光致发光稀土/丙烯酸酯类聚氨酯材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烯酸酯类聚氨酯(PUA)材料具有耐磨、耐磨蚀、耐高温、韧性好、高透明性、高精度等优点,在材料领域已经被广泛的应用。由于其独特分子结构和可控的聚合反应,最后可以实现材料的功能化。
     稀土元素因具有独特的电子结构,丰富的电子能级,决定其具有较好的荧光性能或磁性能。但是稀土离子存在发光效率低的问题,为了解决这一问题,选择高吸光系数的有机配体。这种高吸光系数的有机配体与稀土离子形成稀土配合物后,能够将吸收的光能有效的传递给稀土离子,使得稀土离子的特征荧光增强,进而提高稀土离子的发光效率。这种有机稀土配合物已经成为一类重要的荧光材料。
     本论文以丙烯酸酯类聚氨酯材料为基质,采用掺杂法和键合法两种途径来制备稀土聚氨酯材料。
     (1)通过高温水热法制备了稀土配合物[Tb(L~1)(phen)]_∞,并对晶体结构经行了解析,其中L~1:5-羟基间苯二甲酸阴离子配体,phen:邻菲罗啉。将该配合物与丙烯酸酯类聚氨酯大单体直接掺杂,经固化制得稀土TbIII配合物/丙烯酸酯类聚氨酯绿色荧光材料,并对该复合材料热性能,力学性能,荧光性能以及动态力学性能等进行了表征。研究表明:在399 nm激发光的照射下,复合材料具有较好的绿色荧光性能,且随着稀土元素含量的增加,荧光性能增强,其中当稀土含量增加到7 %时,材料仍具有较强的绿色荧光,没出现荧光猝灭现象;材料的耐热性能有所提高;稀土含量的增加对材料的力学性能影响较小;玻璃化温度随着稀土含量的提高先增大后减小,当稀土含量达到1.5 %时,玻璃化温度达到最大。
     (2)通过高温水热法制备出稀土配合物[Dy_2(L~2)_3(H_2O)_4]∞,其中L_2:2,6-二羟基异烟酸阴离子配体,并解析了晶体结构。将该配合物直接与丙烯酸酯类聚氨酯掺杂,制备稀土DyIII配合物/丙烯酸酯类聚氨酯复合材料,并对复合材料的热力学性能、内部结构、荧光性能进行表征。结果表明:该配合物在基质中以200~800 nm颗粒均匀分散;该材料具有良好的热稳定性能,在激发波长469 nm激发下,发射光谱在515 nm荧光强度达到最大,且随着稀土配合物含量的增高,荧光强度不断增强,没有出现荧光猝灭的现象。
     (3)通过试管扩散法合成了一种带有可反应官能团(羟基)稀土配合物,该配合物的化学式为:{[Sm(L~3)_3(phen)]_2(dmpy)(C_2H_5OH)_2(H_2O)_2}_∞,其中L~3:对羟基苯丙烯酸基阴离子配体,dmpy:2,6-二甲基吡啶。将该配合物与丙烯酸酯类聚氨酯大单体键合制得稀土SmIII配合物/PUA复合材料,并研究不同稀土配合物含量对复合材料的热稳定性能、荧光性能和力学性能的影响。为了改善材料的透光性,做了另外一组对比试验,引入“万能溶剂”—DMF。先将配合物溶解在DMF中再将其掺杂到基材当中。对比两种不同方法制备出来的材料各种性能差异。结果表明:第二组对比试验制备出来的复合材料较第一组试验制备出来的复合材料透光率明显提高,而且没有影响材料的荧光效果,但是材料的热力学性能有所下降。
     (4)以5-氨基间苯二甲酸为配体,通过试管扩散法,制备了一种稀土铕配合物{[Eu(H_2L~4)_2(H_2O)_5](H_4L~4)}∞,利用该配合物中的氨基作为活性基团,通过大单体制备技术,制备出新的键合型丙烯酸类聚氨酯光致发光材料,并对材料的荧光、热重等性能进行了测试。研究表明:在349 nm波长激发下,稀土配合物及发光材料在616 nm处发出较强的特征荧光。甚至当稀土配合物含量达到8 %时,依然没有发生荧光猝灭现象。且随着稀土配合物含量的增加,复合材料的外推起始热降解温度较纯的PUA材料逐渐提高。
The material of polyurethane-acrylate (PUA) has been applied extensively in the fields of engineering materials due to its characteristics of corrosion-resistant, high temperature resistance, good toughness, high transparency, high precision, etc. Various PUA materias with different mechanical properties can be obtained by exact designing molecular structure of product. Finally, the function of the materials was realized.
     The rare earth elements have unique electronic structure and rich electronic energy levels which determine them have good fluorescence properties or magnetic properties. But the low luminescence efficiency of rare earth ions is a problem. In order to solve this problem, we chose the organic ligand which has a high absorption coefficient to form the organic complex. The organic ligand can absorb light energy. Then the energy can be passed to the rare earth ions which can emit characteristic fluorescence, thus an important class of fluorescent material is obtained. Considering these respects mentioned above, in this dissertation, polyurethane-acrylate material were selected as matrices incorporating the rare earth complexes with different predestined organic ligands to construct novel functional composites by employing doping-type and bonding-type, respectively. The main contents including four chapters are as follows:
     (1) The rare earth complexes [Tb(L~1)(phen)]∞was prepared through high-temperature hydrothermal method, in which L1 is 5-hydroxy-isophthalic acid-based anionic ligands, phen is phenanthroline. The crystal structure of the obtained complex was analyzed. The rare earth TbIII / polyurethane green fluorescent composite materials were prepared by the complex being doped into PUA. The properties of the composite materical were characterized, such as thermal properties, mechanical properties, fluorescence properties and dynamic mechanical properties. The results showed that composite material has good green fluorescence properties. Fluorescence properties of composite material become more and more strongger with the RE content increasing. When the rare earth content is 7%, the composite material can still send a strong green fluorescence, no fluorescence quenching. Heat resistance of materials has increased with the increase of RE content. The glass transition temperature increases at first and then decreases with the increase of RE content. When the rare earth content is 1.5 %, the glass transition temperature reached maximum.
     (2) The rare earth complex [Dy_2(L~2)_3(H2O)4]_∞was synthesized by high temperature hydrothermal, in which L~2 is citrazinic acid-based anionic ligands, and its crystal structure was analysed. The complex was doped with the PUA directly to prepare the rare earth complex/PUA composite material. The thermodynamic properties, fluorescent properties and internal structure of composite materials were characterized. The results reveal that the complex is dispersed in PUA at about 200~500 nm. The material has the good thermal stability. Materiales were excitated by the excitation wavelength 469 nm light. In emission spectra, fluorescence intensity reached the maximum at the 515 nm. Fluorescence intensity grew with the increased content of rare earth complex. There was no fluorescence quenching phenomenon.
     (3) The rare earth complex {[Sm(L~3)_3(phen)]_2(dmpy)(C_2H_5OH)_2(H_2O)_2}_∞with a reaction of a functional group (hydroxyl) can be synthesized by the vitro diffusion method, in which L~3 is p-hydroxy acrylic acid-based anionic ligands and dmpy is 2,6-lutidine. The good fluorescence of the complex / PUA was obtained by chemical bond. Composite materials with the different content rare earth complex were investigated by light transmittance, thermal stability and fluorescence properties. Materials were excitated by the excitation wavelength 474 nm light. In emission spectra, fluorescence intensity reached the maximum at the 597 nm. In order to improve the material transmittance to do another set of comparative tests, DMF was introduced, which is "universal solvent". The complex first was dissolved in DMF, then bonding with PUA. The results showed that the transmittance of composite materials has further improved by using the DMF. What’s more, DMF did not affect the fluorescence of materials, but the thermal property of materials has declined.
     (4) The rare earth complex {[Eu(H_2L~4)_2(H_2O)_5](H_4L~4)}_∞was synthesized using 5-amino-isophthalic acid as the ligand. The active functional group (–NH_2) in the ternary complex was used to react with -NCO functional group of IPDI. By means of macromonomer technique, a novel photoluminescent material containing both the rare earth complex and PUA was obtained. The structure and properties of materials were characterized by FTIR, thermogravimetric analysis and fluorescence spectroscopy. Both the complex and photoluminescent polymer material emitted characteristic fluorescence at 616 nm after excitation at a wavelength of 349 nm. The fluorescent quenching wouldn’t appear when the content of complex reached 8 %. Forthermore, the initial degradation temperature increased with increasing the content of complex.
引文
[1] Aspinall H C. Chiral Lanthanide Complexes: Coordination Chemistry and Applications[J]. Chemical Reviews, 2002, 102(6): 1807-1850.
    [2] Huang H H, Yan B. In-situ sol-gel synthesis of luminescent Gd2SiO5: Tb3+ nanophosphors derived from assembling hybrid precursors[J]. Inorganic Chemistry Communications, 2004, 7(4): 595-597.
    [3]蔡进军,王忆.稀土掺杂硅酸盐体系长余辉发光材料研究进展[J].现代化工, 2009, 29(8): 26-29.
    [4]杜海燕,杨志萍,孙家跃.上转换发光材料及发光效率研究及展望[J].化工新型材料, 2009, 37(9): 5-7+13.
    [5]章江洪,张英杰,闫宇星.稀土转化膜在金属材料表面改性中的研究进展[J].稀土, 2009, 30(5): 84-89+94.
    [6]许剑轶,张胤,阎汝煦,罗永春.稀土系AB5型贮氢合金电极材料研究进展[J].电源技术, 2009, 33(10): 923-926.
    [7] Weissman S I. Intramolecular energy transfer the fluorescence of complexes of europium[J]. Journal of chemical physics, 1942, 10: 214-217.
    [8] Bunzli J G. Benefiting from the unique properties of lanthanide ions[J]. Accounts of Chemical Research, 2006, 39(1): 53-61.
    [9]刘应亮,雷炳富,邝金勇,石春山,孟建新,满石清,谭绍早,肖勇,袁定胜,黄浪欢,张静娴.长余辉发光材料研究进展[J].无机化学学报, 2009, 25(8): 1323-1329.
    [10]潘政薇,何洪,宋秀峰,赵昕冉,傅仁利. LED用稀土Eu掺杂硅酸盐基荧光粉的研究进展[J].硅酸盐学报, 2009, 37(9): 1590-1596.
    [11]乔一方.稀土无机化学的配位、设计、应用及其进展[J].消费导刊, 2009, 16:204-205.
    [12] Fang J, You H, Chen J, et al. Memory Devices Based on Lanthanide (Sm3+, Eu3+, Gd3+) Complexes[J]. Inorg. Chem., 2006, 45(9): 3701-3704.
    [13]温辉梁,杜秀丽,刘崇波.黄酮羧酸类化合物及其稀土配合物的研究进展[J].稀土, 2009, 30(1):69-75.
    [14]晓哲.稀土纳米材料应用进展[J].稀土信息, 2008, 7:6-9.
    [15] Yan B, Xiao X. Novel YNbO4:RE3+ (RE = Sm, Dy, Er) microcrystalline phosphors: Chemical co-precipitation synthesis from hybrid precursor and photoluminescent properties[J]. Journal of Alloysand Compounds, 2007, 433(1-2): 251-255.
    [16]王贺云,薛梅,王运华,等.含钐稀土三元有机配合物的合成及荧光性能表征.化工时刊, 2009, 23(1): 42-43.
    [17]马居良,倪惠琼,章小兵.稀土/高分子光致发光材料的研究现状和展望.安徽化工, 2007, 33(1): 8-11.
    [18] Yang L Z, Zhang L F, Chen J, et al. Study on the fluorescence and thermal stability of hybrid materials Eu(Phen)2Cl3/MCM-41[J]. Frontiers of Chemistry in China, 2009, 4(2): 149-153.
    [19] ZhaoY F, ZhaoY L, Bai F. et al. Fluorescent Property of the Gd3+-Doped Terbium Complexes and Crystal Structure of [Tb(TPTZ)(H2O)6]Cl3·3H2O[J]. Original Paper, 2009. DOI10.1007/s10895-010-0619-z.
    [20] Ren J, Wang B W, Chen Z D. Density functional theory study of the magnetic properties of rare earth complexes:the magnetic coupling mechanism in YⅢand GdⅢcomplexes with nitronyl nitroxide[J]. Science in China Series B: Chemistry, 2009, 52(11): 1962-1968.
    [21] Ivanova T I, Nikitin S A, Suski, W, et al. Magnetic properties, magnetoresistivity and magnetocaloric effect in Gd_xLa_(1-x)-MnSi alloys[J]. Journal of Rare Earths, 2009, 27(4): 684-687.
    [22] Olszewski J, Zbroszczyk J, Hasiak M, et al. Microstructure and magnetic properties of Fe-Co-Nd-Y-B alloys obtained by suction casting method[J]. Journal of Rare Earths, 2009, 27(4): 680-683.
    [23] Denisenko G A. Luminescence enhancement of rare earth ions by metal nanostructures[J]. Journal of Rare Earths, 2009, 27(4): 641-645.
    [24] Pukhov K K. Spontaneous emission in the ellipsoidal nanocrystals[J]. Journal of Rare Earths, 2009, 27(4): 637-640.
    [25] Liu L, Zhang L, Zhao S, Jin R, Liu M. Review on rare earth/polymer composite[J]. Journal of Rare Earths, 2002, 20(4): 241-248.
    [26] Popova M N. Spectroscopy of compounds from the family of rare-earth orthoborates[J]. Journal of Rare Earths, 2009, 27(4): 607-611.
    [27] Yuanfeng P A. Copolymers of styrene with a quaternary europium complex[J]. Journal of Applied Polymer Science, 2006, 100(2): 1506-1510.
    [28]李维芬,郑倩,崔元靖,等.铽与5-氨基间苯二甲酸配合物的合成及发光性能[J].材料科学与工程学报, 2009, 27(1): 40-42.
    [29] Shen F L, ZhaoW X. Luminescent Properties of Rare-earth Doped Silicate Phosphor. Journal ofSuzhou University, 2008, 28(4): 52-54.
    [30] Chao T P, Li Y J. Study on photoluminescence propertiesof nanofilms doped with rana-earths Eu[J]. Journal of Baicheng Normal College, 2008, 22(3): 18-31.
    [31] Zou M Q, Guo Y H, Li F, et al. Synthesis and fluorescence properties of terbium(Ⅲ) chelate-doped fluorescent silica particles by reverse microemulsi on method[J]. 2009, 19(4): 1-4.
    [32]李晓娟,于晓波,赵昕,等. Eu(TTFA)3掺杂环氧基光刻胶薄膜的强烈红色荧光[J].光子学报, 2009, 38(9): 2343-2347.
    [33]李锡森,马书懿,孙小菁,等.稀土钇掺杂多孔硅光致发光研究[J].功能材料, 2008, 39(7): 1108-1114.
    [34]王鹏,魏长平,任晓明.掺杂金属离子对( Eu, Tb)稀土配合物发光性质的影响[J].发光学报, 2009, 30(1): 97-100.
    [35] Zhang M, Zhao Y L, Zhao Y F, et al. Studies on fluorescence p r operties of Eu3+dinuclear complexes with 2-thiopheneacetic acid and o-phenanthroline[J]. Chin. J. Lumin., 2008, 29(5): 827-832.
    [36] Park K C, Mho S L. Photoluminescence properties of Ba3V2O8 ,Ba3(1-x)Eu2xV2O8 and Ba2Y2/3V2O8: Eu3+[J]. Journal of Luminescence, 2007, 122: 95-98.
    [37] Wang P, Wei C P, Ren X M. Influences of Co-doping Metal Ions on Luminescent Properties of (Eu,Tb)Rare Earth Complexes[J]. Chinese Journal of Luminescebce, 2009, 30(1): 97-100.
    [38] Liu H G, Xiao F, Zhang W S, et al. Inf1uences of matrixes and concentrations on luminescent charaeteristics of Eu(TTA)3(H2O)2/polymer composites[J]. Journal of Luminescence, 2005, 114: 187~196.
    [39] Liu H G, Park S, Jang K, et al. Inf1uence of 1igands on the photo1uminescent properties of EuIII in europium B-diketonate/PMMA-doped systems[J]. Journal of Luminescence, 2004, 116: 45-47.
    [40] Ryszkowska J, Zawadzak E A, Lojkowski W, et al. Structure and properties of polyurethane nanocomposites with zirconium oxide including Eu[J]. Materials Science and Engineering: C, 2007, 27(5-8): 994-997.
    [41]陶栋梁,黄保贵,徐怡庄,等.稀土发光配合物和高分子PVK之间的能量传递及其在高分子中的分散状态研究[J].光谱学与光谱分析, 2001, 21(6): 740-744.
    [42] Wei C P, Wang P, Ren X M. Influences of Co-doping Metal Ions on Luminescent Properties of (Eu,Tb)Rare Earth Complexes[J]. Chinese Journal of Luminescebce, 2009, 30(1): 97-100.
    [43] Sousa L F, Ferreira A C, Ferreira A R S, et al. Lanthanopolyoxotungstoborates:Synthesis,Characterization, and Layer-by-Layer Assembly of Europium Photoluminescent Nanostructured Films[J]. Journal of Nanoscience and Nanotechnology, 2004, 4(1-2): 214-220.
    [44] Bonzanini R, Dias D T, Girottoa E M, et al. Spectroscopic properties of polycarbonate and poly(methyl methaerylate) blends doped with europium(III) acetylacetonate[J]. Journal of Luminescence, 2006, 117: 61-67.
    [45]邓振波,程宝妹,梁春军,等.稀土配合物与PVK共混体系发光特性及载流子复合区域转移的研究[J].光谱学与光谱分析, 2007, 27(12): 228-231.
    [46] Chen Z Y, Wang A X, Li L, et al. Study on the effect of PMMA on the fluorescence properties of Eu(DBM)3Phen complex[J]. Journal of Northwest Normal University, 2009, 45(1): 78-82.
    [47]索全伶,罗吉平,刘兴旺,等.铕掺杂聚甲基丙烯酸甲酯的光致发光性能[J].高分子材料科学与工程, 2009, 25(6): 60-66.
    [48]陈永盛,李华基.氧化铝模板法制备掺杂稀土镧的TiO2纳米管及其表征[J].机械工程材料, 2009, 33(1): 37-39.
    [49]李侠,薛涛,何力,等.稀土铈掺杂纳米氧化锌抗菌聚乙烯的性能研究[J].塑料工业, 2006, 34(8): 60-63.
    [50]肖志国.蓄光型发光材料及其制品[M].北京:化学工业出版社, 2002:5-10.
    [51] Timothy Fiedler, Matthias Hilder, Peter C. Junk U H K. Synthesis, Structural and Spectroscopic Studies on the Lanthanoid p-Aminobenzoates and Derived Optically Functional Polyurethane Composites[J]. European Journal of Inorganic Chemistry, 2007: 291-301.
    [52]王燕燕,杨惠芳,李洪岩.含稀土铕配合物三维有序大孔材料的制备及其荧光性能[J].功能高分子学报, 2008, 21(3): 279-283.
    [53] Daniel A M E, Le H N, Benjamin C, et al. Thiophene containing poly (arylene-ethynylene)-alt-poly(arylene-vinylene)s: Synthesis, characterisation and optical properties[J]. Polymer, 2005, 46(23): 9585-9595.
    [54]张秀菊,陈鸣才,冯嘉春,等.以不同键合方式合成的Eu-AA-MMA共聚物的表征及荧光性质[J].高分子材料科学与工程, 2004, 20(3): 64-67.
    [55] Okamoto Y, Ueba Y, Dzhanibekov N F, et al. Rare earth metal containing polymers.3.Characterizatio -n of ion-containing polymer structures using rare earth metal fluorescence probes[J]. Macromolecules, 1981, 14(1): 17-22
    [56] Li J, Huang L F, Li Y C, et al. Preparation and characterization of composites of Eu-Tbcomplex/methacrylate-type polymer[J]. Functional Material, 2009, 40(10): 1601-1605.
    [57] Qin J F, Huang J, Cao X L, et al. Synthesisand Fluorescent Property of Europium Ternary Complex-St Copolymer[J]. Journal of Linyi Normal University, 2008, 33(3): 62-65.
    [58] Chen Z Q, Guo D C, Fu S F, et al. Preparation and Studies of Rare-Earth Polymer Fluorescence Complex[J]. Journal of Nanhua University, 2006, 20(3): 30-38.
    [59] Ueba Y, Zhu K J, Banks E, et al. Rare earth metal containing polymer Synthesis , characterization, and fluorescence properties of Eu3+ polymer complex containing carboxylbenzoyl and cardoxylnaphthoyl ligands[J]. J. Polym. Sci.: Polym.Chem. Ed, 1982, 20(5): 1271-1278.
    [60]杨程,刘力,张婉,等.稀土铽三元配合物/橡胶复合材料的制备及荧光性能研究[J].橡胶工业, 2004, 51(5): 261-266.
    [61]刘力,吴友平,田明,等.稀土/高分子复合材料的制备及结构与性能[J].合成橡胶工业, 2001, 24(2): 71-74.
    [62]周新木,谈宏宇,赵光好,等.缩聚活性铽配合物的合成、表征及其性质[J].化学试剂, 2006, 28(3): 129-131.
    [63]周新木,谈宏宇,赵光好,等.缩聚活性铕配合物的合成、表征与性质研究[J].稀土, 2006, 27(2): 30-33.
    [64]林展如.金属有机聚合物[M].成都:成都科技大学出版社, 1987: 260-263.
    [65]章伟光,殷霞,范军,等.稀土含硫有机配体配合物的合成与应用研究进展[J].中国稀土学报, 2004, 22(3): 299-306.
    [66]邱凤仙,史成亮,杨冬亚,等.钕三元配合物2聚氨酯发光材料的合成与荧光性能研究[J].中国稀土学报, 2008, 26(5): 557-560.
    [67]郭栋才,易立明,舒万艮,等.铕-芳香羧酸-丙烯腈三元配合物的合成及发光性能研究[J].光谱学与光谱分析, 2006, 26(11): 2003-2006.
    [68]郭栋才,易立明,舒万艮,等.铽芳香羧酸丙烯酰胺共聚丙烯酸乙酯发光聚合物的合成与性能研究[J].稀土, 2008, 29(4): 6-11.
    [69] Yan C H, Xu C J, Hu H H, et al. Preparation and properties of RE(3+) doped luminescent co-polymer by solution copolymerization[J]. Journal of Rare Earths, 2009, 5: 761-766.
    [70] SUO Q L, Lu F, Shi J W, et al. Studies on synthesis and fluorescent property of rare earth complexes RE(ABMF)2AA and copolymers RE(ABMF)2AA-co-MMA[J]. Journal of Rare Earths, 2009, 27(1): 28-32.
    [71]林美娟,王文,章文贡,等.配位键合Re(OPri)(TTA)2的发光有机玻璃的制备[J].应用化学, 2006, 23(8): 845-849.
    [72]曾礼昌,杨慕杰,吴鹏,等.新型含铽共聚物的合成及其电致发光研究[J].化学学报, 2005, 63(1): 51-54.
    [73]凌启淡,范希智,陈君,等.含Tb(acac)2(AA)phen的变色电致发光器件[J].功能材料, 2001, 32(4): 425-426.
    [74]常颖,王大鹏,喻晓军.稀土永磁材料绝缘特性研究[J].磁性材料及器件, 2008, 39(2): 26-28+32.
    [75] Lin W, Sun W L, Shen Z Q. Lanthanum heterocyclic Schiff-base complex initiated ring-opening polymerization of [var epsilon]-caprolactone[J]. Chinese Chemical Letters, 2007, 18(9): 1133-1136.
    [76] Yoshioka N, Nishde H, Tsuchida E. Complexation ofgadolinium ion with poly (methacrylic acid) and magnetic properties of the complexes[J]. Inorg. Chim. Acta. , 1987, 128(1): 135-138.
    [77] Cheng X S. Study on synthesis of tetraphenyl porphyrin metal polymer and its physicochemical properties[D]. Japan: Osaka U2 niversity, 1987.
    [78]邱广明,杨春雁,孙宗华.单分散亚微米级磁性微球的合成[J].功能高分子学报, 1996, 9(4): 565-571.
    [79] Hidehiro Kumazawa, Wang Zhifeng, Zhou Lanxiang, et al. Preparation of Dysprosium Ferrite/Polyacrylamide Magnetic Composite Microsphere and Its Characterization[J]. Journal of Rare Earths, 2005, 23(3): 262-265.
    [80]刘光华.稀土材料与应用[M].北京:化学工业出版社, 2005, 1-8.
    [81]玉林,董贞俭.稀有金属化学[M].沈阳:辽宁大学出版社, 1991, 590-597.
    [82]黄锐,何阳,郑德.稀土化合物在高分子领域的应用及其研发进展[J].塑料助剂, 2008, 5: 15-19.
    [83] Buccigros J M, Neison D J. EPR Studies show that all lanthanides do no t have the same order of binding to calmodulin[J]. Biochem Biophys Res Commun, 1986, 138(3): 1243-1249.
    [84] Diamandis E P. Multiple labeling and time resolvable fluo rophores[J]. Analytical Science, 1991, 7: 785-787.
    [85]栗淑媛,邱广亮.稀土磁性复合微球的制备及表征[J].稀土, 2002, 23(4): 63-66.
    [86] Nomura N, Taira A, Nakase A, et al. Ring-opening polymerization of lactones by rare-earth metal triflates and by their reusable system in ionic liquids[J]. Tetrahedron, 2007, 63(35): 8478-8484.
    [87] Liu L, Zhang X J, Zhang L Q. Preparation and fluorescent properties of Sm(BA)3/PU composit[J]. China Synthetic Rubber Industry, 2002, 25(2): 112.
    [88] Cheng Y, Li Liu, Yi G, et al. The influence of preparation conditions on the fluorescence properties of Eu(Sal)3Phen[J]. Luminescence, 2006, 21: 98-105.
    [89]方少明,周立明,张留城,等. IPDI/HEMA/PEG大单体的合成及其聚合物的制备[J].高分子材料科学与工程, 2004, 20(05): 109-112.
    [90]方少明,周立明,张留城,等. IPDI/HEMA/PEG大单体的合成及其聚合物的制备[J].高分子材料科学与工程. 2004, 20(5): 109-112.
    [91] Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution[S], University of G?ttingen, Germany 1997.
    [92] Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Corrected Software, University of G?ttingen, Germany 1996.
    [93] Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement, University of G?ttingen, Germany 1997.
    [94] Bruker AXS, SAINT Software Reference Manual. Madison, WI, 1998.
    [95]金日光.高分子物理[M].化学工业出版社, 2005.
    [96] Li J Y, Sun Y M, Zeng H, et al. Preparation of photoluminescence films containing rare earth complexes by UV photograft polymerization[J]. Journal of Applied Polymer Science, 2003, 89(3): 662-667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700