亚麻纤维蛋白质改性及结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用高碘酸钠选择性氧化亚麻纤维,将纤维素链单元的两个仲羟基氧化为醛基,由于氧化纤维素的醛基有直接和蛋白质发生交联的能力而制备了蛋白亚麻纤维,实现了亚麻纤维的蛋白化,在整个工艺工程中避免了使用化学交联剂,符合人们对绿色环保的要求。
     增加高碘酸钠浓度,延长氧化时间,提高氧化温度能增加亚麻纤维的醛基含量,但亚麻纤维的失重率增加,亚麻纤维的断裂强度降低。高碘酸钠选择性氧化后亚麻纤维大分子上生成了活性醛基,随着氧化程度的加深,纤维表面变得粗糙,结晶度不断降低。
     选用了丝胶、胶原两种蛋白对亚麻纤维进行改性处理,对丝胶蛋白亚麻纤维和胶原蛋白亚麻纤维的结构及性能进行了研究和表征。结果表明:不同处理条件对氧化亚麻纤维的增重率有一定的影响,但氧化亚麻纤维经蛋白溶液处理后的断裂强度和断裂伸长率基本不变。氧化亚麻纤维和蛋白之间形成了共价结合。氧化亚麻纤维经蛋白处理后表面变平整,结晶度无明显变化,而且蛋白亚麻织物的抗皱性能、吸水性能、紫外线防护功能等性能有所提高。
In this paper, oxidation of cellulose with sodium periodate leads to yield a product with 2,3-dialdehyde cellulose. The aldehyde groups own the ability to crosslink with protein directly, therefore the protein flax fiber are successfully prepared. There is no chemical crosslinking reagents on the whole process, which can be in keeping with the need of people about greenness and environment protection.
     With enchancement of concentration of NaIO4, oxidized time and oxidized temperature, content of aldehyde groups increased. However, the weigh loss of flax fiber increased and breaking strength decreased. Oxidation of cellulose with sodium periodate yielded aldehyde groups. The surface of flax fiber became rough and crystallinity decreased while increasing oxidized degree of flax fiber.
     The structure and properties of the proteinic oxidized flax fiber were studied. The results showed that the weight gain of the oxidized flax fiber was affected by the concentration of protein solution, pH value, treated time and treated temperature. However, little change was found on the breaking strength and the breaking elongation of the oxidized flax fiber treated with protein. The covalent bonds occurred between the oxidized flax fiber and protein. The surface of oxidized flax fiber became smooth. The crystallinity changed little after treated with protein solution. Compared with original flax fabric, wrinkle resistance, water absorbency and anti-UV properties of protein flax fabric are promoted.
引文
[1]赵欣,高树珍,王大伟.亚麻纺织与染整[M].中国纺织出版社, 2007, 7: 2~17.
    [2]董政娥.麻纤维及其纺织品的发展前景[J].纤维素科学与技术, 2003, 11(3): 55~64.
    [3]贾丽华,陈朝晖,高洁.亚麻纤维及应用[M].化学工业出版社, 2006, 9: 19~53.
    [4]陈宇岳,许云辉,王华锋.棉纤维绿色改性研究进展及其产品开发[J].纤维技术, 2005, 1: 6~12.
    [5]舒蕊,李淳.等离子体引发亚麻接枝丙烯酰胺改善染色性能[J].印染助剂, 2006, 23(6): 17~19.
    [6]李淳,王晓.不同等离子体对亚麻纤维接枝改性效果的比较[J].纤维技术, 2005, 3: 60~62.
    [7] Dezertm H ,Viallier P and Wattiez D. Continuous control of an enzymatic pre - treatment on linen fabric before dyeing[J] . Journal of the Society of Dyers and Colourists ,1998 ,114 (10) :283~286.
    [8] Ledakowiczj S ,Lewartowska J and Gajdzicki B. Influence of enzymatic pre - treatment on the dyeability of linen fabrics[J]. Fibres & Textiles in Eastern Europe ,2000 ,8 (3): 76~79.
    [9]王华锋,陈宇岳,林红.棉纤维的研究进展及发展趋势[J].苏州大学学报, 2003, 23(4): 12~19.
    [10]陈东辉.纤维素纤维织物的生物整理[J].纺织学报, 1996, 17(6): 328~331.
    [11]高洁,孙聆芳.纤维素酶对亚麻纤维酶整理工艺研究[J].齐齐哈尔大学学报, 2006, 22(6): 100~101.
    [12]高淑珍.超声波在亚麻织物染色中的应用[J].印染, 2000, 26(12): 5~7.
    [13]高淑珍,杨红梅,董大芳.超声波在还原染料染色中的应用研究[J].齐齐哈尔大学学报, 2002, 18(4): 17~19.
    [14]杜建民,罗晓红.浅谈亚麻纤维的化学改性和染色[J].甘肃轻纺科技, 1991, 5: 10~16.
    [15]吴红玲,胥顺吉,蒋少军.亚麻纤维碱改性的染色性能研究[J].纺织科技进展, 2007, 2: 75~79.
    [16]姜宪凯,孙虹雁,林珑等.尿素对亚麻纤维轧染染色性能的改进[J].黑龙江大学自然科学学报. 2005, 22(1): 74~77.
    [17]孙虹雁,姜宪凯,白续铎等.改进亚麻纤维轧染染色性能的研究[J].化学与黏合.2005,27(3):154~156.
    [18]翟学军,郭嫣,本德萍等.亚麻纤维的碱尿素化学改性研究[J].西安工程科技学院学报, 2007, 21(3): 319~321.
    [19] Singha A S , Kaith B S , Sarwade B D. Modification of flax fibre through graft copolymerization with methyl methacrylate and evaluation of swelling ,moisture absorbance and thermal behaviour[J].Hungarian Journal of Industrial Chemistry, 2002, 30 (4): 289~293.
    [20]郭雅琳.化学方法改善亚麻染色性能的研究[J].纺织学报, 2003, 24(2): 98~100.
    [21]巫拱生.亚麻等麻类纤维与乙烯基类单体接枝共聚反应的研究进展[J].高分子通报, 1990, 3: 135~141.
    [22]高洁.接枝改性染色亚麻织物性能的研究[J].齐齐哈尔大学学报, 2003, 19(3): 16~18.
    [23]张德庆,胡玉洁,杨秀英等.丙烯酸酯接枝改性亚麻纱性能研究[J].齐齐哈尔大学学报, 2001, 17(2): 24~26.
    [24]郭雅琳,赵明,林福海等.通过化学改性改善亚麻染色性能[J].大连轻工业学院学报, 2000, 19(3): 230~234.
    [25]李红.亚麻的染色改性工艺[J].大连轻工业学院学报, 2001, 20(1):70~72.
    [26]许云辉,陈宇岳,林红.氧化纤维素的研究进展及发展趋势[J].苏州大学学报, 2006, 26(2): 1~6.
    [27]孔德领,俞耀庭贾永会等.纤维素固定化血红蛋白研究[J].高分子学报, 1999,(2): 221~226.
    [28] Ung-Jin Kim, Shigenori Kuga. Ion-exchange chromatography by dicarboxyl cellulose gel[J]. Journal of Chromatography, 2001, (919): 29~37.
    [29] Ung-Jin Kim, Shigenori Kuga. Ion-exchange separation of proteins by polyallylamine-grafted cellulose gel[J]. Journal of Chromatography, 2002, (955): 191~196.
    [30]叶君,熊犍,梁文芷.邻苯二亚胺纤维素水溶液的荧光行为[J].应用化学, 1998,15(5): 50~52.
    [31] Simona Margutti, Silvia Vicini, et al. Physical-chemical characterisation of acrylic polymers grafted on cellulose[J]. Polymer, 2002, (43): 6183~6194.
    [32]孟舒献.纤维素衍生物的合成及吸附性能的研究[D].天津大学, 2005.
    [33]熊犍,叶君,吴奏谦等.羧酸纤维素的制备及其抗凝血性能的研究[J].功能高分子学报, 1997, 10(4): 559~563.
    [34] Rahn K., Heinze. Cellulose polymers by subsequent modification of 2,3-dialdehyde cellulose[J]. Cellul. Chem. Technol., 1998, 32(3-4): 163~173.
    [35] Jing Shibing, et al. Effect of chitosan-coated dialdehyde cellulose, a newly developed oral adsorbent on normal and chronic renal failure rats[J]. Journal of Nephrol Dialy Transplant, 1994, 3 (2): 83~88.
    [36]赵希荣,夏文水.高碘酸钠氧化棉布纤维反应条件的研究[J].纤维素科学与技术, 2003, 11(3): 17~21.
    [37] X. D. Liu, N. Nishi, S. Tokura, N. Sakairi. Chitosan coated cotton fiber : preparation and physical properties[J]. Carbohydrate Polymers ,2001, 44: 233~238.
    [38]许云辉.选择性氧化法制备环境友好型功能棉纤维研究[D].苏州大学博士论文, 2006.
    [39] Premamay Ghosh, Debaprasad Dev. Graft copolymerization of mixtures of acrylamide and methyl methacrylate on dialdehyde cellulose (DAC) from cotton in a limited aqueous system[J]. European Polymer Journal, 1996, 32(2): 165~171.
    [40] Paolo Calvi ni, Andrea Gorassini, Giorgio Luciano, et al.FTIR and WAXS analysis of periodate oxycellulose:Evidence for a cluster mechanism of oxidation[J]. Thermochimica Acta, 2006, 40:177~183.
    [41] Ung-Jin Kim, Shigenori Kuga. Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives[J]. Thermochimica Acta, 2001, 369: 79~85.
    [42] A.J. Varma, M.P. Kulkarni. Oxidation of cellulose under controlled conditions[J]. Polymer Degradation and Stability, 2002, 77: 25~27.
    [43] Chen R.Y., Jakes K.A., Foreman D.W. Peak-Fitting analysis of cotton fiber powder X-ray diffraction spectra[J]. Journal of Applied Polymer Science, 2004, 93: 2019~2024.
    [44] Lu Y.H., Lin H., Chen Y.Y., et al. Structure and performance of Bombyx mori silkmodified with Nano-TiO2 and chitosan[J]. Fibers and Polymer, 2007, (8), 1~6.
    [45]郑培培,林红,陈宇岳.选择性氧化亚麻纤维的结构研究[J].江苏纺织,2008, (03): 45~46.
    [46]小松计一.セリシンの溶解性ならびに构造特性に关する研究[J].蚕糸试验场报告, 1975, 26(3): 135~256.
    [47] Zhu Liangjun, Arai Mitsuo, Hirabayayhi Kiyoshi. Relationship between adhesive properties and structure of sericin in cocoon filaments[J]. Seric Sci Jpn, 1995, 64(5): 420~426.
    [48]陈华,朱良均,闵思佳等.蚕丝丝胶蛋白的利用研究[J].东华大学学报(自然科学版),2002, 28(3): 132~135.
    [49]张雨青.丝胶蛋白的药理及其在医用材料上的应用[J].纺织学报, 2003, 24(3): 278~280.
    [50]张雨青.丝胶蛋白的护肤、美容、营养与保健功能[J].纺织学报, 2002, 23(2): 150~152.
    [51]李有贵,时连根,方晓毓等.丝胶效用的研究进展[J].蚕桑通报, 2004, 35(1): 10~13.
    [52] Zhang Y.Q. Applications of natural silk protein sericin in biomaterials[J]. Biotechnology Advances, 2002, 20(2): 91~100.
    [53]纪佩珍.丝胶改性聚酯和聚酰胺纤维吸放湿性的研究[J].浙江丝绸工学院学报, 1994(6),11(2): 23~26.
    [54]胡智文,陈文兴,傅雅琴.涤纶表面包覆丝胶仿真丝纤维的研究[J].纺织学报, 2001, 22(1): 33~34.
    [55]潘福奎,潘廷松,谢莉等.利用丝胶改善涤纶织物服用性能的研究[J].青岛大学学报(工程技术版), 2005, 20(1): 61~63.
    [56] Lee S.R., Miyazaki K., Hori T. Application of silk sericin of finishing of synthetic fabrics[J].纤维学会志(JPN), 2004, 60(1): 9~15.
    [57]金建平,乔海燕,邵卫东等.织物丝胶/甲壳素改性舒适卫生整理技术研究[J]. 2004, (1): 22~23.
    [58]潘福奎,龙旻,高守武.利用丝胶减少兔毛针织物掉毛量的研究[J].青岛大学学报, 2001(6), 16(2): 14~16.
    [59]潘福奎,潘廷松,王善元.利用丝胶改善棉织物洗后平整度的研究[J]. 2004, 19(2): 51~53.
    [60]谢瑞娟,邢铁玲,谢丽莹.丝胶蛋白用于涤纶织物改性的研究[J].丝绸, 2002, (11): 14~16.
    [61] Hannes Sihtola. Chemical Properties of Modified Celluloses[J]. Macromolecular Chemistry and Physics, 1960, (1): 250~265.
    [62]陈文兴,尤奇,刘冠峰等.丝胶研究的一些进展[J].丝绸, 1995, (6): 13~15.
    [63]张其清,王淳.胶原蛋白-合成高分子复合材料的研究现状和发展方向[J].中国科学基金, 1995, (4): 14~18.
    [64]刘白玲.胶原在生物医学领域的应用[J].皮革科学与工程, 1999, 9(3): 35~42.
    [65]刘秉慈.大有可为的胶原蛋白医用生物材料[J].百科知识, 1995(5): 37~39.
    [66]赵宏霞,邹翰.胶原/壳聚糖复合膜的制备及止血效果的研究[J].山东生物医学工程, 2001, (4): 15~19.
    [67]王远亮,魏小娅.胶原和明胶在固定化酶中的应用[J].明胶科学与技术, 1989, (1): 1~6.
    [68]陈悦玲,何志远.胶原膜在角膜手术中应用的初步报告[J].中国实用眼科杂志, 1996, (5): 313~314.
    [69]张铭让,林炜.皮胶原蛋白在化妆品与蛋白饮料中的应用[J].北京皮革, 2000, (10): 42.
    [70]李彦春,程宝箴.胶原蛋白的应用[J].皮革化工, 2001, (3): 10~14.
    [71]陈冬英.胶原蛋白与化妆品[J].香料香精化妆品, 2001, (6): 18~19.
    [72]丁志文,李丽.利用皮革废弃物开发纺织“绿色纤维”[J].中国皮革, 2002, 31(17): 17~19.
    [73] Hirano Shiqehiro, Zhang Min, Nakaqawa Masuo, et al. Wet spun chitosan-collagen fibers, their chemical N-modifications, and blood compatibility[J]. Biomaterials, 2000, 21(10): 997~1003.
    [74] Takaku Kazuhiko, Oqawa Takemitsu, kuriyama Takashi, et al. Fracture behavior and morphology of spun collagen fibres[J]. Journal of Applied Polymer Science, 1996, 59(5): 887~896.
    [75]青木昭,高橋?裉锴Q子,日本,特開昭59-71441号.
    [76]钱江,汤克勇,曹健等.一种新型绿色纤维——胶原蛋白与壳聚糖共混纤维[J].中国皮革, 2004, 33(11): 4~6.
    [77]华坚,王坤余,吴丽莉等.胶原蛋白-壳聚糖的溶液纺丝[J].皮革科学与工程, 2004, 14(6): 7~10.
    [78]莫秀梅.甲壳素——明胶共混物的研究[J].高分子学报, 1997, (2): 222~224.
    [79]余家会,杜予民,郑化.壳聚糖——明胶共混膜[J].武汉大学学报(自然科学版), 1999, (45): 440~444.
    [80]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社, 1989:225~226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700