白光LED用硅酸盐基稀土荧光粉的制备及发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用高温固相反应法(SSR)和Pechini-溶胶凝胶法两种工艺制备了稀土离子掺杂的正硅酸盐荧光粉。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、荧光分光光度计对样品进行了分析,研究了碱金属离子掺杂、稀土离子掺杂、合成工艺对荧光粉物相组成、微观结构、发光性能的影响。研究结果表明:(1)Pechini-溶胶凝胶法与高温固相反应法相比,制得的荧光粉物相更加纯净;粉体颗粒粒径更加均一,且呈球形形态,有利于涂覆。(2)Ba~(2+)掺杂的Sr_2SiO_4:Eu~(2+)中Eu~(2+)离子分布于两个不同的基体晶格位置,使发射光谱分别产生了绿光和黄光波段的发射;改变Ba~(2+)、Eu~(2+)离子掺杂浓度可以对荧光粉进行有效的光谱剪裁。碱金属离子Ba~(2+)的掺杂使Ba_xSr_(2-x-y)SiO_4:Euy2+荧光粉的α′-Sr_2SiO_4物相结构得到了稳定。碱土金属离子Ca~(2+)、Ba~(2+)掺杂的Li_2SrSiO_4:Eu~(2+)荧光粉具有宽带的激发和发射光谱,在色度图上分别位于蓝光区和黄光区。(3)阐述了稀土离子Eu~(2+)、Ce3+共掺杂的Li_2SrSiO_4荧光粉中其存在的能量传递现象,同时通过理论公式的计算和证明确定了能量传递的机制;稀土离子Eu~(2+)、Ce3+共掺杂的Li_2SrSiO_4荧光粉中存在电子偶极-偶极相互作用的Ce→Eu能量迁移现象;Li_2SrSiO_4:Ce, Eu在蓝光和黄光区域有两个发射峰,分别位于400 nm和570 nm处。当Ce3+离子浓度为0.005,Eu~(2+)离子浓度n≥0.75时,产生浓度猝灭现象。
Rare-earth doped silicates phosphors were prepared by high temperature solid state reaction (SSR) and Pechini-sol-gel route, respectively. Using X-ray Diffractometer (XRD), Scanning Electron Microscope (SEM) and fluorescent spectrophotometer, the influences of different doping ions including alkaline-earth metal ions and rare-earth ions, and preparing methods on phase compositions, microstructures and optical properties of silicates phosphors were studied. Experimental result show: (ⅰ) Comparing with SSR, Pechini-sol-gel route synthesized pure single phase phosphors with uniform phosphor particles and beneficial spherical shape. (ⅱ) Ba~(2+)-doped Sr_2SiO_4:Eu~(2+) phosphors (Ba_xSr_(2-x-y)SiO_4:Euy2+) show two intense emission bands at green and yellow regions of spectrum, originated from Eu~(2+) ions accommodated at two different sites in the host crystal, whose peaks depend on the concentrations of Ba~(2+) and Eu~(2+) ions. Additional, Ba~(2+)-doping favored the stabilization ofα′-Sr_2SiO_4 phase. Intense and broad excitation spectra and emission spectra were obtained by doping Ca~(2+) or Ba~(2+) ions in Li_2SrSiO_4:Eu~(2+) phosphor, which show blue emitting and yellow emitting in chromaticity diagram, respectively. (ⅲ) The energy transfer from Ce3+ to Eu~(2+) (Ce→Eu) was demonstrated to be the type of electric dipole-dipole interaction in the Eu~(2+) and Ce3+ codoped Li_2SrSiO_4 phosphor. There were broad blue and yellow emissions peaked at 400 nm and 570 nm, respectively. It was observed that Li_2SrSiO_4:0.5%Ce3+,0.75%Eu~(2+) displayed the highest emission intensity, and higher concentration of Eu~(2+) resulted in concentration quenching.
引文
[1]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版社, 2003.
    [2] O H卡赞金,马尔可夫斯基.无机发光材料[M].北京:化学工业出版社, 1980.
    [3]黄昆.固体物理学[M].北京:高等教育出版社, 1988.
    [4] Yamashita N. Antimony3+-activated calcium (sulfide, selenide) phosphors[J]. J. Phys. Soc., 1973, 35(4): 1089~1097.
    [5] Welker T J. Recent developments on phosphors for fluorescent lamps and cathode-ray tubes[J]. Lumin., 1991, 48-49: 49~56.
    [6] Katsumata T, Nabae T, Sasajima K, et al. Growth and characteristics of long Persistent SrAl2O4 and CaA12O4-based Phosphor crystals by a floating zone technique[J]. J. Cryst. Growth., 1998, 183(3): 361~365.
    [7]石春山,叶泽人. Eu2+在固体中的发光[J].发光与显示, 1982, (4): 1~3.
    [8]《固体发光》编写组.固体发光[M].吉林:吉林物理所, 1976.
    [9]石春山.关于Eu2+的f→f跃迁[J].发光与显示, 1981, (1): 39~46.
    [10] Nakamura S, Fasol G. The Blue Laser Diode[M]. Berlin: Springer Press, 1997.
    [11] Inokuti M, Hirayama F. Influence of energhy transfer by the exchange mechanism on donor luminescence[J]. J. Chem. Phys., 1965, 43(6): 1978~1989.
    [12] Forster T. 10Th spiers memoriallecture transfer mechanisms of electronic excitation[J]. Dicuss Faraday soc., 1959, 27: 7~17.
    [13] Jennifer W, Earl D. Optimization of cerium doped garnets using combinatorial chemistry for application as luminescent phosphors in white LEDs[J]. Mater. Res Sor. Symp. Proc., 1999, 560: 65~70.
    [14] Zhang S, Zhuang W, Zhao C. study on (Y,Gd)3(Al,Ga)5O12:Ce3+ phosphor[J]. Journal of Rare Earths, 2004, 22(1): 118~121.
    [15] Xie R J, Hirosaki N, Sakuma K, et al. Eu2+-doped Ca-α-SiAlON: A yellow phosphor for white light-emitting diodes[J]. Appl. Phys. Lett., 2004, 84(26): 5404~5406.
    [16] Xie R J, Hirosaki N, Mitomo M, et al. Wavelength-tunable and thermally stable Li-αsialon:Eu2+ oxynitride phosphors for white light-emitting diodes[J]. Appl. Phys. Lett., 2006, 89(24): 241103.
    [17] Li Y Q, van Steen J E J, van Krevel J W H, et al. Luminesence properties of red-emissionM2Si5N8:Eu2+(M=Ca,Sr,Ba) LEDconversion phosphors[J]. J. Alloys Compd., 2006, 417: 273~279.
    [18] Park J K, Choi K J, Yeon J H, et al. Embodiment of the warm white-light-emitting diodes by using a Ba2+ codoped Sr3SiO5:Eu phosphor[J]. Appl. Phys. Lett., 2006, 88(4): 043511.
    [19] Yoo J S, Kim S H, Yoo W T, et al. Control of spectral properties of strontium-alkaline earth-silicate-europium phosphors for LED applications[J]. J. Electrochem. Soc., 2005, 152(5): G382~G385.
    [20] Ho S J, Duk Y J. Yellow-emitting Sr3SiO5:Ce3+,Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes[J]. Appl. Phys. Lett. 2007, 90(4): 041906.
    [21] He H, Fu R L, Wang H, et al. Li2SrSiO4:Eu2+ Phosphor prepared by the Pechini method and its application in white light emitting diode[J]. J. Matr. Res., 2008, 23(12): 3288~3294.
    [22]徐剑,张新民,张剑辉,等. MGa2S4:Eu2+(M=Ca、Sr、Ba)和EuGa2S4系列荧光粉的合成和发光性能研究[J].中山大学学报(自然科学版), 2004, 43(03): 49~52.
    [23] Xu C X, Ma L, Cao L. Preparation of CaGa2S4:Ce TFEL devices with inter-layer reaction[J]. Thin Solid Films, 1997, 306(1): 160~162.
    [24]张英兰,赵绪义. Dy3+在Ca1-xSrxS:Eu2+,Er3+中的光致发光特性[J].吉林大学自然科学报, 1997, (4): 52~54.
    [25] Huh Y D, Shim J H, Kim Y, et al. Optical properties of three-band white light emitting diodes[J]. J. Electrochem. Soc., 2003, 150(2): H57~H60.
    [26] Yang P, Lin J H, Yao G Q. Luminescence and Preparation of LED Phosphor Ca8Mg(SiO4)4Cl2:Eu2+[J].稀土学报(英文版), 2005, 23(5): 633~635.
    [27]孙家跃,夏志国,杜海燕. (Sr,Ca)4Si3O8Cl4基质中Eu2+的发光特性研究[J].光谱学与光谱分析, 2005, 25(11): 1760~1763.
    [28] William M Y, Hajime Y, Shigeo S. Phosphor Handbook[M]. Second Edition, Florida: CRC Press, 2006.
    [29] Liu J, Lian H Z, Shi C S, et al. Eu2+-doped high-temperature phase Ca3SiO4Cl2?A yellowish orange phosphor for white-light-emitting diodes[J]. J. Electrochem. Soc., 152(11): G880~G884.
    [30] Liu J, Lian H Z, Shi C S. Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4:Eu3+[J]. Opti. Mater., 2007, 29(12): 1591~1594.
    [31]姚光庆,冯艳娥,段洁菲,等.氮化镓发光二级管蓝荧光粉的合成和发光性质[J].物理化学学报, 2003, 19(3): 226~229.
    [32]张书生,庄卫东,赵春雷.助熔剂对Y3Al5O12:Ce荧光粉性能的影响[J].中国稀土学报,2002, 20(6): 605~607.
    [33] Lu C H, Jagannathan R. Cerium-ion-doped yttrium aluminum garnet nano-phosphors prepared through sol-gel pyrolysis for Luminescent lighting[J]. Appl. Phys. Lett., 2002, 80(9): 3680~3610.
    [34] Li Q, Gao L, Yan D S. The crystal structure and spectra of nanoscale YAG:Ce3+[J]. Mater. Chem. Phys., 2000, 64(1): 41~44.
    [35] Shi S K, Liu X R. Preparation of Ce3+ doped Y3Al5O12 garnet from sulfate solutions and properties of the garnet[J].功能材料, 1998, 29(suppl.): 147~148.
    [36]石士考,李林书,刘行仁. YAG:Ce3+,Tb材料的软化学合成及其性能研究[J].中国稀土学报, 1998, 16(专辑): 1055~1057.
    [37]缪春燕,李东平,刘丽芳,等. YAG:Ce3+的合成与光谱性能研究[J].光谱实验室, 2004, 21(3): 563~565.
    [38]陈志忠,秦志新,胡晓东,等.大功率白光LED的制备和表征[J].液晶与显示, 2004, 19(2): 83~86.
    [39]蒋大鹏,赵成久,侯凤勤,等.白光发光二极管的制备技术及主要特性[J].发光学报, 2003, 24(4): 385~389.
    [40] Blasse G, Grabmaier B C. Luminescent Materials [M]. Berlin: Springer?Verlag, 1994.
    [41] Poort S H M, Merverink A, Blasse G. Lifetime measurements in Eu2+-doped host lattices [J]. J. Phys. Chem. Solids, 1997, 58(9): 1451~1456.
    [42] Park J K, Lim M A, Kim C H, et al. White light emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties[J]. Appl. Phys. Lett., 2003, 82(5): 683~685.
    [43] Park J K, Choik J, Park S H. Application of Ba2+·Mg2+ Co-doped Sr2SiO4:Eu yellow phosphor for white-light-emitting diodes[J]. J. Electrochem Soc., 2005, 152(8): pH121~ pH123.
    [44] Kim J S, Jeon P E, Choi J C, et al. Emission color variation of M2SiO4:Eu2+ (M = Ba, Sr, Ca) phosphors for light-emitting diode[J]. Solid State Commun., 2005, 133: 187~190.
    [45] Saradhi M P, Varadaraju U V. Photoluminescence studies on Eu2+-activated Li2SrSiO4?a potential orange?yellow phosphor for solid-state lighting[J]. Chem. Mater., 2006, 18(14): 5267~5272.
    [46] Lakshminarasimhan N, Varadaraju U V. White-light generation in Sr2SiO4:Eu2+, Ce3+ under near-UV exicitation: a novel phosphor for solid-state lighting[J]. J. Electrochem Soc., 2005, 152(9): H152~156.
    [47] Park JK, Kim CH, Park SH, et al. Application of strontium silicate yellow phosphor for whitelight-emitting diodes[J]. Appl. Phys. Lett., 2004, 84(10): 1647~1649.
    [48] Sun X Y, Zhang J H, Zhang X, et al. A single white phosphor suitable for near ultraviolet excitation applied to new generation white LED lighting[J]. Chin. J. Lumin.(in Chinese), 2005, 26(3): 404~406.
    [49] Kim J S, Jeon P E, Choi J C, et al. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor[J]. Appl. Phys. Lett., 2004, 84(15): 2931~2933.
    [50] Kim J S, Jeon P E, Park Y H, et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor[J]. Appl. Phys. Lett., 2004, 85(17): 3696~3698.
    [51] Kim J S, Lim K T, Jeong Y S, et al. Full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphors for white-light-emitting diodes[J]. Solid State Commun., 2005, 135: 21~24.
    [52]杨志平,刘玉峰,李雪清.用于白光LED的高亮度蓝白色荧光粉Ca2SiO3Cl2:Eu2+的发光性质[J].发光学报, 2006, 27(4): 629~632.
    [53] Yamada M, Naitou T, Izuno K, et al. Red?enhanced white?light?emitting diode using a new red phosphor[J]. Japanese J. Appl. Phys., 2003, 42(1A/B): L20~L23.
    [54] Uheda K, Hirosaki N, Yamamoto H, et al. The crystal structure and photoluminescence properties of a new red phosphor, calcium aluminum silicon nitride doped with divalent europium[C]. 206th Meeting of the Electrochemical Society, 2004.
    [55] Jack K H, Wilson W I. Ceramics based on the Si?Al?O?N and related systems[J]. Nature(Physical Science), 1972, 238(80): 28~29.
    [56] Oyama Y. Solid solution in the ternary system Si3N4?AlN?Al2O3[J]. Japanese J. Appl. Phys., 1972, 11(5):760~761.
    [57] Karunaratne B S B, Lumby R J, Lewis M H. Rare?earth?dopedα?SiAlON ceramics with novel optical properties[J]. J. Mater. Res., 1996, 11(11): 229~232.
    [58] Shen Z J, Nygren M, Halenius U. Absorption spectra of rare?earth?dopedα?SiAlON ceramics[J]. J. Mater. Sci. Lett., 1997, 16: 263~266.
    [59] Krevel J W H, Rutten J W T, Mandal H, et al. Luminescence properties of terbium?, cerium?, or europium?dopedα?SiAlON materials[J]. J.Solid State Chem., 2002, 165: 19~24.
    [60] Xie R J, Mitomo M, Uheda K, et al. Preparation and luminescence spectra of Calcium? and rare?earth (R=Eu, Tb, and Pr) ?codopedα?SiAlON ceramic[J]. J. Am. Soc., 2002, 85 (5): 1229~1234.
    [61] Xie R J, Hirosaki N, Mitomo M, et al. Optical properties of Eu2+ inα?SiAlON[J]. J. Phys. Chem., B, 2004, 108: 12027~12031.
    [62] Xie R J, Hirosaki N, Mitomo M, et al. Photoluminescence of cerium?dopedα?SiAlON materials[J]. J. Am. Ceram. Soc., 2004, 87(7): 1368~1370.
    [63] Xie R J, Hirosaki N, Mitomo M, et al. Strong green emission fromα-SiAlON activated by divalent ytterbium under blue light irradiation[J]. J. Phy. Chem. B, 2005, 109: 9490~9494.
    [64] Xie R J, Hirosaki N, Mitomo M, et al. Highly efficient white-light-emitting diodes fabricated with short~wavelength yellow oxynitride phosphors[J]. Appl. Phys. Lett., 2006, 88(10): 101104?1~101104?3.
    [65] Suehiro T, Hirosaki N, Xie R J, et al. Powder synthesis of Ca?α′?SiAlON as a host material for phosphors[J]. Chem. Mater., 2005, 17: 308~314.
    [66] Xu X, Nishimura T, Hirosaki N, et al. Fabrication ofβ?sialon nanoceramics by high~energy mechanical milling and spark plasma sintering[J]. Nanotechnology, 2005, 16: 1569~1573.
    [67] Zhang M, Wang J, Ding W, et al. Luminescence properties of M2MgSi2O7:Eu2+ (M = Ca, Sr) phosphors and their effects on yellow and blue LEDs for solid-state lighting[J]. Opt. Mater., 2007, 30(4): 571~578.
    [68] Wu Z C, Shi J X, Wang J, et al. A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs[J]. J. Solid State Chem., 2006, 179(8): 2356~2360.
    [69] Frédéric C, Xavier R, Stéphane J, et al. On the phosphorescence mechanism in SrAl2O4:Eu2+ and its codoped derivatives[J]. Solid State Sci., 2007, 9(7): 608~612.
    [70] Ding W J, Wang J, Zhang M, et al. A novel orange phosphor of Eu2+-activated calcium chlorosilicate for white light-emitting diodes[J]. J. Solid State Chem., 2006, 179(11): 3582~3585.
    [71] Yuan S L, Yang Y X, Fang B, et al. Effects of doping ions on afterglow properties of Y2O2S:Eu phosphors[J]. Opt. Mater., 2007, 30(4): 535~538.
    [72] Chan T S, Kang C C, Liu R S. Combinatorial Study of the Optimization of Y2O3:Bi,Eu Red Phosphors[J]. J. comb. chem., 2007, 9(3): 343~346.
    [73] Kim J S, Kwon A K, Park Y H, et al. Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu2+, Mn2+ (X=Ba, Sr, Ca) phosphors for white LED[J]. J. Lumin., 2007, 122: 583~586.
    [74] Yang W J, Chen T M. White-light generation and energy transfer in SrZn2(PO4)2:Eu,Mn phosphor for ultraviolet light-emitting diodes[J]. Appl. Phys. Lett., 2006, 88(10): 101903.
    [75] Yang W J, Luo L Y, Chen T M, et al. Luminescence and Energy Transfer of Eu- and Mn-Coactivated CaAl2Si2O8 as a Potential Phosphor for White-Light UVLED[J]. Chem. Mater.,2005, 17(15): 3883~3888.
    [76] Yuan S L, Chen X L, Zhu C F, et al. Eu2+, Mn2+ Co-doped (Sr, Ba)6BP5O20– A novel phosphor for white-LED[J]. Opt. Mater., 2007, 30(1): 192~194.
    [77] Jennifer W, Vojislav S. Cerium doped garnet phosphors in white InGaN–based LEDs[J]. Mater. Res. soc. Symp. Proc., 2001, 667: G511~G 516.
    [78] Catti M, Gazzoni G, Ivaldi G. Structures of twinnedβ-Sr2SiO4 and ofα′-Sr1.9Ba0.1SiO4[J]. Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 1983, C39: 29~34.
    [79] Hyde B G, Sellar J R, Stenberg L. Theβ<->α′transition in Sr2SiO4 (and Ca2SiO4, K2SeO4 etc.), involving a modulated structure[J]. Acta Crystallogr. Sect. B: Struct. Sci., 1986, B42: 423~429.
    [80] Craford M G. Commerical Light Emitting Diode Technology[M]. Dordrecht: Kluwer Academic Publishers, 1996.
    [81] Shea L E, McKittrick J, Lopez O A, et al. Synthesis of Red-Emitting, Small Particle Size Luminescent Oxides Using an Optimized Combustion Process[J]. J. Am. Ceram. Soc., 1996, 79(12): 3257~3265.
    [82] Oliveira M, Agathopoulos S, Ferreira J M F. The influence of BaO additives on the reaction of Al2O3–SiO2 ceramics with molten Al and Al–Si alloys[J]. Acta Mater., 2002, 50(6): 1441~1451.
    [83] Oliveira M, Ferreira J M F. Structural and mechanical charactrisation of MaO-, CaO- and BaO-doped aluminosilicate ceramics[J]. Mater. Sci. Eng. A., 2003, 344(1-2):35~44.
    [84] Uematsu K, Terada A, Morimoto T, et al. Direct Determination of Grain Growth Behavior in Zinc Oxide with Added Barium Oxide[J]. J. Am. Ceram. Soc., 1989, 72(6): 1070~1072.
    [85] Henderson B, Imbush G G. Optical Spectroscopy of Inorganic Solids[M]. Oxford: Clarendon, 1989.
    [86] van Uitert L G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ OR Ce3+ in various compounds[J]. J. Lumin., 1984, 29(1):1~9.
    [87] He H, Fu R L, Song X F, et al. White light?emitting Mg0.1Sr1.9SiO4:Eu2+ phosphors[J]. J. Lumin., 2008, 128: 489~493.
    [88]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社, 2005.
    [89] Gard J A, West A R. Preparation and crystal structure of Li2CaSiO4 and isostructural Li2CaGeO4[J]. J. Solid State Chem. 1973, 7(4): 422~427.
    [90] Kim J, Ahn D, Kulshreshtha C, et al. Lithium barium silicate, Li2BaSiO4, from synchrotron powder data[J]. Acta Cryst. C., 2009, 65(4): i14~i16.
    [91] Dorenbos P. Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds[J]. J. Lumin., 2003, 104(4): 239~260.
    [92] Blasse G. How far are luminescence properties predictable?[J]. J. Solid State Chem., 1979, 27(1): 3~8.
    [93] Jüstel T, Nikol H, Ronda C. New Developments in the Field of Luminescent Materials for Lighting and Displays Angew[J]. Chew. Int. Ed., 1998, 37: 3084~3103.
    [94] Tan Y, Shi C. Ce3+→Eu2+ energy transfer in BaLiF3 phosphor[J]. J. Phys. Chem. Solids, 1999, 60(11): 1805~1810.
    [95] Blasse G. Energy transfer in oxidic phosphors[J]. Philips Res. Rep., 1969, 24: 131~144.
    [96] Dexter D L, Schulman J H. Theory of Concentration Quenching in Inorganic Phosphors[J]. J. Chem. Phys., 1954, 22(8): 1063~1069.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700