汽车产品再制造模式及其可靠性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再制造是汽车产品回收再利用的最高级形式,可以最大限度的保留制造过程中赋予零部件的附加值,是汽车工业发展循环经济,走可持续发展道路的最重要技术途径之一,是建设资源节约型、环境友好型和谐社会的必然选择。
     再制造属于制造的范畴,但又不完全等同于制造。新品制造过程中毛坯原材料质量单一,易于保证产品的生产一致性和可靠性;然而再制造的毛坯来自于废旧汽车,零部件具有不同的技术状态和剩余寿命,每个毛坯可能来源于不同的废旧产品,可能经历不同的再制造修复技术,再制造系统也会包含原型或新型的新件。毛坯状态、失效形式、再制造修复方法都具有高度的随机性和不确定性,因此再制造汽车产品的质量控制相比新品制造要复杂的多。同时,再制造也不同于维修。维修是随机的、原位的、单一的过程,以恢复产品的功能为目的。而再制造过程具有批量化报废、修复的特点,再制造生产过程包含产品批量拆解、清洗、替换或修复失效件、再装配等工艺过程,并且对再制造产品的技术性能、可靠性的要求不低于原型新品。因此再制造汽车产品的可靠性建模和分析方法也将不同于新品制造和维修。
     国外发达国家的汽车零部件再制造产业已有超过50多年的历史,从技术标准、加工技术、修复工艺到逆向物流、产品分销等各个方面都已发展相对成熟,形成较为完善的再制造体系。而目前我国汽车零部件再制造产业处于刚刚起步阶段。由于考虑到道路交通安全和环境保护等相关问题,国家政府主管部门多年来一直没有对汽车零部件再制造产业提供有效的政策支持。具有高附加值的发动机、变速器、转向器、前后桥和车架等零部件均不允许再制造使用,而是强制回炉炼钢。这造成了巨大的资源浪费和环境二次污染。出于推动汽车循环经济的考虑,汽车主管部门近几年公布了多家汽车零部件再制造试点企业,并对再制造汽车产品的质量提出了较高要求,要求保证再制造的零部件产品技术性能、可靠性和使用寿命接近或达到原产品的水平。
     再制造过程主要的特点是原材料来料时间、毛坯质量状况以及采用的修复方法等都具有不确定性,再制造后的系统也可能不同于原型新产品,因此再制造后的产品的可靠性也存在着不确定性。如何评估、提高再制造汽车产品的可靠性是发展汽车零部件再制造产业的关键问题。
     本文在综合分析国内外再制造产业发展现状及相关理论研究的基础上,对产品可靠性基本理论、汽车产品再制造模式、再制造汽车产品的可靠性建模、可靠性预计、可靠性分配以及可靠性试验等几个方面进行了深入分析,指出了影响再制造汽车产品系统可靠性的两方面因素:再制造系统结构变化和再制造系统中零部件可靠性的变化。
     对于系统结构的变化,根据再制造汽车产品相对于原型新产品的技术换代及用途变化规律,提出了四种再制造型式,即进化型式、退化型式、滞化型式和转化型式;而通过分析再制造后产品系统结构的变化规律,提出了四种再制造模式,即再用模式、更新模式、改造模式以及重置模式等。
     基于不同的再制造模式,构建了再制造汽车产品的系统可靠性模型,通过该模型,基于服从指数分布的串联系统,分析了再制造汽车产品的可靠性预计和可靠度分配方法。最后,对再制造汽车产品的可靠性验证试验以及FMEA在再制造中的应用等相关问题进行了分析,并以某再制造柴油发动机为例,对采用再用模式,对部分零部件进行高技术表面工程修复的再制造发动机进行1000h可靠性验证试验,对再制造柴油发动机关键修复考核件及整机系统的可靠性进行评价。
     论文的主要研究结果,构建了相对完整的汽车产品再制造模式和再制造汽车产品的可靠性分析理论。对于汽车零部件再制造过程中,对直接再使用件、可再制造件以及弃用件的分类原则,再制造产品装配过程中三类零件的选用等几个方面都提供了基础指导,为再制造企业提高再制造汽车产品的质量和可靠性提供了理论支持。然而,由于我国汽车零部件再制造产业处于刚刚起步阶段,相关的汽车产品再制造企业、再制造产品和再制造技术还不是很丰富,因此对于本课题的研究还难以获得更加充足的再制造模式选择和可靠性试验数据支持。在下一步的工作过程中,还需要对此进一步的深入研究。
Remanufacturing is the ultimate form of automotive products recycling, which can recapture most value added in the components, and it will be one of the most important technological methods for the sustainable development of automotive industry circular economy, and will be the necessary choice in order to establish the resources-conservation and environment-friendly harmonious society.
     Remanufacturing belongs to the manufacturing category, but is not equal to manufacturing process. The difference is that the original condition of rough components in manufacturing is pure, the quality, reliability and products consistency could be easily controlled. While the rough components in remanufacturing come from end-of-life automotive products, most components have failed with a variety of unknown age distribution. Each component of the remanufactured system may have come from different failed products, experienced different remanufacturing techniques and may be a new component of the same type as the original one or different. The condition of cores, failure modes and remanufacturing methods of raw materials are random and uncertain. So the quality control method will be more complex than that of manufacturing. Remanufacturing is also different from repairing process. Repairing is stochastic and single process aiming to recover the products function, while remanufacturing is a volume-wasting and renewing process, which involves the production-batch disassembly, cleaning, replacement or refurbishment of worn components and reassembly process. The system reliability is required to not be lower than the original system reliability. So the reliability modeling and analysis methods will be different from that of manufacturing and repairing process.
     Automotive components remanufacturing industry has a history of more than 50 years in some developed countries, a complete remanufacturing system formed from technical standards, processing techniques, fabricating machinery to reverse logistics and delivery, etc. While automotive components remanufacturing industry in China is just at the preliminary stage. With the consideration of transportation safety and environment protection, the Chinese government has been prohibiting the reuse and remanufacturing of important ELVs components, such as the engine, transmission, steering gear, front/rear axles and the vehicle frame, etc. These components have high value-added, but all of the five assemblies must be broken down and resmelted. This has caused a lot of resources waste and secondary pollution. In order to develop the circular economy of automotive industry, the Chinese government begins to promote the development of automotive components remanufacturing industry, and express high requirements on remanufactured automotive products so as to ensure the technical function, system reliability and products lifetime can be not lower than or reach the original products requirement.
     Remanufacturing has an uncertain characteristic on coming time, technical condition and repairing method of cores, and the remanufactured system is different from that of original one. So how to assess and improve the system reliability of the remanufactured products is the key question to develop the automotive components remanufacturing.
     In this paper, it focuses on the basic theory of product reliability, automotive remanufacturing modes, reliability modeling method of remanufactured automotive products and the reliability prediction, allocation and reliability experiment are also discussed in detail. It also points out two aspects that affect the system reliability of remanufactured automotive products, such as the change of system construction and reliability of components in the remanufactured system.
     According to the variation of automotive products technical level in remanufacturing, it puts forward four kinds of remanufacturing style, such as evolutional style, stagnant style, and degenerate style, transformational style, etc. According to the different construction of remanufactured products from the original ones, it puts out four kinds of remanufacturing modes, and they are reuse mode, updating mode, and amelioration mode, reset mode, etc.
     Reliability models are established on the base of these four different remanufacturing modes, and the reliability prediction and allocation methods are discussed deeply based on the series system and exponential distribution. In the end, the demonstration reliability experiment of remanufactured automotive products and the FMEA of remanufacturing are also analyzed. Take the remanufactured diesel engine as example, the engine was remanufactured with the reuse mode, some key components were remanufactured by high surface technologies. Assess these key components and system reliability by 1000h reliability experiment, the final results show that key components and system reliability are not lower than that of original requirements.
     The preliminary main research builds a relatively complete theory on automotive components remanufacturing modes, reliability prediction and allocation method. It can be used as a guide for the classification principle of reuse components, remanufacturable components and abandoned components in remanufacturing, and it gives a theory support on the selection of these three types of components and help the remanufacturers to better the system reliability of remanufactured automotive products. While the automotive components remanufacturing industry in Chinese is just at the preliminary stage, there are few remanufacturers, remanufactured products and technics, so it is hard to get more remanufacturing modes and reliability data to support this paper, and it needs a further consideration in the future.
引文
[1]Steinhiliper R. RemanufactLiring:TheUltimate Form of Recycling [M], Fraunhofer IRB, Verlag, 1998:100-103.
    [2]储江伟,张铜柱.汽车再制造企业运作模式探讨[J].汽车与配件,2009(03,04):64-66.
    [3]http://www.bu.edu/reman/TradeAssociations.htm.
    [4]Lund R T. The Remanufaeturing Industry:hidden Giant [M]. Boston, MA, Boston University,1996.
    [5]Hause W, Lund R T. Remanufacturing:Operation practice and Strategies [M]. Boston, MA, Boston University,2008.
    [6]http://apra.org/Legislation/FTCGuidelines.asp.
    [7]SAE J1693. Remanufactured hydraulic master cylinder for motor vehicle brakes—general characteristics and test procedure[S].
    [8]SAE J1694. Remanufactured hydraulic master cylinder for motor vehicle brakes—performance requirements[S].
    [9]SAE J1890. Performance assurance of remanufactured, hydraulically-operated rack and pinion steering gears[S].
    [10]SAE J1915. Recommended remanufacturing procedures for manual transmission clutch assemblies[S].
    [11]SAE J1916. Engine water pump remanufacture procedures and acceptance criteria[S].
    [12]SAE J2073. Automotive starter remanufacturing procedures[S].
    [13]SAE J2075. Alternator remanufacturing/rebuilding procedures includes passenger car, heavy duty, industrial, agricultural, andmarine[S].
    [14]SAE J2237. Heavy-duty starter remanufacturing procedures[S].
    [15]SAE J2240. Starter armature remanufacturing procedures[S].
    [16]SAE J2241. Automotive starter drive remanufacturing procedures[S].
    [17]SAE J2242. Automotive starter solenoid remanufacturing procedures[S].
    [18]BS AU 257-1995. Code of practice for remanufacture of spark and compression ignition engines[S].
    [19]Mangun D, Thurston DL. Incorporating component reuse, remanufacture, and recycle into product portfolio design [J]. Ieee Transactions on Engineering Management,2002(49):479-490.
    [20]Shu LH, Flowers WC. Application of a design-for-remanufacrure framework to the selection of product life-cycle fastening and joining methods[J]. Robotics and Computer-Integrated Manufacturing,1999(15):179-190.
    [21]Mabee DG, Bommer M, Keat WD. Design charts for remanufacturing assessment[J]. Journal of Manufacturing Systems,1999(18):358-366.
    [22]Ijomah WL, McMahon CA, Hammond GP, Newman ST. Development of design for remanufacturing guidelines to support sustainable manufacturing[J]. Robotics and Computer-Integrated Manufacturing,2007(23):712-719.
    [23]Ferrer G, Whybark DC. Material planning for a remanufacturing facility[J]. Production and Operations Management,2001(10):112-124.
    [24]Jayaraman V, Guide VDR, Srivastava R. A closed-loop logistics model for remanufacturing[J]. Journal of the Operational Research Society,1999(50):497-508.
    [25]Li MF, Liu GS. Return Policy for Used Products in Remanufacturing System[J]. Proceedings of the 38th International Conference on Computers and Industrial Engineering,2008(1-3):1844-1850.
    [26]Xu BS. Nano surface engineering and remanufacture engineering[J]. Transactions of Nonferrous Metals Society of China,2004(14):1-5.
    [27]Xu BS, Liang XB. Application of advanced materials in surface engineering and their prospects[J]. Rare Metal Materials and Engineering,2001(30):488-496.
    [28]Hu XD, Zhang Y, Yao JH, Chen ZJ. The Design of Powder Feeding System for Laser Remanufacturing[J]. Ultra-Precision Machining Technologies,2009(69-70):338-342.
    [29]Dong SY, Xu BS, Wang ZJ, Ma YZ, Liu WH. Laser remanufacturing technology and its applications-art. no.68251N[J]. Lasers in Material Processing and Manufacturing Iii,2008(6825):8251-8251.
    [30]Depuy GW, Usher JS, Walker RL, Taylor GD. Production planning for remanufactured products[J]. Production Planning & Control,2007(18):573-583.
    [31]Gallo M, Grisi R, Guizzi G, Romano E. A comparison of production policies in remanufacturing systems. In:Revetria R, Mladenov V,Mastorakis N (eds)[C]. Proceedings of the 8th Wseas International Conference on System Science and Simulation in Engineering,2009:334-339.
    [32]Pandey V, Thurston D. Effective Age of Remanufactured Products:An Entropy Approach[J]. Journal of Mechanical Design,2009:131.
    [33]Ferguson M, Guide VD, Koca E, Souza GC. The Value of Quality Grading in Remanufacturing[J]. Production and Operations Management,2009(8):300-314.
    [34]Jia JS, Yu KC, Tang XY, Kong LB. Research on quality function deployment facing Remanufacture Engineering (ID:2-020)[C]. Proceedings of the 13th International Conference on Industrial Engineering and Engineering Management,2006(1-5):551-555.
    [35]Ferrer, G., INSEAD., et al. On the economics remanufacturing a widget. Fontainebleau,1996.
    [36]Ferrer, G., INSEAD., et al. Parts recovery problem:the value of information in remanufacturing. Fontainebleau,1995.
    [37]Ferrer, G., INSEAD., et al. The economics of tire remanufacturing. Fontainebleau,1995.
    [38]Gu QL, Gao TG, Ieee. Pricing Decisions for New and Remanufactured Products Considering Market Risk,2009:1460-1464.
    [39]Mitra S. Revenue management for remanufactured products[J]. Omega-International Journal of Management Science.2007(35):553-562.
    [40]Debo LG, Toktay LB, Van Wassenhove LN. Joint life-cycle dynamics of new and remanufactured products[J]. Production and Operations Management,2006(15):498-513.
    [41]Ferrer G, Swaminathan JM. Managing new and remanufactured products[J]. Management Science. 2006(52):15.
    [42]Ritchey JR, Mahmoodi F, Frascatore MR, Zander AK. A framework to assess the economic viability of remanufacturing[J]. International Journal of Industrial Engineering-Theory Applications and Practice,2005(12):89-100.
    [43]Sherwood M, Shu LH, Fenton RG. Supporting Design for Remanufacture through Waste-Stream Analysis of Automotive Remanufacturers[J]. CIRP Annals-Manufacturing Technology,2000(49): 87-90.
    [44]Williams J, Shu LH. Analysis of remanufacturer waste streams across product sectors[J]. Cirp Annals-Manufacturing Technology.2001(50):101-104.
    [45]Zwolinski P, Brissaud D. Remanufacturing strategies to support product design and redesign[J]. Journal of Engineering Design.2008(19):321-335.
    [46]Robert Lund T. Remanufacturing:The Experience of the USA and Implications for the Developing Countries[M].World Bank Technical Papers,1984,31.
    [47]V.Daniel, Guide Jr. Production planning and control for remanufacturing:industry practice and research needs[J]. Journal of Operations Management,2000,18(4):467-483.
    [48]The United States Environmental Protection Agency. Remanufactured Produets:Good as New[R]. 1997,EPA 530-N-97-002
    [49]Hormozi A. Parts remanufacturing in the automotive industry[J]. Prod Invent Mgmt J, 1997,38(1):26-31
    [50]Clarke JW, White MS, Araman PA. Comparative performance of new, repaired, and remanufactured 48-by 40-inch GMA-style wood pallets[J]. Forest Products Journal.2005(55):83-88.
    [51]Anityasari M, Bao H, Kaebemick H. Evaluation of product reusability based on a technical and economic model:A case study of televisions[C].2005 IEEE International Symposium on Electronics & the Environment, Conference Record.2005:199-204
    [52]Takeshi Murayama, Lily H. Shu. Treatment of reliability for reuse and remanufacture[C]. Environmentally Conscious Design and Inverse Manufacturing,2001. Proceedings EcoDesign 2001: Second International Symposium on 11-15 Dec.2001, pp.287-292.
    [53]Shu LH, Flowers WC. Reliability Modeling in Design for Remanufacture[J]. Journal of Mechanical Design.1998(120):620-627..
    [54]L. H. Shu, W. C. Flowers. Application of a design-for-remanufacture framework to the selection of product life-cycle fastening and joining methods[J]. Robotics and Computer-Integrated Manufacturing-1999, vol.15, issue 3. pp.179-190.
    [55]Jiang, Z. H. a reliability model for systems undergoing remanufacture[D]. Ottawa:University of Toronto,1999
    [56]Jiang, Z. H., L. H. Shu, Benhabib, B. Steady-State Reliability Analysis of Repairable Systems Subject to System Modifications[J]. Journal of mechanical design-1999, vol.121, pp.614-621.
    [57]Jiang, Z.H., L. H. Shu, Benhabib, B. Reliability Analysis of Non-Constant-Size Part Populations in Design for Remanufacture[J]. Journal of Mechanical Design-2000, vol.122, Issue 2, pp.172-178.
    [58]E. Marcos, G. Philip, D. Elizabeth et al. Reliability Prediction of Remanufactured Product:A Welding Repair Process Case Study[C], ASME Conference Proceedings-vol.2006, no.47675, pp. 279-289.
    [59]Saranga H, Knezevic J. Reliability prediction for condition-based maintained systems[J]. Reliability Engineering & System Safety,2001(71):219-224.
    [60]International Electrotechnical Commission. IEC 62309 Dependability of products containing reused parts-Requirements for functionality and test[S].
    [61]Xing K, Belusko M, Luong L, Abhary K. An evaluation model of product upgradeability for remanufacture[J]. The International Journal of Advanced Manufacturing Technology,2007(35): 1-14.
    [62]Clarke JW, White MS, Araman PA. Comparative performance of new, repaired, and remanufactured 48-by 40-inch GMA-style wood pallets[J]. Forest Products Journal,2005(55):83-88.
    [63]Mazhar, M. I., Kara, S., Kaebernick, H. remaining life estimation of used components in consumer products:Life cycle data analysis by weibull and artificial neural networks[J]. Journal of Operations Management-2007,25(6):1184-1193.
    [64]Xiang W, Chen M, Pu GQ, Wang CT. Residual fatigue strength of 48MnV crankshaft based on safety factor[J]. Journal of Central South University of Technology,2005(12):145-147.
    [65]Murayama T, Yamamoto S, Oba F. Mathematical model of reusability [C]. Proceedings of the 2004 Ieee International Symposium on Electronics & the Environment, Conference Record,2004:183-188
    [66]张铜柱,储江伟,崔鹏飞,金晓红.汽车产品再制造中的知识产权问题分析[J].科技进步与对策,2010,27(03):91-94.
    [67]储江伟,张铜柱,崔鹏飞,金晓红.中国汽车再制造产业发展模式分析[J].中国科技论坛,2010(01):33-37.
    [68]王学平,张铜柱.中国汽车回收利用标准体系探讨[J].汽车与配件,2009(42):42-45.
    [69]杨继荣,段广洪,向东.面向再制造工程的绿色模块化设计方法研究[J].中国表面工程,2006(5+):67-70.
    [70]刘志峰;刘光复.工业产品可拆卸性设计系统模型研究[J].中国机械工程,1998,9(01):69-71.
    [71]江吉彬,刘志峰,刘光复.基于层次网络图模型的可拆卸性设计[J].中国机械工程,2003,14(21):1864-1867.
    [72]卞世春.机械产品回收再制造工厂规划与设计研究[D].合肥:合肥工业大学,2008.06.
    [73]张铜柱.基于无向图的发动机可拆解性设计方法研究[D].长春:吉林大学,20008.
    [74]金晓红.基于概率论的汽车产品可拆解性评价方法研究[D].长春:吉林大学,2009.
    [75]田广东.基于拓扑图的产品拆解概率计算方法研究[D].长春:吉林大学,2009.
    [76]王虎.基于UG的汽车产品拆解模型构建及信息提取方法研究[D].长春:吉林大学.2009.
    [77]毛伟.机电产品生命周期评价系统的研究与开发[D].北京:清华大学,2002.
    [78]薛俊芳.拆卸序列可行性检验及拆卸过程仿真的研究[D].北京:清华大学,2003.
    [79]孟鹏.产品拆卸回收建模与决策分析评估系统研究[D].北京:清华大学,2003.
    [80]李方义.机电产品绿色设计若干关键技术的研究[D].北京:清华大学,2002.
    [81]夏守长,奚立峰,胡宗武.基于实验设计的再制造物流网络的健壮性设计[J].计算机集成制造系统,2005,11(12):1705-1709.
    [82]侯继娜.废旧家电逆向物流系统约束识别与解除研究[D].长春:吉林大学,2007.05.
    [83]邓丹丹.再制造物流网络分析与优化模型研究[D].长春:吉林大学,2008.05.
    [84]宋守许.面向家电产品的逆向物流关键技术研究[D].合肥:合肥工业大学,2007.10.
    [85]赵宜.基于供应链的回收物流研究[D].成都:西南交通大学,2005.02.
    [86]代颖.再制造物流网络优化设计问题研究[D].成都:西南交通大学,2006.02.
    [86]徐滨士.热喷涂Zn-Al-Mg-RE涂层组织及耐蚀性能研究[J].金属热处理,2008,33(11):52-54.
    [87]徐润生,徐滨士,马世宁,董世运,朱子新,刘晓明.高速火焰喷涂Fe-Al/Cr_3C_2复合涂层的冲蚀性能研究[J].热加工工艺,2005(07):29-33.
    [88]徐滨士.高速电弧喷涂Fe-Al复合涂层高温腐蚀研究[J].腐蚀科学与防护技术,2008,20(03):173-175.
    [89]张斌,徐滨士,董世运,吴斌.自动化n-SiC/Ni复合电刷镀层的高温摩擦性能研究[J].材料工程,2008(01):54-57.
    [90]刘运武.基于激光再制造的三维同轴送粉工作头研究[D].天津:天津工业大学,2007.06.
    [91]李会山.激光再制造的光与粉末流相互作用机理及试验研究[D].天津:天津工业大学,2004.08.
    [92]张兴泉.激光再制造三维运动光束头[D].天津:天津工业大学,2007.01.
    [93]潘晓勇.三维环境下产品拆卸分析及关键技术研究[D].合肥:合肥工业大学,2003.10.
    [94]刘学平.机电产品拆卸分析基础理论及回收评估方法的研究[D].合肥:合肥工业大学,2000.07.
    [95]赵树恩.汽车零部件拆卸序列自动生成的理论研究及实现[D].重庆:重庆大学,2005.04.
    [96]姚巨坤,杨俊娥,朱胜.废旧产品再制造质量控制研究[J].中国表面工程,2006(10):115-117.
    [97]李红霞.再制造产品质量经济分析[D].西安:西北工业大学,2007.03.
    [98]徐滨士,刘世参,史佩京,等.汽车发动机再制造效益分析及对循环经济贡献研究[J].中国表面工程,2005(01):1-7.
    [99]徐滨士等.装备再制造工程的理论与技术[M].北京:国防工业出版社,2007.07.
    [100]李菲,沈虹.面向再制造的产品质量特性评价方法[J].现代制造工程,2008(11):99-102.
    [101]李菲.面向再制造的产品可靠性分析模型构建方法研究[J].中国西部科技,2009,8(23):40-41.
    [102]李菲,沈虹.面向知识重用的再制造可靠性分析方法研究[J].机床与液压,2010,38(11):144-146.
    [103]朱胜,姚巨坤.再制造设计理论及应用[M].北京:机械工业出版社,2009.05.
    [104]李长文,赵长禄,黄英等.基于车辆动力传动一体化控制的发动机控制系统[J].汽车工程,2002(4):322-326.
    [105]姚巨坤,梁志杰,崔培枝.再制造升级研究[J].新技术新工艺,2004(3):17-19.
    [106]张国庆.零件剩余疲劳寿命预测方法与产品可再制造性评估研究[D].上海:上海交通大学,2007.01.
    [107]张国庆,荆学东,浦耿强,王成焘,徐滨士.汽车发动机可再制造性评价[J].中国机械工程,2005,16(8):739-742.
    [108]钟骏杰,范世东,姚玉南,杨勇虎.再制造性综合评估研究[J].中国机械工程,2003,14(24):2110-2113.
    [109]张显程.面向再制造的等离子喷涂层结构完整性及寿命预测基础研究[D].上海:上海交通大学,2007.06.
    [110]刘贵民,马丽丽,郑铁军.无损检测技术在再制造工程中的应用展望[J].中国表面工程,2006,19(5+):118-120.
    [111]董世运,徐滨士,董丽虹,王丹.金属磁记忆检测技术用于再制造毛坯寿命预测的试验研究[J].中国表面工程,2006,19(5+):71-75.
    [112]董世运,徐滨士,董丽虹,王丹.金属磁记忆检测技术用于再制造毛坯寿命预测的试验研究[C].第二届全国装备再制造工程学术会议暨首届青年再制造工程学术论坛论文集,2006(S1):71-75.
    [113]孔红友.车用曲轴材料48MnV钢弯曲疲劳损伤的磁记忆表征研究[D].上海:上海交通大学,2007.
    [114]范军锋.曲轴模拟弯曲疲劳损伤的磁记忆参数表征[D].上海:上海交通大学,2007.
    [115]张铜柱,储江伟,金晓红,崔鹏飞.再制造汽车产品的可靠性问题分析[J].机械设计与制造,2010(05):258-260.
    [116]GB 3187可靠性基本名称术语及定义[S].北京:中国标准化出版社.
    [117]李云新,魏长江.浅谈机电产品可靠性的特点[J].煤炭技术,1999,18(06):9-10.
    [118]周玉明.汽车可靠性设计概论[M].重庆:重庆大学出版社,1988.
    [119]高社生,张玲霞.可靠性理论与工程应用[M].北京:国防工业出版社,2002.08.
    [120]徐滨士.发展再制造工程.促进循环经济建设[J].中国设备工程,2005(2):6-5.
    [121]储江伟,张铜柱.金晓红,崔鹏飞,王虎,田广东.电控发动机再制造模式及其选择[J].车用发动机,2009(01):88-92.
    [122]储江伟.汽车再生工程[M].北京:人民交通出版社,2007,09.
    [123]徐滨士等.再制造工程基础及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005.10.
    [124]平安,王德俊,叶笃毅,杨浩泉.材料疲劳性能变化规律与剩余寿命预测[J].东北大学学报,1994(06):263-266.
    [125]姚巨坤,时小军.废旧件再制造的检测[J].工程机械与维修,2007(10):149-150.
    [126]C.E.Jaske.(美).工厂设备剩余寿命预计[J].发电设备,1987(02):15-17.
    [127]吴益文,华沂,蒋海宁等.汽车发动机缸体的再制造问题研究[J].检验检疫学刊,2009(05):35-37.
    [128]李云新,魏长江.浅谈机电产品可靠性的特点[J].煤炭技术,1999,18(06):9-10.
    [129]徐滨士.装备再制造工程与失效分析[J].理化检验-物理分册,2005,41(08):380-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700