基于压电发电原理的引信微机电式气流激励电源设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学的进步和微机电系统(MEMS)技术的发展,引信的小型化,智能化水平越来越受到人们的关注和青睐,引信的功能实现也从传统的机械化朝着电子化、智能化及小型化的方向发展。然而,引信电源体积过大是目前小型化引信面临一个现实的问题,只有电源的小型化才能从根本上解决引信系统体积过大的问题。微型电源作为微系统的一个重要组成部分是决定整个系统能否独立工作的关键,体积小、性能好、稳定性高的小型物理电源不仅能够解决小型引信电路的自供能问题,提高弹丸勤务处理时的安全性;同时也可解决某些弹种冗余环境力的缺失问题,为引信安保机构提供基于环境激励的解保信号等。然而,传统的物理电源或化学电源存在着体积过大、寿命过短、激活时间较长、稳定性较差等问题。因此,设计出小型的物理电源将具有巨大的经济价值和军事意义。
     首先结合课题的研究背景,介绍了微机电系统(MEMS)技术的发展以及引信对小型物理电源的需求,探讨了小型物理电源的地位、种类和发展现状。其次介绍了压电材料的发电特性和射流发电机的工作原理等。进而结合引信对电源的战术技术要求设计,MEMS工艺技术和压电材料的发电特性等设计了一种小型的气流激励发电装置,并对其进行了亚音速(选取50m/s~300m/s)入口气流速度的流体分析和仿真验证,结果表明该微型气流激励发电装置具有一定的可行性。最后对该气流激励发电装置的MEMS加工工艺进行了介绍并设计了一种能量采集电路,然后对发电装置的发电特性和采集电路进行了模拟分析和研究,并与理论分析的结果进行了对比,得出发电装置的发电特性与理论分析结果一致,能够满足使用要求,气流激励电源的输出电压和能量大小以及响应时间等也可以满足使用要求。
     通过上述工作,对引信微型气流激励电源的原理和特性进行了研究,同时通过仿真和实验等得出了初步的结论,为今后的进一步工作积累了经验,也为引信小型电源的设计和气流激励发电技术奠定了基础。
With the progress of science and the development of MEMS technology, the mini-aturization and intelligence of fuze has attracted more and more people's attention and favour, and the realization form of fuze's function is moving from the traditionally mechanism to the direction of electronic, intelligent and miniaturization. However, the power supply for fuze is so large that it greatly enlarges the volume of the fuze. As an integral part of the whole system, miniaturized power is the key to determine that whether the system can work independently. So, a power supply with small size, good performance, high stability, not only can solve the problem of fuze circuits self energy supply, but also can solve the problems of some projectiles missing redundant power environment. Due to the traditional power supply has too many problems of large volume, long activation time and unstable performance, to meet the requirements. So it has a great economic value and military significance to design a new small power supply.
     Firstly, combined with the background of the subject, the paper described the development of MEMS technology, the needs of small physical power for fuze, then investigated the status of small physical power, and it's development. At the same time, the properties of piezoelectric material and the principle of air jet generator were also introduced. Then a small air jet generating device was designed based on the conditions of fuze's tactical and technical requiremnts for power designs, MEMS technology and power generation characteristics of piezoelectric materials. Its performance analysis and simulation results show that the micro-jet generating device has feasible to some extent. Finally, introduced the jet processing technology for MEMS devices and designed an energy acquisition circuit, then experiments were carried out on the characteristics of the airflow drive power and the acquisition circuit. It was found that the experiments results are basically consistent with the theoretical analysis; both of them can meet the requirements of the fuze.
     Finally, the work of this dissertation was concluded. The innovations and contributions of this work were introduced. And also, the potential issues of this research were pointed out.
引文
[1]杨亦春,张文慧,赵智江.利用空气振动发电的引信电源研究[J].南京理工大学学报,1999,23(5):18-21.
    [2]陈东林,徐立新,赵广波.引信物理电源进展及应用现状[J].探测与控制学报,2009,Vol.31.
    [3]陈荷娟,孙加存.高能多层压电陶瓷电源设计[J].弹道学报,2003,Vol.15 No.4.
    [4]雷军命.引信气流谐振压电发电机[J].探测与控制学报,2009,23(1): 23.-26.
    [5]李映平.引信压电发电机原理及试验研究[D].南京理工大学博士论文,2006.
    [6]刘晓斌.微机电系统的进展分析与研究[J].机械研究与应用,2002(1):72-75.
    [7]Giustino A. Inteferometric GPS Micro.Mechanical Gym attitude determination system:A study into the integration issues[D]. Massachusetts Institute of Technology.1998.24-37.
    [8]张建中,王保民,李昌进.微电池的最新研究动态[J].电源技术,2002 Vol.26:236-238.
    [9]RABAEY M J, AMMER M, SILVA L J, etal.Picoradio supports ad hoc ultra. low power wireless networking[J]. IEEE Computer,2000,33(7):42-48.
    [10]KRCOS, CLEARYD, PARKERD. Enabling ubiquitous sensor networking over mobile networks through peer.to.peer overlay networking[J]. Computer Communica. tions, 2005,28(13):586-601.
    [11]PEIFER K B, LEMING S K, R MMPFA N.Embedded self.powered microsens. ors for monitoring the surety of critical buildings and infrastructures [J].SAND 2001.3619 Unlimited Release Printed,2001,3.16.
    [12]林玲,刘辉.压电发电技术研究应用[J].硅谷,14 2008:120.
    [13]闫世伟,杨志刚.压电陶瓷能量转换系统[J].吉林大学学报,38(2)2008:343-348.
    [14]Sunghwan Kim.Low power energy harvesting with piezoelectric generators[D] University of Pittsburgh,2002.
    [15]王中林.压电式纳米发电机的原理和潜在应用[J].物理,35(11)2006:897-903.
    [16]Rajendra K. sood, "piezoelectric micro power generator (PMPG):A MEMS. Based energy scavenger", [D], Massachusetts Institute of Technol, September,2003.
    [17]董璐.基于MEMS的压电型微能量采集器的研究[J].上海交通大学,2007:10-17.
    [18]张合,李豪杰.引信机构学[M].北京理工大学出版社,2007:184-188.
    [19]Louis Richmond.HI.PERFORMANCE PD FUZE FORMORTAR AND AR TILLERY CON. CEPT FORMULATION AD.741 696[P],1971.
    [20]薛维清.引信专用物理电源的应用和发展[J].探测与控制学报,1994,16(1):8-13.
    [21]林桂卿.电引信设计原理[M].北京:国防工业出版社,1987.
    [22]Campagnuolo C J. Fluidic Generator to Power Rocket Proximity Fuze[R]. AD.A131062. 1983.1-14.
    [23]Goodyear R. Performance of the Fluidic Power Supply forthe XM445 Fuze in Superso. nic Wind Tunnels[R]. AD.A097625.1981.3-9.
    [24]陈荷娟,孙加存小口径机电引信压电电源研究[J].探测与控制学报,2005,Vol.27No.5.
    [25]袁巨龙,袁哲俊.功能陶瓷的超精密加工技术[M].哈尔滨:哈尔滨工业出版社,2004(9).
    [26]靳洪允.压电材料的结构极其性能研究[J].东陶陶瓷,2005,Vol.28 No.4.
    [27]李邓化,居伟骏,贾美娟,许晓飞.新型压电复合换能器及其应用[M].北京:科学出版社,2007.
    [28]杨遇春.压电材料市场展望[J].材料动态,2002,7:1.3.
    [29]胡敏强,金龙,顾菊平.超声波电机原理与设计[M].第1版.北京:科学出版社,2005.
    [30]栾桂冬,张金铎.压电换能器和换能器阵[M].北京:北京大学出本社,2005.
    [31]王永龄.功能陶瓷性能与应用[M].北京:科学出版社,2003.
    [32]李炳乾MEMS谐振器件及相关理论研究.西安交通大学博士学位论文,2000.5.
    [33]Xiaoping Li, Wan Y. Shih. Electromechanical Behavior of PZT-Brass Unimor. phs J.Am.Ceram. Soc.,1999,82(7):1733-1740.
    [34]杨伯源,李和平,刘一华.材料力学(Ⅰ).第1版.北京:机械工业出版社,2001.
    [35]Joshua P.Ayers,David W.Greve,Irving J.Oppenheim.Energy Scavenging for Sensor Applications using Structural Strains[J]. Proceedings of SPIE,2003,5057:364-375.
    [36]Lu Deming.Principle of transducer[J]. Ocean University of Qingdao,2001.9.
    [37]Gossett A.Campbell and Raj Mutharaan. Sensing of liquid level at micron resolution using self.exited millimeter.sized PZT.cantilever[J]. Sensors and Actuators A,2005,122: 326-334.
    [38]吴湘伟,陈振华.用溶胶凝胶法制备PZT铁电材料[J].稀有金属与硬质合金,2002,Vol.30 No.4:13-16.
    [39]许晓慧,唐建洪,陈丽娟.PZT铁电薄膜介电性能测试研究[J].压电与声光,2010,Vol.32 No.2:293-296.
    [40]徐伟,王炅,陆静等.引信用MEMS气流谐振压电发电机[J].探测与控制学报,2011,Vol.33 No.1:9-11.
    [41]李福松,赵旭.环音振荡器固有频率计算方法研究[J].第九届引信学术年会论文集[J], 1995.10:125-128.改为43
    [42]李福松,陈建军.射流发电机输出功率的研究[J].西安电子科技大学学报,2000 Vol.27,No.2:211-214.重复
    [43]李福松,陈建军.射流发电机机械振动系统的动力学优化设计[J].兵工学报,Vol.21No.1 Feb.2000.
    [44]Inman Daniel J, Shashank Priya. Energy Harvesting Technologies. Springer-Verlag, 2009.8.
    [45]Shekhar Sarpotdar, Ganesh Raman, Alan B. Cain. Actuation signal directivity and supply pressure effects in powered resonance tubes [J]. AIAA 2004.678.
    [46]林书玉.匹配电路对压电陶瓷超声换能器振动性能的影响[J].压电与声光,1995,(03).
    [47]张立杰,田章福,曾新吾.哈特曼谐振管共振频率决定因素分析[J].声学技术,2008,Vol.5:212-213.
    [48]路斌,关继腾,张建国.高声强流体动力式声源的研究现状与展望[J].石油机械,2002,Vol.30 No.4:45-48.
    [49]A.Hamed,K.Das and D. Basu. N μmerical simulation and parametric study of Hartmann.Sprenger tube based powered device [J]. AIAA 2003.550.
    [50]侯天相.钝体绕流的非定常差分方程[M].北京:宇航出版社,1986.7.
    [51]曾娜,郭小刚.探讨流固耦合分析方法[J].沈阳工程学院学报(自然科学版),2008,Vol4(4):382-385.
    [52]董志勇.射流力学[M].北京:科学出版社,2005.3.
    [53]刘志远,郑源,张文佳等ANSYS CFX单向流固耦合分析的方法[J].水利水电工程设计,2009,28(2):29-31.
    [54]胡潇毅,李华锋,陶伟明等.管道中流固耦合作用下的活门运动分析[J].浙江大学学报(工学版),2006,40(6):971-976.
    [55]岳戈等ADINA流体与固体耦合功能的高级应用[M].人民交通出版社,2010.2.
    [56]于勇,张俊明FLUENT入门与进阶教程[M].北京理工大学出版社,2008.9.
    [57]尹莉,钱勤,罗宁.结构撞水的流固耦合动力学分析[J].华中科技大学学报,2006,23(2):5-7.
    [58]A.B.Cain, E.J.Kersehen, G.Raman. Simulation of Acoustic characteristics and mechanisms of Powered resonance tubes[J]. AIAA 2002.2400.
    [59]许洋,党沙沙,胡仁喜ANSYS 11.0/FLOTRAN流场分析实例指导[M].机械工业出版社,2009.1.
    [60]杨庆山.膜结构的风致动力效应初探[J].空间结构,2002,8(4):3.10.
    [61]Heartling, G H. Ferroelectric ceramics:history and technology. J.Am. Ceram. Soc.,1999,82(4):797-818.
    [62]N H Cho, H G Kim.PT(PbTiO3) buffer layer effeets on the electrical properties of Pb(Zr, Ti)03 thin films. Mieroelectron. Eng.,1995,29(1.4):243-246.
    [63]Defay E, Millon C, Malhaire C, Barbier D.PZT thin films in the integration for the realization of a high sensitivity pressure mierosensor based on a vibrating membrane. Sensors and Actuators A,2002,99:64-67.
    [64]杜立群,赵海波,吕岩.水热合成发制备PZT压电膜片工艺研究[J].中国机械工程,2005.7,Vol(16):464-466.
    [65]陈超,褚家如,鲁健.基于溶胶.凝胶技术的PZT厚膜快速成膜研究[J].微细加工技术,2005.3,(1):58-62.
    [66]郑可炉,褚家如,鲁健等.PZT铁电薄膜湿法刻蚀技术研究[J].压电与声光,2005,27(2):209-212.
    [67]林声和,叶至碧,王裕斌.压电陶瓷.北京:国防工业出版社,1980.
    [68]OTTMAN G K, BHATT A C, HOFMANN H, eta 1.Optimized piezoelectric energy harvesting circuit using step.down converter indiscontinuous conduction mode[J]. IEEE Transaction on Powerelectronics,2002,18(2):696-703.
    [69]潘家伟,黄卫清,周凤拯等.基于压电效应的能量收集[J].压电与声光,2009,Vol.31:347-349.
    [70]KIMH W, AMIT,BATRA, et al.Energy harvesting using a piezoelectric cymbal trans. ducer in dynamic environment[J]. Jpn J Appl Phs,2004,43(9A):6178-6183.
    [71]Geffrey K. Ottman, Heath F. Hofmann, Archin C. Bhatt. Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply[J]. IEEE TRANSACTIONS ON POWER ELECTRONICS,2002,Vol.17, No.5:669-676.
    [72]Geffrey K. Ottman, Heath F. Hofmann, George A. Lesieutre. Optimized Piezoelectric Energy Harvesting Circuit Using Step.Down Converter in Discontinuous Conduction Mode. IEEE TRANSACTIONS ON POWER ELECTRONICS,2003,Vol.18, No.2.
    [73]Daniel Guyomar, Adrien Badel, Elie Lefeuvre, and Claude Richard. Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing. ieee transactions on ultrasonics, ferroelectrics, and frequency control, 2005,Vol.52, No.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700