稀土离子掺杂MSi_2O_2N_2(M=Ca,Sr,Ba)荧光粉的制备和荧光性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光LED由于具有高效、节能、环保、绿色照明、长寿命等优点而受到人们广泛的关注,被预言将取代传统的照明光源-白炽灯、荧光灯等,成为第四代照明光源。目前技术上最成熟的白光LED的制备技术是荧光粉涂覆的光转换法。其中荧光粉对白光LED性能起着至关重要的作用。因此探求新型的可被紫外光或蓝光芯片激发的白光LED用荧光粉成为目前白光LED研究工作的热点
     硅基氮氧化物由SiX_4 (X = O,N)四面体形成的网络组成,具有很高的化学和热稳定性。富氮的晶体场环境引起较大的电子云重排效应(nephelauxetic effect)和能级劈裂使发光中心(Eu~(2+)、Ce~(3+)等)的5d能级重心降低。稀土离子掺杂的硅基氮氧化物荧光粉的激发带覆盖紫外光和蓝光区,正好与近紫外和蓝光LED芯片的发射光匹配。氮氧化物荧光粉可调制出蓝、绿、黄和红等各种不同波长的发射光谱,可满足白光LED的各种需求。硅基氮氧化物荧光粉因具有优良的荧光性能,被视为新型的制备白光LED理想的发光材料,吸引越来越多的人的关注。本文以氮氧化物MSi_2O_2N_2(M=Ca,Sr,Ba)为基质,研究稀土离子掺杂MSi_2O_2N_2(M=Ca,Sr,Ba)荧光粉的制备方法,光谱特性和光谱调控等内容,主要的研究工作如下几个方面:
     1.采用传统的固相反应法和以硅酸盐为先驱体的两步法制备MSi_2O_2N_2:Eu~(2+)(M=Ca,Sr,Ba)荧光粉,研究制备工艺参数对MSi_2O_2N_2的物相组成和荧光性能的影响。固相反应合成的产物含有杂相且发光强度低。采用以硅酸盐为先驱体的两步法制备的样品杂相含量低,发光强度可提高1.5倍。
     2.系统地研究Eu~(2+)或Ce~(3+)离子掺杂的MSi_2O_2N_2(M=Ca,Sr,Ba)荧光性能。MSi_2O_2N_2:Eu~(2+) (M=Ca,Sr,Ba)的激发光谱覆盖250-500nm的紫外-可见光区,可与蓝光LED芯片匹配制备白光LED。发射光谱峰值分别位于560nm、535nm和490nm,是由Eu~(2+)的4f65d→4f7跃迁造成的。MSi_2O_2N_2:Ce~(3+)(M=Ca,Sr,Ba)激发光谱覆盖250-370nm的紫外光区,发射光谱峰值分别位于390nm、395nm和396nm。随着激活离子浓度的增加,发射光谱出现“红移”和浓度猝灭现象。
     3.研究共掺离子对MSi_2O_2N_2:Eu~(2+)(M=Ca,Sr,Ba)的荧光性能的影响,共掺Mn~(2+),Ce~(3+)和Dy~(3+)可提高MSi_2O_2N_2:Eu~(2+)(M=Ca,Sr,Ba)的发光强度。发现Ce~(3+)-Eu~(2+)之间存在能量传递,计算了Ce~(3+)-Eu~(2+)之间存在能量转换效率以及临界传输距离,发现Ce~(3+)-Eu~(2+)之间的能量传递的主要机制是电偶极-电偶极之间的相互作用。
     4.系统地研究了CaSi_2O_2N_2-SrSi_2O_2N_2-BaSi_2O_2N_2体系的互溶性以及Eu~(2+)离子在基质中的发射光谱的可调性。CaSi_2O_2N_2与SrSi_2O_2N_2具有相同的晶体结构,可形成连续固溶体,Eu~(2+)的发射光谱连续可调;SrSi_2O_2N_2与BaSi_2O_2N_2和CaSi_2O_2N_2与BaSi_2O_2N_2之间晶体结构各不相同,只能在某些成分范围内形成固溶体,Eu~(2+)的发射光谱只能在某些范围内进行调制。
White light-emitting diodes (LEDs) have drawn much attention owing to their excellent properties, such as high luminous efficiency, low power consumption, environment friendly, reliability, long life and so on. White LEDs show high potential for replacement of conventional lighting like incandescent and fluorescent lamps, and are considered as the fourth generation solid-state lighting. Today, commercial white LEDs are phosphor-converted-LEDs, which connect a blue LED chip and the phosphor. The phosphor plays an important role in white LEDs for improving the color rendering index and luminescence efficiency. So it is necessary to develop new phosphors for white LEDs.
     Silicon-based (oxy)nitrides are generally built up of networks of crosslinking Si(O,N)4 tetrahedra. The excited state of the 5d electrons of rare-earth elements is significantly lowered to low energy due to large crystal-field splitting and a strong nephelauxetic effect as a result of a high degree of crosslinking Si(O,N)4 tetrahedra in the structure of silicon-based (oxy)nitrides. This enables silicon-based (oxy)nitride to be excited efficiently by UV or blue-light irradiation. The structural versatility of (oxy)nitride phosphors makes it possible to attain all the emission colors of blue, green, yellow, and red; thus, they are suitable for using in white LEDs. This novel class of phosphors has been seemingly the most promising materials nowadays because of their high thermal and chemical stability and excellent photoluminescence properties. In present work, a systematic research was carried out on the processing methods, luminescence properties, spectral tuning of the rare earth doped MSi_2O_2N_2(M=Ca,Sr,Ba). The main work contents and achievements can be summarized as the following:
     1, MSi_2O_2N_2:Eu~(2+)(M=Ca,Sr,Ba) phosphors were prepared through a conventional solid state reaction method and a two step method with M2SiO4 as a precursor. The effect of formation processing on phase type and luminescence properties of samples was investigated. Low firing temperature leads to the sample including impurities and low luminescence intensity. Due to forming low content of the intermediate phase, the sample by the two step method shows luminescence intensity 1.5 times higher than that by the conventional method.
     2, Luminescence properties of Eu~(2+) or Ce3+ doped MSi_2O_2N_2(M=Ca,Sr,Ba) were systematically investigated. The excitation bands of MSi_2O_2N_2:Eu~(2+) (M=Ca,Sr,Ba) cover the spectral region from UV to the visible part(250-500nm), the emission spectra show a single intense board emission band centered at 560nm,535nm and 490nm for M=Ca, Sr, Ba, respectively, which is ascribed to the allowed 4f65d→4f7 transitions of Eu~(2+). The excitation spectra of MSi_2O_2N_2:Ce3+(M=Ca,Sr,Ba) cover a broad band from 250 to 370nm. The emission bands of MSi_2O_2N_2:Ce~(3+) center at 390,395 and 396nm for M=Ca, Sr, Ba, respectively. With increasing the concentration of Eu~(2+)or Ce~(3+), red-shift and concentration quenching of emission spectra were observed.
     3, The effect of co-activator (Mn~(2+), Ce~(3+), and Dy~(3+)) on the luminescence behavior of Eu~(2+) activated MSi_2O_2N_2(M=Ca,Sr,Ba) phosphor was discussed in detail. The emission intensities of Eu~(2+) can be enhanced by co-doping with Mn~(2+), Ce~(3+), and Dy~(3+) in MSi_2O_2N_2(M=Ca,Sr,Ba). There is an energy transfer between Ce~(3+) and Eu~(2+). The calculations of the efficiency of energy transfer from Ce~(3+) to Eu~(2+) and the critical distance between Ce~(3+) and Eu~(2+) suggest resonance-type energy transfer mechanism from Ce~(3+) to Eu~(2+) is due to dipole-dipole interactions.
     4, The intersolubility in the CaSi_2O_2N_2-SrSi_2O_2N_2-BaSi_2O_2N_2 system and the tenability of the emission of Eu~(2+) in these hosts were systematically investigated. Well solid solution can be formed throughout the whole composition range between CaSi_2O_2N_2 and SrSi_2O_2N_2, which have the same crystal structure, and therefore the emission of Eu~(2+) in these hosts can be continuously tuned. In the SrSi_2O_2N_2-BaSi_2O_2N_2 and CaSi_2O_2N_2-BaSi_2O_2N_2 system, solid solution can only be formed in some particular composition range due to different crystal structures. Therefore, the emission of Eu~(2+) in these hosts can only be tuned in composition ranges under which solid solution is formed.
引文
[1]黄尚廉.发展节能环保固态照明光源研究[J].重庆大学学报(社会科学版), 2005, 11(3):1-2.
    [2]王儒述.三峡工程促进西部开发与长江流域可持续发展[J].中国三峡建设, 2001, (3):5-6.
    [3]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社, 2005:186-192.
    [4]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社, 2004:293-330.
    [5]崔元日,潘苏予.第四代照明光源-白光LED[J].灯与照明, 2004, 28(2):31-34.
    [6]彭万华.我国超高亮度及白光LED产业的现状与发展[J].激光与红外, 2005, 35(4):223-227.
    [7] Nakamura S and G F. The blue laser diode:GaN based light emitters and lasers[M]. Berlin: Springer-Verlag, 1997:
    [8]刘霁,李万万,孙康.白光LED及其涂敷用荧光粉的研究进展[J].材料导报, 2007, 21(8):116-120.
    [9]史光国,崔凯.半导体发光二极管及固体照明[M].北京:科学出版社, 2007:1-23.
    [10] Nakamura S, Mukai T, and Senoh M. Candela-class high-brightness InGaN/AlGaN double- heterostructure blue-light-emitting diodes[J]. Applied Physics Letters, 1994, 64(13):1687-1689.
    [11] Steigerwald D A, Bhat J C., Collins D, et al. Illumination with solid state lighting technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2):310-320.
    [12]徐时清,金尚忠,王宝玲等.固体照明光源-白光LED的研究进展[J].中国计量学院学报, 2006, 17(3):188-191.
    [13]刘行仁,薛胜薜,黄德森等.白光LED现状和问题[J].光源与照明, 2003, 10(3):4-8.
    [14] Haitz R. Another semiconductor revolution:This time it's lighting![J]. Advances in Solid State Physics, 2003, 43:67-81.
    [15] Multi-year program plan FY'09-FY'15 solid-state lighting research and development[R]. Office of Energy Efficiency and Renewable Energy, Washington: 2009.
    [16] Yam F K and Hassan Z. Innovative advances in LED technology[J]. Microelectronics Journal, 2005, 36(2):129-137.
    [17] Schubert E F and Kim J K. Solid-state light sources getting smart[J]. Science, 2005, 308(5726):1274-1278.
    [18] Zukauskas A, Vaicekauskas R, Ivanauskas F, et al. Optimization of white polychromatic semiconductor lamps[J]. Applied Physics Letters, 2002, 80(2):234-236.
    [19] Ji L W, Su Y K, Chang S J, et al. InGaN/GaN multi-quantum dot light-emitting diodes[J]. Journal of Crystal Growth, 2004, 263(1-4):114-118.
    [20] Guo X, Graff J, and Schubert E F. Photon recycling semiconductor light emitting diode[A]. in: 1999 IEEE International Devices Meeting[C]. IEEE, 1999, 600-603.
    [21] Ye S, Xiao F, Pan Y X, et al. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties[J]. Materials Science and Engineering: R, DOI: 10.1016/j.mser.2010.07.001.
    [22] Mueller-Mach R., Mueller G O, Krames M R, et al. High-power phosphor-converted light-emitting diodes based on III-Nitrides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2):339-345.
    [23] Batentschuk M, Schmitt B, Schneider J, et al. Color engineering of garnet based phosphors for luminescence conversion light emitting diodes (lucoleds)[M]. McKittrick J., DiBartolo B., and Mishra K., in: Luminescent Materials, Warrendale:Materials Research Society, 1999:215-220.
    [24] Wu J L, Gundiah G, and Cheetham A K. Structure-property correlations in Ce-doped garnet phosphors for use in solid state lighting[J]. Chemical Physics Letters, 2007, 441(4-6):250-254.
    [25] Shusheng Z, Weidong Z, Chunlei Z, et al. Study on (Y, Gd)_3(Al, Ga)_5O_(12):Ce~(3+) phosphor[J]. Journal of Rare Earths, 2004, 22(1):118-121.
    [26]刘如熹,石景仁.白光发光二极管用钇铝石榴石萤光粉配方与机制研究[J].中国稀土学报, 2002, 20(6):495-501
    [27] Kottaisamy M, Thiyagarajan P, Mishra J., et al. Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs[J]. Materials Research Bulletin, 2008, 43(7):1657-1663.
    [28]潘政薇,何洪,宋秀峰等. LED用稀土Eu掺杂硅酸盐基荧光粉的研究进展[J].硅酸盐学报, 2009, 37(9):1590-1596.
    [29]罗昔贤,曹望和,孙菲.硅酸盐基质白光LED用宽激发带发光材料研究进展[J].科学通报, 2008, 53(9):1010-1016.
    [30]章少华,周明斌,胡江峰等.近紫外光激发的白光LED用单基质硅酸盐荧光粉的研究进展[J].材料导报, 2009, 23(5):25-29.
    [31] Chartier C, Barthou C, Benalloul P, et al. Photoluminescence of Eu~(2+) in SrGa2S4[J]. Journal of Luminescence, 2005, 111(3):147-158.
    [32] Hu Y, Zhuang W, Ye H, et al. Preparation and luminescent properties of (Ca1-x,Srx)S:Eu~(2+) red-emitting phosphor for white LED[J]. Journal of Luminescence, 2005, 111(3):139-145.
    [33]徐剑,张剑辉,张新民等. Ga_2S_3:Eu~(2+)和SrGa_(2+x)S_(4+y):Eu~(2+)系列荧光粉的发光性能研究[J].中国稀土学报, 2003, 21(6):635-638.
    [34] Kim Y K, Cho D H, Jeong Y K, et al. Luminescence characterization of (Ca_(1-x)Zn_x)Ga_2S_4:Eu~(2+) phosphors for a white light-emitting diode[J]. Materials Research Bulletin, 2010, 45(8):905-909.
    [35] Zhang X, Zhang J, Xu J, et al. Luminescent properties of Eu~(2+)-activated SrLaGa_3S_6O phosphor[J]. Journal of Alloys and Compounds, 2005, 389(1-2):247-251.
    [36] Zhang X, Liang L, Zhang J, et al. Luminescence properties of (Ca_(1-x)Sr_x)Se:Eu~(2+) phosphors for white LEDs application[J]. Materials Letters, 2005, 59(7):749-753.
    [37] Qu H, Cao L X, Su G, et al. Effect of ultraviolet irradiation on luminescence properties of undoped ZnS and ZnS:Ag nanoparticles[J]. Journal of Applied Physics, 2009, 106(9):093506.
    [38] Chang C H, Chiou B S, Chen K S, et al. The effect of In2O3 conductive coating on the luminescence and zeta potential of ZnS:Cu, Al phosphors[J]. Ceramics International, 2005, 31(5):635-640.
    [39] Luo X X, Cao W H, and Zhou L X. Synthesis and luminescence properties of (Zn,Cd)S:Ag nanocrystals by hydrothermal method[J]. Journal of Luminescence, 2007, 122:812-815.
    [40] Li Y Q, Hirosaki N, Xie R J, et al. Crystal, electronic and luminescence properties of Eu~(2+)-doped Sr_2Al_(2-x)Si_(1+x)O_(7-x)N_x[J]. Science and Technology of Advanced Materials, 2007, 8(7-8):607-616.
    [41] Li Y Q, de With G, and Hintzen H T. Luminescence properties of Eu~(2+)-doped MAl_(2-x)Si_xO_(4-x)N_x (M=Ca,Sr,Ba) conversion phosphor for white LED applications[J]. Journal of the Electrochemical Society, 2006, 153(4):G278-G282.
    [42] Setlur A A, Heward W J, Hannah M E, et al. Incorporation of Si_4~+-N_3~- into Ce~(3+)-doped garnets for warm white LED phosphors[J]. Chemistry of Materials, 2008, 20(19):6277-6283.
    [43] Piao X Q, Machida K, Horikawa T, et al. Acetate reduction synthesis of Sr_2Si_5N_8:Eu~(2+) phosphor and its luminescence properties[J]. Journal of Luminescence, 2010, 130(1):8-12.
    [44] Li Y Q, de With G, and Hintzen H T. The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr_2Si_5N_8:Eu~(2+) LED conversion phosphor[J]. Journal of Solid State Chemistry, 2008, 181(3):515-524.
    [45] Zeuner M, Hintze F, and Schnick W. Low temperature precursor route for highly efficient spherically shaped LED-phosphors M2Si5N8:Eu~(2+) (M=Eu,Sr,Ba)[J]. Chemistry of Materials, 2009, 21(2):336-342.
    [46] Hoppe H A, Lutz H, Morys P, et al. Luminescence in Eu~(2+)-doped Ba2Si5N8: Fluorescence, thermoluminescence, and upconversion[J]. Journal of Physics and Chemistry of Solids, 2000, 61(12):2001-2006.
    [47] Li Y Q, de With G, and Hintzen H T. Luminescence properties of Ce~(3+)-activated alkaline earth silicon nitride M_2Si_5N_8 (M=Ca,Sr,Ba) materials[J]. Journal of Luminescence, 2006, 116(1-2):107-116.
    [48] Li Y Q, van Steen J E J, van Krevel J W H, et al. Luminescence properties of red-emittingM_2Si_5N_8:Eu~(2+) (M=Ca,Sr,Ba) LED conversion phosphors[J]. Journal of Alloys and Compounds, 2006, 417(1-2):273-279.
    [49] Piao X Q, Horikawa T, Hanzawa H, et al. Preparation of (Sr_(1-x)Ca_x)_2Si_5N_8/Eu~(2+) solid solutions and their luminescence properties[J]. Journal of the Electrochemical Society, 2006, 153(12):H232-H235.
    [50] Horikawa T, Piao X Q, Fujitani M, et al. Preparation of Sr_2Si_5N_8:Eu~(2+) phosphors using various novel reducing agents and their luminescent properties[J]. IOP Conference Series: Materials Science and Engineering, 2009, 1(1):012024.
    [51] Piao X Q, Machida K, Horikawa T, et al. Self-propagating high temperature synthesis of yellow-emitting Ba2Si5N8:Eu~(2+) phosphors for white light-emitting diodes[J]. Applied Physics Letters, 2007, 91(4):041908.
    [52] Horikawa T, Fujitani M, Piao X Q, et al. Synthesis and characterization of Sr_2Si_5N_8:Eu~(2+) phosphor using strontium carboxylate[J]. Journal of the Ceramic Society of Japan, 2007, 115(10):623-627.
    [53] Li H L, Xie R J, Hirosaki N, et al. Synthesis and photoluminescence properties of Sr_2Si_5N_8:Eu~(2+) red phosphor by a gas-reduction and nitridation method[J]. Journal of the Electrochemical Society, 2008, 155(12):J378-J381.
    [54] Piao X Q, Machida K, Horikawa T, et al. Synthesis of nitridosilicate CaSr_(1-x)Eu_xSi_5N_8 (x=0-1) phosphor by calcium cyanamide reduction for white light-emitting diode applications[J]. Journal of the Electrochemical Society, 2008, 155(1):J17-J22.
    [55] Zeuner M, Schmidt P J, and Schnick W. One-pot synthesis of single-source precursors for nanocrystalline LED phosphors M_2Si_5N_8:Eu~(2+) (M=Sr,Ba)[J]. Chemistry of Materials, 2009, 21(12):2467-2473.
    [56] Piao X Q, Horikawa T, Hanzawa H, et al. Photoluminescence properties of Ca_2Si_5N_8:Eu~(2+) nitride phosphor prepared by carbothermal reduction and nitridation method[J]. Chemistry Letters, 2006, 35(3):334-335.
    [57] Teng X M, Liu Y H, Liu Y Z, et al. Preparation and luminescence properties of the red-emitting phosphor (Sr_(1-x)Ca_x)_2Si_5N_8:Eu~(2+) with different Sr/Ca ratios[J]. Journal of Rare Earths, 2009, 27(1):58-61.
    [58] Bai Z H, Lu F F, Yu J J, et al. Preparation and photoluminescence properties of Sr_2Si_5N_8:Eu~(2+) phosphors[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(6):1003-1007.
    [59] Wei X D, Cai L Y, Lu F C, et al. Structure and luminescence of Ca_2Si_5N_8:Eu~(2+) phosphor for warm white light-emitting diodes[J]. Chinese Physics B, 2009, 18(8):3555-3562.
    [60] Yun B G, Machida K, and Yamamoto H. Preparation and luminescence properties of SrSi_2O_2N_2: Eu~(2+) phosphors for white LEDs[J]. Journal of the Ceramic Society of Japan, 2007, 115(1346):619-622.
    [61] Bachmann V, Justel T, Meijerink A, et al. Luminescence properties of SrSi_2O_2N_2 doped with divalent rare earth ions[J]. Journal of Luminescence, 2006, 121(2):441-449.
    [62] Bachmann V, Ronda C, Oeckler O, et al. Color point tuning for (Sr,Ca,Ba)Si_2O_2N_2:Eu~(2+) for white light LEDs[J]. Chemistry of Materials, 2009, 21(2):316-325.
    [63] Han B Y and Sohn K S. Ternary combinatorial library of (Sr,Ba,Ca)Si_2N_2O_2 phosphors in terms of photoluminescence and color chromaticity[J]. Electrochemical and Solid State Letters, 2010, 13(5):J62-J64.
    [64] Li Y Q, Delsing A C A, de With G, et al. Luminescence properties of Eu~(2+)-activated alkaline-earth silicon-oxynitride MSi_2O_(2-δ)N_(2+2/3δ)(M=Ca,Sr,Ba): A promising class of novel LED conversion phosphors[J]. Chemistry of Materials, 2005, 17(12):3242-3248.
    [65] Song Y H, Park W J, and Yoon D H. Photoluminescence properties of Sr_(1-x)Si_2O_2N_2:Eu_x~(2+) as green to yellow-emitting phosphor for blue pumped white LEDs[J]. Journal of Physics and Chemistry of Solids, 2010, 71(4):473-475.
    [66] Yun B G, Miyamoto Y, and Yamamoto H. Luminescence properties of (Sr_(1-u)Ba_u)Si_2O_2N_2:Eu~(2+), yellow or orange phosphors for white LEDs, synthesized with (Sr_(1-u)Ba_u)2SiO_4:Eu~(2+) as a precursor[J]. Journal of the Electrochemical Society, 2007, 154(10):J320-J325.
    [67] Yun B G, Takashi H, Hiromasa H, et al. Preparation and luminescence properties of single-phase BaSi_2O_2N_2:Eu~(2+), a bluish-green phosphor for white light-emitting diodes[J]. Journal of the Electrochemical Society, 2010, 157(10):J364-J370.
    [68] Zhang M, Wang J, Zhang Z, et al. A tunable green alkaline-earth silicon-oxynitride solid solution (Ca1-xSrx)Si_2O_2N_2:Eu~(2+) and its application in LED[J]. Applied Physics B, 2008, 93(4):829-835.
    [69] Gu Y X , Zhang Q H, Li Y G, et al. Synthesis of CaSi_2O_2N_2:Eu LED-phosphors from reactive spherical templates with hollow structures[J]. Journal of the Electrochemical Society, 2010, 157(3):B388-B391.
    [70] Gu Y X, Zhang Q H, Li Y G, et al. Enhanced emission from CaSi_2O_2N_2:Eu~(2+) phosphors by doping with Y~(3+) ions[J]. Materials Letters, 2009, 63(16):1448-1450.
    [71] Liu R S, Liu Y H, Bagkar N C, et al. Enhanced luminescence of SrSi_2O_2N_2:Eu~(2+) phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions[J]. Applied Physics Letters, 2007, 91(6):061119.
    [72] Jung K Y and Seo J H. Preparation of fine-sized SrSi_2O_(2-δ)N_(2+2/3δ):Eu~(2+) phosphor by spray pyrolysis and its luminescent characteristics[J]. Electrochemical and Solid State Letters, 2008,11(7):J64-J67.
    [73] Gu Y, Zhang Q, Li Y, et al. Preparation and luminescence properties of Eu~(2+)-doped CaSi_2O_(2-δ) N_(2+2/3δ) phosphors[J]. Journal of Physics: Conference Series, 2009, 152(1):012083.
    [74] Wang M Y, Zhang J H, Zhang X, et al. Photoluminescent properties of yellow emitting Ca_(1-x)Eu_xSi_2O_(2-δ)N_(2+2δ/3) phosphors for white light-emitting diodes[J]. Journal of Physics D-Applied Physics, 2008, 41(20):205103.
    [75] Shen Z, Nygren M, and Halenius U. Absorption spectra of rare-earth-dopedα-sialon ceramics[J]. Journal of Materials Science Letters, 1997, 16(4):263-266.
    [76] Hirosaki N, Xie R J, Kimoto K, et al. Characterization and properties of green-emittingβ-SiAlON:Eu~(2+) powder phosphors for white light-emitting diodes[J]. Applied Physics Letters, 2005, 86(21):211905.
    [77] Xie R J, Hirosaki N, Sakuma K, et al. Eu~(2+)-doped Ca-α-SiAlON:A yellow phosphor for white light-emitting diodes[J]. Applied Physics Letters, 2004, 84(26):5404-5406.
    [78] Li H L, Hirosaki N, Xie R J, et al. Fine yellowα-SiAlON:Eu phosphors for white LEDs prepared by the gas-reduction-nitridation method[J]. Science and Technology of Advanced Materials, 2007, 8(7-8):601-606.
    [79] Sakuma K, Hirosaki N, Xie R J, et al. Luminescence properties of (Ca,Y)-α-SiAlON:Eu phosphors[J]. Materials Letters, 2007, 61(2):547-550.
    [80] Ryu J H, Park Y G, Won H S, et al. Luminescence properties of Eu~(2+)-dopedβ-Si_(6-z)Al_zO_zN_(8-z) microcrystals fabricated by gas pressured reaction[J]. Journal of Crystal Growth, 2009, 311(3):878-882.
    [81] van Krevel J W H, van Rutten J W T, Mandal H, et al. Luminescence properties of terbium-, cerium-, or europium-dopedα-Sialon materials[J]. Journal of Solid State Chemistry, 2002, 165(1):19-24.
    [82] Liu L H, Xie R J, Hirosaki N, et al. Optical poperties of bue-emitting Ce_xSi_(6-z)Al_(z-x)O_(z+1.5x)N_(8-z-x) for white light-emitting diodes[J]. Journal of the Electrochemical Society, 2010, 157(1):H50-H54.
    [83] Sakuma K, Hirosaki N, Xie R J, et al. Optical properties of excitation spectra of (Ca,Y)-α-SiAlON:Eu yellow phosphors[J]. Physica Status Solidi (c) 2006, 3(8):2701-2704.
    [84] Li H L, Xie R J, Hirosaki N, et al. Phase purity and luminescence properties of fine Ca-α-SiAlON:Eu phosphors synthesized by gas reduction nitridation method[J]. Journal of the Electrochemical Society, 2008, 155(6):J175-J179.
    [85] Ryu J H, Won H S, Park Y G, et al. Photoluminescence of Ce~(3+)-activatedβ-SiAlON blue phosphor for UV-LED[J]. Electrochemical and Solid State Letters, 2010, 13(2):H30-H32.
    [86] Xie R J, Hirosaki N, Mitomo M, et al. Photoluminescence of Cerium-dopedα-SiAlON materials[J]. Journal of the American Ceramic Society, 2004, 87(7):1368-1370.
    [87] Xie R J, Hirosaki N, Mitomo M, et al. Photoluminescence of rare-earth-doped Ca-α-SiAlON phosphors: Composition and concentration dependence[J]. Journal of the American Ceramic Society, 2005, 88(10):2883-2888.
    [88] Zhang H C, Horikawa T, Hanzawa H, et al. Photoluminescence properties ofα-SiAlON:Eu~(2+) prepared by carbothermal reduction and nitridation method[J]. Journal of the Electrochemical Society, 2007, 154(2):J59-J61.
    [89] Suehiro T, Hirosaki N, Xie R J, et al. Powder synthesis of Ca-α'-SiAlON as a host material for phosphors[J]. Chemistry of Materials, 2005, 17(2):308-314.
    [90] Suehiro T, Onuma H, Hirosaki N, et al. Powder synthesis of Y-α-SiAlON and its potential as a phosphor host[J]. Journal of Physical Chemistry C, 2010, 114(2):1337-1342.
    [91] Xie R J, Mitomo M, Uheda K, et al. Preparation and luminescence spectra of calcium- and rare-earth (R = Eu,Tb,and Pr)-codopedα-SiAlON ceramics[J]. Journal of the American Ceramic Society, 2002, 85(5):1229-1234.
    [92] Xie R J, Mitomo M, Xu F F, et al. Preparation of Ca-α-sialon ceramics with compositions along the Si_3N_(4-1/2)Ca_3N_2:3AlN line[J]. Zeitschrift Fur Metallkunde, 2001, 92(8):931-936.
    [93] Karunaratne B S B, Lumby R J, and Lewis M H. Rare-earth-dopedα'-Sialon ceramics with novel optical properties[J]. Journal of Materials Research, 1996, 11(11):2790-2794.
    [94] Xie R J, Hirosaki N, Li H L, et al. Synthesis and photoluminescence properties ofβ-sialon:Eu~(2+) (Si_(6-z)Al_zO_zN_(8-z):Eu~(2+))[J]. Journal of the Electrochemical Society, 2007, 154(10):J314-J319.
    [95] Sakuma K, Omichi K, Kimura N, et al. Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor[J]. Optics Letters, 2004, 29(17):2001-2003.
    [96] Xie R J, Hirosaki N, Mitomo M, et al. Wavelength-tunable and thermally stable Li-α-sialon:Eu~(2+) oxynitride phosphors for white light-emitting diodes[J]. Applied Physics Letters, 2006, 89(24):241103.
    [97] Ryu J H, Park Y G, Won H S, et al. Luminescent properties ofβ-SiAlON:Eu~(2+) green phosphors synthesized by gas pressured sintering[J]. Journal of the Ceramic Society of Japan, 2008, 116(1351):389-394.
    [98] Dierre B, Yuan X L, Hirosaki N, et al. Luminescence properties of Ca- and Yb-codoped SiAlON phosphors[J]. Materials Science and Engineering: B, 2008, 146(1-3):80-83.
    [99] Li Y Q, Fang C M, de With G, et al. Preparation, structure and photoluminescence properties of Eu~(2+) and Ce~(3+)-doped SrYSi_4N_7[J]. Journal of Solid State Chemistry, 2004, 177(12):4687-4694.
    [100] Kurushima T, Gundiah G, Shimomura Y, et al. Synthesis of Eu~(2+)-activated MYSi_4N_7 (M=Ca,Sr,Ba) and SrYSi_(4-x)Al_xN_(7-x)O_x (x=0-1) green phosphors by carbothermal reduction and nitridation[J]. Journal of the Electrochemical Society, 2010, 157(3):J64-J68.
    [101] Li Y Q, de With G, and Hintzen H. Synthesis, structure, and luminescence properties of Eu~(2+) and Ce~(3+) activated BaYSi_4N_7[J]. Journal of Alloys and Compounds, 2004, 385(1-2):1-11.
    [102] Watanabe H, Yamane H, and Kijima N. Crystal structure and luminescence of Sr_(0.99)Eu_(0.01)AlSiN_3[J]. Journal of Solid State Chemistry, 2008, 181(8):1848-1852.
    [103] Watanabe H and Kijima N. Crystal structure and luminescence properties of Sr_xCa_(1-x)AlSiN_3:Eu~(2+) mixed nitride phosphors[J]. Journal of Alloys and Compounds, 2009, 475(1-2):434-439.
    [104] Uheda K, Hirosaki N, and Yamamoto H. Host lattice materials in the system Ca_3N_2-AlN-Si_3N_4 for white light emitting diode[J]. Physica Status Solidi (a), 2006, 203(11):2712-2717.
    [105] Li J W, Watanabe T, Wada H, et al. Low-temperature crystallization of Eu-doped red-emitting CaAlSiN_3 from alloy-derived ammonometallates[J]. Chemistry of Materials, 2007, 19(15):3592-3594.
    [106] Uheda K, Hirosaki N, Yamamoto Y, et al. Luminescence properties of a red phosphor, CaAlSiN_3:Eu~(2+), for white light-emitting diodes[J]. Electrochemical and Solid State Letters, 2006, 9(4):H22-H25.
    [107] Watanabe H, Imai M, and Kijima N. Nitridation of AEAlSi for production of AEAlSiN_3:Eu~(2+) nitride phosphors (AE=Ca,Sr)[J]. Journal of the American Ceramic Society, 2009, 92(3): 641-648.
    [108] Piao X Q, Machida K, Horikawa T, et al. Preparation of CaAlSiN_3:Eu~(2+) phosphors by the self- propagating high-temperature synthesis and their luminescent properties[J]. Chemistry of Materials, 2007, 19(18):4592-4599.
    [109] Li J W, Watanabe T, Sakamoto N, et al. Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures[J]. Chemistry of Materials, 2008, 20(6):2095-2105.
    [110] Li J W, Watanabe T, Wada H, et al. Synthesis of Eu-doped CaAlSiN_3 from ammonometallates: Effects of sodium content and pressure[J]. Journal of the American Ceramic Society, 2009, 92(2):344-349.
    [111] Watanabe H, Wada H, Seki K, et al. Synthetic method and luminescence properties of SrxCa1-xAlSiN3:Eu~(2+) mixed nitride phosphors[J]. Journal of the Electrochemical Society, 2008, 155(3):F31-F36.
    [112] Li Y Q, Hirosaki N, Xie R J, et al. Yellow-orange-emitting CaAlSiN_3:Ce~(3+) phosphor: Structure,photoluminescence, and application in white LEDs[J]. Chemistry of Materials, 2008, 20(21):6704-6714.
    [113] Lei B F, Machida K, Horikawa T, et al. Synthesis and photoluminescence properties of CaAlSiN_3:Eu~(2+) nanocrystals[J]. Chemistry Letters, 2010, 39(2):104-105.
    [114] Duan C J, Wang X J, Otten W M, et al. Preparation, electronic structure, and photoluminescence properties of Eu~(2+) and Ce~(3+)/Li+-activated alkaline earth silicon nitride MSiN_2 (M=Sr,Ba)[J]. Chemistry of Materials, 2008, 20(4):1597-1605.
    [115] Le Toquin R and Cheetham A K. Red-emitting cerium-based phosphor materials for solid-state lighting applications[J]. Chemical Physics Letters, 2006, 423(4-6):352-356.
    [116] Li Y Q, Hirosaki N, Xie R J, et al. Synthesis, crystal and local electronic structures, and photoluminescence properties of red-emitting CaAlzSiN_2+z:Eu~(2+) with orthorhombic structure[J]. International Journal of Applied Ceramic Technology, DOI: 10.1111/j.1744-7402.2009.02393.x.
    [117] van Krevel J W H, Hintzen H T, Metselaar R, et al. Long wavelength Ce~(3+) emission in Y-Si-O-N materials[J]. Journal of Alloys and Compounds, 1998, 268(1-2):272-277.
    [118] Yang H, Liu Y, Ye S, et al. Purple-to-yellow tunable luminescence of Ce~(3+) doped yttrium-silicon-oxide-nitride phosphors[J]. Chemical Physics Letters, 2008, 451(4-6):218-221.
    [119] Uheda K, Takizawa H, Endo T, et al. Synthesis and luminescent property of Eu~(3+)-doped LaSi3N5 phosphor[J]. Journal of Luminescence, 2000, 87-89:967-969.
    [120] Dierre B, Xie R J, Hirosaki N, et al. Blue emission of Ce~(3+) in lanthanide silicon oxynitride phosphors[J]. Journal of Materials Research, 2007, 22(7):1933-1941.
    [121] Xie R J and Hirosaki N. Silicon-based oxynitride and nitride phosphors for white LEDs-A review[J]. Science and Technology of Advanced Materials, 2007, 8(7-8):588-600.
    [122] He X H, Lian N, Sun J H, et al. Dependence of luminescence properties on composition of rare-earth activated (oxy)nitrides phosphors for white-LEDs applications[J]. Journal of Materials Science, 2009, 44(18):4763-4775.
    [123]赵昕冉,傅仁利,宋秀峰等.白光LED用硅基氮(氧)化物荧光转换材料的研究进展[J].硅酸盐通报, 2009, 28(5):965-972.
    [124]罗昔贤.含硅氮/氧化物基质白光发光二极管发光材料的研究进展[J].硅酸盐学报, 2008, 36(9):1335-1342.
    [125] Kechele J A, Oeckler O, Stadler F, et al. Structure elucidation of BaSi_2O_2N_2-A host lattice for rare-earth doped luminescent materials in phosphor-converted (pc)-LEDs[J]. Solid State Sciences, 2009, 11(2):537-543.
    [126] Sohn K S, Kwak J H, Jung Y S, et al. Luminescence of Sr_2SiO_4-xN_(2x/3):Eu~(2+) phosphors preparedby spark plasma sintering[J]. Journal of the Electrochemical Society, 2008, 155(2):J58-J61.
    [127] Rae A W J M. Yttrium silicon oxynitrides[D]. Newcastle:University of Newcastle Upon Tyne, 1976.
    [128] Xie R J, Hirosaki N, Mitomo M, et al. Optical properties of Eu~(2+) inα-SiAION[J]. Journal of Physical Chemistry B, 2004, 108(32):12027-12031.
    [129] Xie R J, Hirosaki N, Mitomo M, et al. Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors[J]. Applied Physics Letters, 2006, 88(10):101104.
    [130] Sakuma K, Hirosaki N, and Xie R J. Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-α-SiAlON ceramic phosphors[J]. Journal of Luminescence, 2007, 126(2):843-852.
    [131] Sakuma K, Hirosaki N, Kimura N, et al. White light-emitting diode lamps using oxynitride and nitride phosphor materials[J]. IEICE Transactions on Electronics, 2005, E88C(11):2057-2064.
    [132] Oyama Y and Kamigaito O. Solid solubility of some oxides in Si_3N_4[J]. Japanese Journal of Applied Physics, 1971, 10(11):1637-1637.
    [133] Schlieper T, Milius W, Schnick W, et al. Nitrido-silicate II. Hochtemperatur-Synthesen und Kristallstrukturen von Sr_2Si_5N_8 und Ba_2Si_5N_8[J]. Zeitschrift für anorganische und allgemeine Chemie, 1995, 621(8):1380-1384.
    [134] Schlieper T, Milius W, and Schnick W. Nitrido-silicate I. Hochtemperatur-synthese und Kkristallstruktur von Ca_2Si_5N_8[J]. Zeitschrift für anorganische und allgemeine Chemie, 1995, 621(6):1037-1041.
    [135] Xie R J, Hirosaki N, and Mitomo M. Oxynitride/nitride phosphors for white light-emitting diodes (LEDs)[J]. Journal of Electroceramics, 2008, 21(1-4):370-373.
    [136] Duan C J, Otten W M, Delsing A C A, et al. Preparation and photoluminescence properties of Mn_(2+)-activated M_2Si_5N_8 (M=Ca,Sr,Ba) phosphors[J]. Journal of Solid State Chemistry, 2008, 181(4):751-757.
    [137] Fang C M, Li Y Q, Hintzen H T, et al. Crystal and electronic structure of the novel nitrides MYSi4N7 (M=Sr,Ba) with peculiar NSi4 coordination[J]. Journal of Materials Chemistry, 2003, 13(6):1480-1483.
    [138] Inoue K, Hirosaki N, Xie R J, et al. Highly efficient and thermally stable blue-emitting AlN:Eu~(2+) phosphor for ultraviolet white light-emitting diodes[J]. Journal of Physical Chemistry C, 2009, 113(21):9392-9397.
    [139] Piao X Q, Machida K, Horikawa T, et al. Synthesis and luminescent properties of low oxygencontained Eu~(2+)-doped Ca-α-SiAlON phosphor from calcium cyanamide reduction[J]. Journal of Rare Earths, 2008, 26(2):198-202.
    [140] Gal Z A, Mallinson P M, Orchard H J, et al. Synthesis and structure of alkaline earth silicon nitrides: BaSiN2, SrSiN2, and CaSiN2[J]. Inorganic Chemistry, 2004, 43(13):3998-4006.
    [141] van Krevel J W H. On new rare-earth doped M-Si-Al-O-N materials; luminescence properties and oxidation resistance[D]. Netherlands:Technische Universiteit Eindhoven, 2000.
    [142] Do H S, Choi S W, and Hong S H. Blue-emitting AlN:Eu~(2+) powder phosphor prepared by spark plasma sintering[J]. Journal of the American Ceramic Society, 2010, 93(2):356-358.
    [143] Yamada M, Naitou T, Izuno K, et al. Red-enhanced white-light-emitting diode using a new red phosphor[J]. Japanese Journal of Applied Physics Part 2-Letters, 2003, 42(1A-B):L20-L23.
    [144] Xie R J, Hirosaki N, Kimura N, et al. 2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors[J]. Applied Physics Letters, 2007, 90(19):191101.
    [145] Kimura N, Sakuma K, Hirafune S, et al. Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode[J]. Applied Physics Letters, 2007, 90(5):051109.
    [146] Takahashi K, Hirosaki N, Xie R J, et al. Luminescence properties of blue La_(1-x)Ce_xAl(Si_(6-z)Al_z)(N_(10-z)O_z)(z-1) oxynitride phosphors and their application in white light-emitting diode[J]. Applied Physics Letters, 2007, 91(9):091923.
    [147] Zhu W H, Wang P L, Sun W Y, et al. Phase relationships in the Sr-Si-O-N system[J]. Journal of Materials Science Letters, 1994, 13(8):560-562.
    [148] Yun B G, Takashi H, Hiromasa H, et al. Preparation and Luminescence Properties of Single-Phase BaSi2O2N2:Eu~(2+), a Bluish-Green Phosphor for White Light-Emitting Diodes[J]. Journal of the Electrochemical Society, 2010, 157(10):J364-J370.
    [149] Hoppe H A, Stadler F, Oeckler O, et al. Ca[Si_2O_2N_2]-A novel layer silicate[J]. Angewandte Chemie-International Edition, 2004, 43(41):5540-5542.
    [150]刘宇桓.發光二極體激發之氧氮化合物螢光粉合成與其特性研究[D].台北:國立台灣大學, 2006.
    [151]朱宏苑.用于白光LED的氮氧化物荧光粉的研究[D].长春:长春理工大学, 2009.
    [152] Oeckler O, Stadler F, Rosenthal T, et al. Real structure of SrSi_2O_2N_2[J]. Solid State Sciences, 2007, 9(2):205-212.
    [153] Huang Z K, Sun W Y, and Yan D S. Phase relations of the Si_3N_4-AIN-CaO system[J]. Journal of Materials Science Letters, 1985, 4(3):255-259.
    [154] Stadler F, Oeckler O, Hoppe H A, et al. Crystal structure, physical properties and HRTEMinvestigation of the new oxonitridosilicate EuSi_2O_2N_2[J]. Chemistry-a European Journal, 2006, 12(26):6984-6990.
    [155] Hecht C, Stadler F, Schmidt P J, et al. SrAlSi_4N_7:Eu~(2+)-A nitridoalumosilicate phosphor for warm white light (pc)LEDs with edge-sharing tetrahedra[J]. Chemistry of Materials, 2009, 21(8):1595-1601.
    [156] Dorenbos P. Energy of the first 4f~7→4f~65d transition of Eu~(2+) in inorganic compounds[J]. Journal of Luminescence, 2003, 104(4):239-260.
    [157] Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5):751-767.
    [158] Blasse G and Grabmaier B C. Luminescence Materials[M]. Berlin: Springer-Verlag, 1994:
    [159] Park J K, Kim J M, Oh E S, et al. Luminescence properties of Eu~(2+)-activated CaAl_2Si_2O_8 by photoluminescence spectra[J]. Electrochemical and Solid State Letters, 2005, 8(1):H6-H8.
    [160] Kaneko Y and Koda T. New developments in IIa-VIb (alkaline-earth chalcogenide) binary semiconductors[J]. Journal of Crystal Growth, 1990, 86(1-4):72-78.
    [161] Yoo H S, Bin Im W, Vaidyanathan S, et al. Effects of Eu~(2+) concentration variation and Ce~(3+) codoping on photoluminescence properties of BaGa2S4:Eu~(2+) phosphor[J]. Journal of the Electrochemical Society, 2008, 155(3):J66-J70.
    [162] Saradhi M P and Varadaraju U V. Photoluminescence studies on Eu~(2+)-activated Li_2SrSiO_4 - a potential orange-yellow phosphor for solid-state lighting[J]. Chemistry of Materials, 2006, 18(22):5267-5272.
    [163] Dexter D L. A theory of sensitized luminescence in solids[J]. The Journal of Chemical Physics, 1953, 21(5):836-850.
    [164] Auzel F. Up-conversion in RE-doped solids[M]. Liu G. and Jacquier B., in: Spectroscopic properties of rare earths in optical materials, New York:Springer, 2005:266-319.
    [165] Zhang Q Y and Huang X Y. Recent progress in quantum cutting phosphors[J]. Progress in Materials Science, 2010, 55(5):353-427.
    [166] Van Uitert L G. Characterization of energy transfer interactions between rare earth Ions[J]. Journal of the Electrochemical Society, 1967, 114(10):1048-1053.
    [167] Blasse G. Energy transfer in oxidic phosphors[J]. Philips Research Reports, 1969, 24:131-144.
    [168] Blasse G. Energy transfer between inequivalent Eu~(2+) ions[J]. Journal of Solid State Chemistry, 1986, 62(2):207-211.
    [169] Dexter D L. and Schulman J H. Theory of concentration quenching in inorganic phosphors[J]. The Journal of Chemical Physics, 1954, 22(6):1063-1070.
    [170]黄世华,楼立人.能量传递中敏化剂发光强度与浓度的关系[J].发光学报, 1990, 11(1):1-7.
    [171] Li Y Q, de With G, and Hintzen H T. Luminescence of a new class of UV-blue-emitting phosphors MSi_2O_(2-δ)N_(~(2+)2/3δ):Ce~(3+) (M=Ca,Sr,Ba)[J]. Journal of Materials Chemistry, 2005, 15(42):4492-4496.
    [172] Yun B G, Horikawa T, Hanzawa H, et al. Effect of oxygen content in raw materials on the synthesis of a single-phase EuSi_2O_2N_2[J]. Journal of the Electrochemical Society, 2010, 157(3):J97-J101.
    [173] Hidaka C, Miura K, Oikawa S, et al. Effect of co-doping of Ce~(3+) and alkaline metals on the photoluminescence in CaGa_2S_4 and SrGa_2S_4 hosts[J]. Physica Status Solidi (a), 2006, 203(11):2718-2722.
    [174] Li X, Yang Z P, Guan L, et al. Synthesis and luminescent properties of CaMoO4:Tb~(3+), R+ (Li+, Na+, K+)[J]. Journal of Alloys and Compounds, 2009, 478(1-2):684-686.
    [175] Shi S, Gao J, and Zhou J. Effects of charge compensation on the luminescence behavior of Eu~(3+) activated CaWO4 phosphor[J]. Optical Materials, 2008, 30(10):1616-1620.
    [176] He H, Fu R L, Cao Y G, et al. Ce~(3+)→Eu~(~(2+)) energy transfer mechanism in the Li_2SrSiO_4:Eu~(~(2+)), Ce~(3+) phosphor[J]. Optical Materials, 2010, 32(5):632-636.
    [177] Sivakumar V and Varadaraju U V. Ce~(3+)→Eu~(~(2+)) energy transfer studies on BaMgSiO4-A green phosphor for three band white LEDs[J]. Journal of the Electrochemical Society, 2007, 154(5):J167-J171.
    [178] Chang C K and Chen T M. Sr3B2O6:Ce~(3+),Eu~(~(2+)):A potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes[J]. Applied Physics Letters, 2007, 91(8):081902.
    [179] Yang W J and Chen T M. Ce~(3+)/Eu~(~(2+)) codoped Ba2ZnS3:A blue radiation-converting phosphor for white light-emitting diodes[J]. Applied Physics Letters, 2007, 90(17):171908.
    [180] Lee S H, Park J H, Son S M, et al. White-light-emitting phosphor:CaMgSi_2O_6:Eu~(~(2+)), Mn~(2+) and its related properties with blending[J]. Applied Physics Letters, 2006, 89(22):221916.
    [181] Yang W J and Chen T M. White-light generation and energy transfer in SrZn_2(PO4)2:Eu,Mn phosphor for ultraviolet light-emitting diodes[J]. Applied Physics Letters, 2006, 88(10):101903.
    [182] Guo C F, Luan L, Ding X, et al. Luminescent properties of SrMg_2(PO_4)_2: Eu~(~(2+)), and Mn~(2+) as a potential phosphor for ultraviolet light-emitting diodes[J]. Applied Physics A, 2008, 91(2):327-331.
    [183] Huang C H, Chen T M, Liu W R, et al. A single-phased emission-tunable phosphor Ca_9Y(PO_4)_7:Eu~(~(2+)),Mn~(~(2+)) with efficient energy transfer for white-light-emitting diodes[J]. Acs Applied Materials & Interfaces, 2010, 2(1):259-264.
    [184] Jiao H Y and Wang Y H. Ca_2Al_2SiO_7:Ce~(3+),Tb~(3+):A white-light phosphor suitable for white-light- emitting diodes[J]. Journal of the Electrochemical Society, 2009, 156(5):J117-J120.
    [185] Kuo T W and Chen T M. A green-emitting phosphor Sr_3La(PO_4)_3:Ce~(3+),Tb~(3+) with efficient energy transfer for fluorescent Lamp[J]. Journal of the Electrochemical Society, 2010, 157(6):J216-J220.
    [186] Wang J, Wang S B, and Su Q. Synthesis, photoluminescence and thermostimulated- luminescence properties of novel red long-lasting phosphorescent materialsβ-Zn_3(PO_4)_2: Mn~(2+),M~(3+)(M=Al and Ga)[J]. Journal of Materials Chemistry, 2004, 14(16):2569-2574.
    [187] Pode R B and Dhoble S J. Photoluminescence in CaWO_4:Bi~(3+),Eu~(3+) Material[J]. Physica Status Solidi (b), 1997, 203(2):571-577.
    [188] Mahalley B N, Dhoble S J, Pode R B, et al. Photoluminescence in GdVO4:Bi~(3+),Eu~(3+) red phosphor[J]. Applied Physics A, 2000, 70(1):39-45.
    [189] Paulose P I, Jose G, Thomas V, et al. Sensitized fluorescence of Ce~(3+)/Mn~(2+) system in phosphate glass[J]. Journal of Physics and Chemistry of Solids, 2003, 64(5):841-846.
    [190] Jiao H, Liao F H, Tian S J, et al. Luminescent properties of Eu~(3+) and Tb~(3+) activated Zn_3Ta_2O_8[J]. Journal of the Electrochemical Society, 2003, 150(9):H220-H224.
    [191] Reisfeld R and Lieblich-Soffer N. Energy transfer from UO2~(2+) to Sm~(3+) in phosphate glass[J]. Journal of Solid State Chemistry, 1979, 28(3):391-395.
    [192] Biju P R, Jose G, Thomas V, et al. Energy transfer in Sm~(3+):Eu~(3+) system in zinc sodium phosphate glasses[J]. Optical Materials, 2004, 24(4):671-677.
    [193] Song Y H, Jia G, Yang M, et al. Sr3Al2O5Cl2:Ce~(3+),Eu~(~(2+)):A potential tunable yellow-to-white- emitting phosphor for ultraviolet light emitting diodes[J]. Applied Physics Letters, 2009, 94(9):091902.
    [194] Yu R, Wang J, Zhang M, et al. Luminescence properties of Ca_(1-x)Sr_x(Ga_(1-y)Al_y)_2S_4:Eu~(~(2+))and their potential application for white LEDs[J]. Journal of the Electrochemical Society, 2008, 155(10):J290-J292.
    [195] Dorenbos P. f→d transition energies of divalent lanthanides in inorganic compounds[J]. Journal of Physics-Condensed Matter, 2003, 15(3):575-594.
    [196] Dorenbos P. 5d-level energies of Ce~(3+) and the crystalline environment.Ⅲ. Oxides containing ionic complexes[J]. Physical Review B, 2001, 64(12):125117.
    [197] Dorenbos P. 5d-level energies of Ce~(3+) and the crystalline environment.Ⅱ. Chloride, bromide, and iodide compounds[J]. Physical Review B, 2000, 62(23):15650-15659.
    [198] Dorenbos P. 5d-level energies of Ce~(3+) and the crystalline environment.Ⅰ. Fluoridecompounds[J]. Physical Review B, 2000, 62(23):15640-15649.
    [199] Dorenbos P. Relation between Eu~(2+) and Ce3+ f?d-transition energies in inorganic compounds[J]. Journal of Physics-Condensed Matter, 2003, 15(27):4797-4807.
    [200] Dorenbos P. Relating the energy of the [Xe]5d1 configuration of Ce3+ in inorganic compounds with anion polarizability and cation electronegativity[J]. Physical Review B, 2002, 65(23):235110.
    [201] Jang H S, Won Y H, Vaidyanathan S, et al. Emission band change of (Sr1-xMx)3SiO5:Eu~(2+) (M=Ca,Ba) phosphor for white light sources using blue/near-ultraviolet LEDs[J]. Journal of the Electrochemical Society, 2009, 156(6):J138-J142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700