖掘机动力系统的匹配与节能控制提供了一套完整的理论和方法。
With the increase of variety and quantity of construction machinery, limit to the emission-quality and noise level becomes more strictly. With the enhancement of people environmental protection awareness, study on the environment-friendly product is the trend for the research and development of construction machinery. In days of energy crisis and environment-friendly, energy saving of excavator is of higher development potential project. Under this background and combining the national "863" project, aiming at research on powerful and economical excavator, the thesis makes research on power match and energy saving control of excavator's driving system. The main research work as follows:
     The development of research on energy saving control of excavator's driving system at home and abroad is surveyed. Characteristic and working condition of excavator are analyzed. Relationship and information delivery method among engine, pump, load and operator are given. The form and reason of energy lose arousing by improper match of driving system are given. Based on hardware environment of PLC and PC104 and software environment of VxWorks embedded system, the general control scheme of excavator is put out according to the characteristic of excavator and trend of energy saving control technique.
     The transfer function among engine effective torque, speed and cycle fuel feeding are established. Greater than 1/4 of the maximum displacement is the economic zero of pump. The following power control method is based on this. The characteristic and efficiency of LUDV (Load Independent Flow Distribution Control System) system is analyzed. And then the flow equations are developed. Starting with the basic equations of hydraulic systems and according to experiment and practice, a simplified model of electro hydraulic system is obtained. The estimation methods and formulas for equivalent mass, bearing force of hydraulic cylinder and flow gain coefficient Kq are given.
     Expression of bucket tip posture and the relationship between the manipulator rotation angle and cylinder distant are put out. the four excavating duty cycle and relief conditon of cylinder are sucessfully distinguish. Expression between load force and system pressure is established. The simulation of bearing force of hydraulic cylinder when the bucket moves at the level lines under free load is given. Under free load, fixed load and actual working condition, the pump pressure is test. Weighted average filtering method is used to process the pressure signal. The load condition is distinguished based on the pressue probability distribution and the posture of manipulator. Section function is adopted to fitting the perfect displacement control curve. The ramping function is used to control the actuator speed. Three criterion to judge the idle control performance is put out. Adaptive control is used to optimize the domain of PWM duty ratio, the minimum ramping time and idle speed.
     According to the normally used working zero of engine, the engine fuel supply control, pump power control, difference pressure of load sense valve control and output pressure of proportional relied valve control are coordinated. The method of adjusting P-Q curve is put out to realize economic matching among engine, pump and load. The method of combining constant power control with variable power control is put out to realize powerful matching control.
     The characteristic of engine working at different mounting way and different environment is analyzed. Selecting pump pressure, speed difference and its variance ratio as input, and current of pump power control and pressure difference control as output, fuzzy control is adopted to improve the power matching and energy saving control method.
     Testing platform is established. Using ratio between output power of pump and fuel consumption to appraise the economic performance of excavator. Under free load, 490kg fixed load and actual working condition, pressure and flow of pump and fuel consumption of engine is test. From the result, no matter on the constant load or variable load, it got good results at different speed and different working condition, especially at the actual working condition, it got at least 8% energy saving using the power matching control method. It proved that the power matching control method is correct and availability. Moreover, the paper put this method into use in the other kind of machine; it also got good result, which established expansive base for the further usage.
     Generally, the paper aims at powerful and economic control. Taking engine, pump, load and operator into consideration, put out idle control, adjust p-Q curve control, constant power control, variable power control and fuzzy control, solves the energy losing problem. Finally, put the theory into practice use and get good results. The paper provides systematic and intact power matching and energy saving control method for the excavator driving system.
引文
[1]张铁,朱明才.工程建设机械机电液一体化[C].哈尔滨:石油大学出版,2001.6
    [2]工程.解读“十一五”交通规划[J].工程机械与维修.2006.3:121-123
    [3]徐东云,曾庆星.浅谈环保节能型工程机械产品的设计[J].建筑机械化.2004,11:57-58
    [4]黄宗益.工程机械与人、环境的协调[J].工程机械与维修.2001,1:36-37
    [5]包海涛,严桃平.小松挖掘机节能控制系统的分析研究[J].矿山机械.2002,12:24-28
    [6]高峰.液压挖掘机节能技术的研究[D].杭州:浙江大学博士学位论文.2001
    [7]黄宗益.工程机械机电一体化、机器人化[J].中国机械工程.1996,7(3):64-67
    [8]国香恩.液压挖掘机节能模糊控制系统研究[D].博士学位论文.吉林大学.2004.12
    [9]李彦强,朱从乔,黄次浩.发动机数字式电子调速技术综述[J].海军工程大学学报2004.4:31-35.
    [10]Michael C Gaunt,Metamora,MI;Andrew R.Dixon.Energy saving control system and method for reducing power consumption of an electro-hydraulic power steering system for a hybrid vehicle[P].US patent.6725963B2.2004.4.27
    [11]郭晓方,李伟哲,黄宗益.液压挖掘机的发动机-泵的联合控制系统研究[J].同济大学学报1999,27(3):333-336
    [12]彭天好,杨华勇.液压挖掘机泵与发动机匹配研究[J].中国公路学报.2001,14(4):118-120
    [13]Devier,Lonnie J.;Lunzman,Stephen V.;Power management control system for a hydraulic work machine[P].US patent.5967756.1999.10.19
    [14]Mark Glazier,Hampshire.Load sensing system.[P].US 6915884B1.2005.07.12
    [15]Scott N.Schuh,Fort Ransom,ND.Electro-hydraulic load sense on a power machine.[P].US 2002/0070071A1.2002.06.13
    [16]祖炳洁,潘存治,王海花.EX220液压挖掘机液压泵控制系统节能分析[J].液压气动与密封.2005,4:9-11
    [17]郝鹏,何清华,张大庆.挖掘机智能化现状及发展趋势分析[J].国际工程机械.2006.32(6):106-108
    [18]路晶,王庆波.韩国大宇挖掘机-Ⅲ型EPOS系统[J].建筑机械.1998.8:37-40
    [19]Roger Clayton Fales,Francis J.Raab.Hydraulic control system with energy recovery[P].US 6854268B2.2005.2.15
    [20]黄宗益,李兴华,陈明.液压挖掘机节能措施[J].建筑机械化.2004,8:51-54
    [21]Yasutaka Tsuruga,Ryugasaki,Kenichiro Nkatani.Engine speed control system for construction machine[P].US patent.6176126B1.2001.1.23
    [22]尚涛.液压挖掘机作业及行走系统节能控制研究[D].吉林大学博士学位论文.2005.4
    [23]Soon-yong Chun,Bo Hyeok Seo.Design of an artificial intelligence controller for effective control of engine speed and pump flow according to working condition of an excavator[C].IEEE TENCON'93,Beijing,1993,4:361-365
    [24]David J.Andres,Gregory D.Hoenert,ThomasJ.Crowell.Engine control strategies[P].US 6965826B2.2005.11.15
    [25]许红平.基于液压挖掘机分段功率控制的节能技术[J].浙江工业大学学报.2002,8(4):328-331
    [26]Kazuo Uehara,Hiroyoshi Tominaga.Eneigy Saving on Hydraulic Systems of Excavators.SAE.821057
    [27]A.Mylers.Controlling Variable Displacement Hydraulic pumps for Energy Conservation.SAE 750807.1975,9
    [28]Edgar W.Trinkel,J.Equalizing flow from pressure compensated pumps,with or without load sensing,in a multiple pump circuit.[P].US 6931846B1.2005.8.23
    [29]陈欠根,纪云锋,吴万荣.负载独立流量分配(LUDV)控制系统[J].液压与气动.2003,(10):9-11
    [30]郝鹏,何清华,张大庆.负载敏感系统测试及特性分析[J].中国工程机械学报.2006.3:67-70
    [31]肖沁.二次调节静液传动技术在工程机械中的应用[J].工程机械.2004,6:39-40
    [32]张红延.基于混合动力液压挖掘机节能技术研究[D].浙江大学博士学位论文.2006.4
    [33]张大庆,何清华,郝鹏等.液压挖掘机铲斗轨迹跟踪控制的试验研究[J].吉林大学学报(工学版)2005,35(5):490-494.
    [34]赵卫良,王庆丰,张彦廷等.多执行器电液分流控制系统的试验研究[J].机械工程学报.2005,41(1):198-202
    [35]Scott A.Leman,Ronald D.Shinogle,Scott F.Shafer.Engine with high efficiency hydraulic system having variable timing valve actuation[P].US 6769405B2.2004.8.3
    [36]周波,胡骁,周恢.挖掘机器人控制系统CAN总线接口[J].武汉科技大学学报,2002,25(3).288-292
    [37]Song Liu,Bin Yao.Coordinate control of energy-saving programmable valves[C].ASME International Mechanical Engineering Congress Washington,D.C.,2003,11:1-9
    [38]Choopar Tan,Yahya H Zweiri,Kaspar Althoefer.On-line Soil property Estimation for Autonomous Excavator Vehicles[C].Proceeding of the 2003IEEE International Conference on Robotics & Automation Taipei,Taiwan.September 14-49,2003:121-126.
    [39]高峰,高宇,冯培恩.挖掘机载荷自适应节能控制策略[J].同济大学学报.2001,29(9):1036-1040.
    [40]冯培恩,高峰,高宇.液压挖掘机节能控制方案的组合优化[J].农业机械学报.2002,33(4):5-9
    [41]高峰,潘双夏.液压挖掘机负流量负荷传感控制策略[J].农业机械学报.2005,36(7):111-113
    [42]彭天好,杨华勇,傅新.液压挖掘机全局功率匹配与协调控制[J].机械工程学报.2001,37(11):50-53
    [43]高峰,潘双夏.负流量控制模型与试验研究[J].机械工程学报.2005,41(7):107-111
    [44]徐小东.WYL20B轮式挖掘机的功率优化控制系统[J].工程机械2001(6):22-24
    [45]王昕,赵丁选,尚涛等.基于单神经元的液压挖掘机自适应PID节能控制[J].吉林大学学报(工学版)2005,7(4):377-340
    [46]国香恩,赵丁选,尚涛等.模糊控制在液压挖掘机节能中的应用[J].吉林大学学报(工学版).2004,34(2):217-221
    [47]张栋、许纯新、金立生等.挖掘机单神经元比例-积分-微分节能控制系统[J].西安交通大学学报.2004,38(5):529-532
    [48]金立生,赵丁选,尚涛等.挖掘机节能用变量泵BP神经网络控制系统研究[J].起重运输机械.2005(4):36-39
    [49]金立生,赵丁选,国香恩.液压挖掘机PID专家节能控制系统[J].农业机械学报.2003,34(11):1-3
    [50]尚涛,赵丁选,肖英奎等.液压挖掘机功率匹配节能控制系统[J].吉林大学学报(工学版).2004,34(4):592-596
    [51]尚涛,赵丁选,肖英奎.液压挖掘机节能系统的控制策略[J].农业机械学报.2005,36(3):1-4
    [52]金立生,赵丁选,黄海东.液压挖掘机节能用智能PID专家控制系统[J].吉林工业大学自然科学学报.2001,31(4):12-16
    [53]金立生,赵丁选,黄运华等.液压挖掘机节能用油门模糊控制器的开发研究[J].中国公路学报.2004,17(1):119-123
    [54]朱建新,赵崇友,郭鑫.液压挖掘机振动掘削减阻机理研究[J].岩土力学.2007,28(8):1605-1608
    [55]朱建新,赵崇友,邹湘伏.液压挖掘机振动掘削土体参数在线辨识[J].中南大学学报.2006,37(3):537-541.
    [56]朱建新,杨成云.基于比例阀的液压挖掘机振动掘削控制系统设计[J].凿岩机械气动工具.2005,1:24-29
    [57]何清华,张大庆,郝鹏等.液压挖掘机工作装置仿真研究[J].系统仿真学报.2006,18(3):735-738.
    [58]Zhang daqing,He Qinghua,Hao Peng,et al.Model and control for hydraulic excavator's arm[C].Proceeding of ASME International Mechanical Engineering Congress and Exposition.Orlando,American Society of Mechanical Engineers,2005:165-170.
    [59]He Qinghua,Hao Peng,Zhang daqing.Study on the matching control between constant power and variable power of hydraulic excavator.The fifth international symposium on fluid power transmission and control(ISFP'2007)2007.05:950-954
    [60]Quang Ha,Miguel Santos.Robotic Excavation in Construction Automation[C].IEEE Robotics & Automation magazine.2002:20-23.
    [61]Shahram T,Septimiu E,Salcudean.Impedance Control of a Teleoperated Excavator[J].IEEE transactions on control systems technology.2002,10(3):355-367.
    [62]D.Seward,C.Pace,R.Morrey,et al.Safety analysis of autonomous excavator functionality[J].Reliability Engineering and System Safety.2000,70.29-39
    [63]Fuad Mrad,M.Asem Abdul-malak,Salah Sadek,et al.Automated excavation in construction using robotics trajectory and envelop generation[J].Engineering,Construction and Architectural Management.2002,9(4).325-336
    [64]Parvaneh Saeedi,Peter D.Lawrence,David G.Lowe,et al.An Autonomous Excavator with Vision-Based Track-Slippage Control[C].IEEE Transactions on Control Systems Technology.2005,13(1).67-84
    [65]Aleksandar M.Egelja,Mikhail A.Sorokine,Srikishnan T.Tolappa.Electro hydraulic pump displacement control with proportional force feedback[P].US 6883313B2.2005.4.26
    [66]Thomas J.Crowell,David Andrew Pierpont.System and method for controlling engine operation[P].US 6799552B2.2004.10.5
    [67]胡明江,杨铁皂,徐斌等.发动机电子调速器的研究现状及发展趋势[J].河南科技大学学报(自然科学版)2003,24(4):44-4
    [68]Masakazu Haga,Watanabe Hiroshi,Kazuo Fujishima.Digging control system for hydraulic excavator[J].Mechatronics,2001(11):665-676.
    [69]Tonglin Shang.Improving Performance of an Energy Efficient Hydraulic Circuit[D].University of Saskatchewan,Canada.2004.4
    [70]Eugeniusz Budny,Miroslaw Chlosta,Witold Gutkowski.Load- independent control of a hydraulic excavator.Automation in construction[J].2003(12):245-254
    [71]王晨,应富强.液压挖掘机的智能化节能控制策略[J]浙江工业大学学报.2000,28(2):108-111
    [72]黄宗益,李兴华,陈明.液压传动的负载敏感和压力补偿[J].工程机械.2004.4:52-56
    [73]Gerald M.Brown,Bernard J.Ebacher,Walter G.Koellner.Increased productivity with AC Drives for mining excavators and Haul Trucks[C].IEEE 2000,28-38.
    [74]黄宗益,杨颖子.东芝负载敏感压力补偿挖掘机液压系统[J].建筑机械化.2005,5:29-31
    [75]王庆丰,魏建华,吴根茂等.工程机械液压控制技术的研究进展与展望[J].机械工程学报.2003,39(12):51-56
    [76]Kevin D.Ehrenhardt,James W.Landes.Automatic elevated idle speed control and method of operating same[P].US 6019702.2000.2.1
    [77]He Qinghua,Hao Peng,Zhang daqing.Study on Load Identification and Power Matching of Excavator[C].The 2007 International Conference on Advances in Construction Machiney and Vehicle Engineering(ICACMVE'07) 2007.08
    [78]Lee S J,Pyung H C.Control of a heavy-duty robotic excavator using time delay Control with integral sliding surface[J].Control Engineering Practice,2002,(10):697-711.
    [79]张栋.基于功率匹配的挖掘机节能控制技术的研究[D].吉林大学博士学位论文.2005.4
    [80]L.Plonecki,W.Trampczy(?)ski,J.Cendrowicz.A concept of digital control system to assist the operator of hydraulic excavators[J].Automation in Construction 1998(7).401-411
    [81]Sahm,William C(US).Automatic excavation control system and method[P].Patent of Canada.CA2020234.2000-05-30
    [82]A S Hall,P R McAree.A study of the interaction between operator style and machine capability for a hydraulic mining excavator[C].IMechE 2005.Proc.IMechE Vol.219 Part C:Mechanical Engineering Science,477-490
    [83]姚怀新.行走机械液压传动与控制[J].人民交通出版社,北京:2002.2
    [84]杭勇.柴油发动机控制模型及控制算法的设计与仿真研究[D].江苏理工大学.2002.03
    [85]Wang hong-qiao,yang ming-gao,li jin.A Type of Real-Time simulation system for electronic diesel engine controller[J].内燃机学报.Transactions of CSICE 2002,1(20)
    [86]李伟华.发动机调速系统动态调节过程的计算机仿真及参数优化[J].内燃机学报.1999.04 356-360
    [87]冯刚.变量柱塞泵的键合图建模和动态仿真研究[J].机床与液压.2004.12:20-23
    [88]郭初生,王向周,王渝.变转速轴向柱塞泵恒流量控制的建模与仿真[J].北京理工大学学报.2004,24(11):961-965
    [89]何忠波,李国章,张培林等.基于BP神经网络的发动机调速特性和外特性统一建模[J].军械工程学院学报.2003,15(3):20-24
    [90]刘顺安,王辉,沙永柏.挖掘机负荷传感泵控系统的分析[J].农业机械学报.2005,36(8):111-114
    [91]方旭东.液压挖掘机中负荷传感系统的分析与计算[J].同济大学学报.2001,29(9):1097-1100
    [92]Bora E.Improved nonlinear modeling and control of electrohydraulic systems [D].Boston:Northeastern university,2000:78-80.
    [93]Shahram T,Peter D L,Salcudean S E.Identification of inertial and friction parameters for excavator arms[J].IEEE transactions on robotics and automation,1999,15(5):966-971.
    [94]J.G.Frankel,M.E.Kontz,W.J.Book.Design of a testbed for haptic control of hydraulic systems[C].2004 ASME International Mechanical Engineering Congress and Exposition,2004
    [95]张伟汉.阀控非对称油缸控制系统及特性研究[D].长春理工大学.2002:55-56.
    [96]张成乾,张国强.系统辨识与参数估计[M].北京.机械工业出版社,1986:101-103
    [97]BU Fan-ping,YAO Bin.Nonlinear Adaptive Robust Control of Hydraulic Actuators Regulated by Proportional Directional Control Valves with Dead band and Nonlinear Flow Gains[A].Proceedings of the American Control Conference Chicago[C].Illinois,USA,2000.4129-4133.
    [98]郝鹏,何清华,张大庆.液压挖掘机负载识别技术研究[C].2007 China National Conference on Artificial Intelligence(CAAI-12).2007,12:1047-1050
    [99]He Qinghua,Hao Peng,Zhang daqing.Modeling and parameter estimation for hydraulic system of excavator's arm.Journal of Central South University of Technology.2008,23(6)
    [100]何清华,郝鹏,张大庆.沥青混凝土摊铺机行驶驱动斜坡函数控制方法的试验研究.中国工程机械学报.2004.10(2):457-478.
    [101]Masoud K.Zavarehi,David R.Schricker.Method and system for determining an absolute power loss condition in an internal combustion engine[P].US 6199007B1.2001.3.6
    [102]张金龙、赵芙生.电控发动机怠速RBF神经网络控制[J].农业机械学报.2005,36(8):20-23
    [103]何清华,郝鹏,常毅华.基于功率协调控制的液压挖掘机节能系统研究[J].机械科学与技术.2007.26(03):188-191
    [104]吴永平.机械调速发动机动态过程研究[J].江苏大学学报(自然科学版).2002,23(3):60-62
    [105]Gareth John Estebanez,David Langsford Collins,Brian Eugene Lister.Power management system[P].US 6843755B2.2005.1.18
    [106]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,1998
    [107]谢新民,丁锋.自适应控制系统[M].北京:清华大学出版社,2002
    [108]Suk-Min Moon.On-Line Generalized Predictive Control Combined with Recursive Least Squares System Identification[D],Durham:Duke University,2003
    [109]Jon E.Kasen,Thomas G.Ausman.Adaptive control for power growth in an engine equipped with a hydraulically-actuated electronically-controlled fuel injection system[P].US 6102005.2000.8.15
    [110]Masoud K.Zavarehi,David R.Schricker.Method and system for determining an absolute power loss condition in an internal combustion engine[P].US 6199007B1.2001.3.6
    [111]探矽工作室.嵌入式系统开发圣经[M].北京:中国青年出版社,2002
    [112]谭南林.WindowsCE实用开发技术[M].北京:电子工业出版社,2006
    [113]孔祥营.嵌入式实时操作系统VxWorks及其开发环境Tornado[M].北京:中国电力出版社,2002
    [114]罗国庆.VxWorks与嵌入式软件开发[M].北京:机械工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700