基态高斯塔克能级热助推泵浦Nd:YVO_4激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热效应是实现全固态激光器高功率、高效率和高光束质量运转的瓶颈。由激光介质内热沉积产生的物理机制可知,解决热效应最根本的办法就是减小泵浦光和振荡光之间的量子缺陷,基态高斯塔克能级热助推泵浦方式(Thermally boosted pumping from high Stark sublevel of the ground state)是采用特定波长泵浦光把能量直接转化到激光上能级,而不是泵浦到更高的能带然后再驰豫到激光上能级,这种泵浦方式可将量子缺陷降到最低并消除量子效率损耗,能够最大程度地提高量子效率并最大限度降低热沉积,是一种可根本性解决固体激光器热效应的方案。
     在本论文中,分别采用全固态准连续可调谐钛宝石激光器和连续914nm Nd:YVO_4激光器作为泵浦源,选用不同掺杂浓度和长度的Nd:YVO_4晶体作为激光增益介质,主要研究晶体温度、掺杂浓度和长度对基态高斯塔克能级热助推泵浦的Nd:YVO_4激光器输出特性的影响。主要内容和创新点如下:
     1.介绍了Nd:YAG和Nd:YVO_4晶体的高斯塔克能级热助推泵浦特性;对端面泵浦固体激光器中的热效应进行了理论研究,并从热助推泵浦四能级激光系统的速率方程出发,研究了热助推泵浦的机理。
     2.对热助推泵浦Nd:YVO_4激光器的泵浦源——全固态准连续可调谐钛宝石激光器进行了实验研究,获得的钛宝石激光器的调谐范围为675-970nm,输出谱线宽度为2nm,脉冲宽度为17.6ns,在780nm处的最大功率为6.2W,相应的光-光转化效率为28.2%。其中,钛宝石激光器在914nm处的最大输出功率为3.7W。
     3.对增益开关固体激光器的物理模型和时间特性进行了理论研究,同时在研究全固态准连续可调谐钛宝石激光器的基础上,使用钛宝石激光器作为泵浦源,把其输出调至Nd:YVO_4的热助推泵浦带,进行了准连续914nm钛宝石激光器热助推泵浦的Nd:YVO_4激光器1064nm运转实验研究,得到的最大输出功率为230 mW,相应的光-光转化效率为23.7%,斜率效率为79%。使用钛宝石激光器泵浦的Nd:YVO_4激光器同样具有增益开关的性质,获得了3.1ns的窄脉宽输出。
     4.对连续914nm Nd:YVO_4激光器基态高斯塔克能级热助推泵浦的Nd:YVO_4激光器1064nm、1342nm运转进行了实验研究,重点研究了晶体的温度、晶体的掺杂浓度和晶体长度对激光器输出特性的影响。当晶体温度为50oC时,使用掺杂浓度为1.0 at.%、尺寸为3mm×3mm×10mm的Nd:YVO_4作为激光介质时,获得了最大功率为2.2W的1064nm输出,相应的斜率效率为83.9%。当晶体温度为50oC时,使用两块掺杂浓度为1.0 at.%、尺寸为3mm×3mm×4mm的晶体作为激光介质时,获得了最大功率为1.05W的1342nm输出,相应的斜率效率为66.4%。
The thermal effect is the bottleneck of the operation of solid-state lasers with high power, high efficiency, and high beam quality. According to the mechanism of the heat generation in solid-state lasers, the most fundamental way to deal with the thermal effect is to reduce the quantum defect between a pump photon and a laser photon. The thermally boosted pumping from the high Stark sublevel of the ground state is to pump the active ions from the high Stark sublevel of the ground-state level directly to the sublevel of the upper lasing level without a relaxation process and it can reduce the quantum defect to the minimum and eliminate the quantum efficiency loss, increase the quantum efficiency and reduce the heat generation to a greatest extent, which makes it become an ultimate technology to deal with the thermal effect.
     In this dissertation,using an all-solid-state quasi-continous tunable Ti:Sapphire laser and a continues 914 nm Nd:YVO_4 laser, respectively, as the pump source, the impact of the temperature, the doped concentration and the length of the laser crystal on the thermally boosted pumped Nd:YVO_4 laser from the high Stark sublevel of the ground state is to be researched. The main contents and key creation points are as follows:
     1. The characteristics of the thermally boosted pumping in Nd:YAG and Nd:YVO_4 crystal were introduced. And the thermal effect of the end-pumped solid state lasers was theoretically researched. Based on the rate equations of four-level system, the mechanism of the thermally boosted pumping was studied.
     2. High power all-solid-state quasi-continuous widely tunable titanium-doped sapphire laser was experimentally researched. The tuning range from 675 to 970 nm with the linewidth of 2 nm and the pulse width of 17.6 ns was obtained. The maximum output power of this laser system was 6.2 W at 780 nm corresponding to all optical-to-optical conversion efficiency of 28.2%. And the output power at 914nm is 3.7 W.
     3. The physical model and time properties of the gain-switched solid state lasers was theoretically researched. The Nd:YVO_4 laser under 914nm thermally boosted pumping by the Ti:Sapphire laser was experimentally researched. A high slope efficiency of 79% and pulse width of 3.1 ns were obtained, which is the verification of the gain-switching effect of the Nd:YVO_4 laser.
     4. Based on the experiment of continuous 914nm thermally boosted pumped 1064nm and 1342nm Nd:YVO_4 laser from the high Stark sublevel of the ground state, the impact of the temperature, the doped concentration and the length of the laser crystal on the output characteristics of the laser was reasearched. When the temperature of the crystal was 50oC, a maximum output power at 1064nm of 2.2W was achieved in a 1.0 at.% Nd:YVO_4 crystal with the dimension of 3 mm×3 mm×10 mm, leading to a high slope efficiency of 83.9%. In two 1.0 at.% Nd:YVO_4 crystals with the dimension of 3 mm×3 mm×4 mm, a maximum output power of 1.05W and a high slope efficiency of 66.4% were obtained at 1342nm.
引文
[1]Comaskey B J, Beach R, Albrecht G, Benett W J, Freitas B L, Petty C, Mundinger D and Solarz R W, High average powers diode pumped slab laser, IEEE J. Quantum Electron, 1992, 28(4):992-996
    [2]Erhard S, Giesen A, Karszewski M, Rupp T, Stewen C, Johannsen I and Contag K, Novel Pump design of Yb:YAG thin disk laser for operation at room temperature with improved efficiency, Optics and Photonics, 1999, 26:38-44
    [3]Lu Q, Kugler N, Weber H, Dong S, Muller N and Wittrock U, A novel approach for compensation of birefringence in cylindrical Nd: YAG rods, Opt. Quantum Electron, 1996, 28: 57-69
    [4]Jackel S, Moshe I, Kaufman A, Lavi R and Lallouz R, High energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers Opt. Eng. 1997 36: 2031-2036
    [5]何坤娜,魏志义,张治国,高纯清,全固态激光直接抽运技术的发展和研究现状,中国激光,2009,36(7):1679-1685.
    [6]M.Ross, YAG laser operation by semiconductor laser pumping, Proc.IEEE, 1968, 65:196-197
    [7]L.J.Rosenkrantz,GaAs diode-pumped Nd:YAG laser, J. Appl. Phys., 1972, 43: 4603-4605
    [8]R.Lavi,S.Jackel,Y.Tzuk et al.,Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,Appl. Opt.,1999,38 (36): 7382-7385
    [9]R.Lavi and S.Jackel,Thermally boosted pumping of neodymium lasers,Appl. Opt., 2000, 39 (18): 3093-3098
    [10]P. Zeller, and P. Peuser, Efficient, multiwatt, continuous-wave laser operation on the 4F3/2 -4I9/2 transitions of Nd:YVO_4 and Nd:YAG, Opt. Lett. 2000, 25(1): 34-36
    [11]V. Lupei, N. Pavel, and T. Taira, Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping, Appl. Phys. Lett. 2002, 81(15): 2677-2680
    [12]R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Golding, 885 nm high-power diodes end-pumped Nd:YAG laser, Opt. Commun. 2001, 195: 427-430
    [13]V. Lupei, G. Aka, and D. Vivien, Quasi-three-level 946 nm CW laser emission ofNd:YAG under direct pumping at 885nm into the emitting level, Opt. Commun. 2002, 204: 399-405
    [14]V. Lupei, N.Pavel and T. Taira, 1064 nm laser emission of highly doped Nd: Yttrium aluminum garnet under 885 nm diode laser pumping, Appl. Phys. Lett. 2002, 80(23): 4309-4311
    [15]Y. Sato, T. Taira, N. Pavel, et. al, Laser operation with near quantum-defect slope efficiency in Nd:YVO_4 under direct pumping into the emitting level, Appl. Phys. Lett. 2003, 82(6): 844-846
    [16]S. Golding, R. Lavi, A. Tal et. al, Characterization of Radiative and Nonradiative Processes in Nd:YAG Lasers by Comparing Direct and Band Pumping, IEEE J. Quantum Electron. 2004, 40(4): 384-389
    [17]N. Pavel and T. Taira, Efficient 1.06 and 1.34-jm laser emission of highly-doped Nd:YAG under 885-nm diode pumping into the emitting level, Conference on Lasers and Electro-Optics Europe, 2005
    [18]N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, Neodymium concentration dependence of 0.94-, 1.06- and 1.34-μm laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG, Appl. Phys. B 2006, 82: 599-605
    [19]Louis McDonagh, Richard Wallenstein, Ralf Knappe, Ralf Knappe, and Achim Nebel, High-efficiency 60W TEM00 Nd:YVO_4 oscillator pumped at 888 nm, Opt. Lett. 2006, 31(22): 3297-3299
    [20]Louis McDonagh, Richard Wallenstein, Low-noise 62W CW intracavity-doubled TEM00 NdYVO_4 green laser pumped at 888 nm, Opt. Lett. 2007, 32(7): 802-804
    [21]Sharone Goldring and Raphael Lavi, Nd:YAG laser pumped at 946nm, Opt. Lett. 2008, 33(7): 669-671
    [22] N. Pavel, C.KRAnkel, R. Peters, K. Petermann, and G. Huber, In-band pumping of Nd-vanadate thin-disk lasers, Appl. Phys. B, 2008, 91: 415-419
    [23]Zong Nan, Zhang Xiao-Fu, Ma Qing-Lei, Wang Bao-Shan, Cui Da-Fu, Peng Qin-Jun, Xu Zu-Yan, Pan Yu-Bai, Feng Xi-Qi, Comparison of Nd:YAG Ceramic Laser Pumped at 885 nm and 808 nm, Chin. Phys. Lett. 2009, 26(5): 054211(1-4).
    [24] N. Pavel, T. Dascalu, N. Vasile and V. Lupei, Efficient 1.34-μm laser emission of Nd-doped vanadates under in-band pumping with diode lasers, Laser Phys. Lett. 2009, 6(1): 38-43.
    [25]X. Ding, H. Zhang, R. Wang,W. Q. Wen, P. Wang, J. Q. Yao and X. Y. Yu, High-efficiency direct-pumped Nd:YVO_4 laser operating at 1.34μm, Optics Express, 2008, 16(15): 11247-11252
    [26]Xin Ding, Rui Wang, Heng Zhang, Xuan-Yi Yu, Wu-Qi Wen, Peng Wang, Jian-Quan Yao, High-efficiency Nd:YVO_4 laser emission under direct pumping at 880nm, Optics Communications, 2009, 282:981-984
    [27]X. Ding, N. Chen, Q. Sheng, X.Y Yu, X.Y. Xu, W.Q. Wen, R. Zhou, P. Wang, andJ.Q. Yao, All-solid-state Nd:YAG laser operating at 1064 nm and 1319 nm under 885 nm thermally boosted pumping, Chin. Phys. Lett. 2009, 26(9): 094207-(1-4)
    [28]Damien Sangla , Francois Balembois and PatrickGeorges, Nd:YAG laser diode-pumped directly into the emitting level at 938 nm, Opt. Express, 2009, 17(12):10091-10097.
    [29]Damien Sangla,Marc Castaing, Francois Balembois, and Patrick Georges, Highly efficient Nd:YVO_4 laser by in-band diode pumping at 914 nm, Opt. Lett. 2009, 34(14): 2159-2161.
    [30]V. Lupei and N. Pavel, Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4, Opt. Lett. 2003, 28(23): 2366-2368.
    [31]J. W. Kim, D. Y. Shen, J. K. Sahu and W. A. Clarkson, High-power in-band pumped Er:YAG laser at 1617, Opt. Express, 2008, 16(8):5807-5812.
    [32]N. Cao, Q.N. Li, Y. Y. Zhao, C. W. Xu, Z. Y. Wei, B. H. Feng, Z. G. Zhang, H. J. Zhang, J. Y. Wang, K. N. He, and C. Q. Gao, Efficient Pumping Scheme by Direct Excitation of Upper Laser Level in Nd:CNGG, Chin. Phys. Lett. 2008, 25(11): 4016-4018
    [33]Yan-Fei Lü, Jing Xia, Jun-Guang Wang, Guan-Cheng Sun, Xi-He Zhang, An-Feng Zhang, Xiao-Dong Yin, Lin Bao, Hui Quan, Opt. Commun. 2009, 282: 3565-3567.第二章
    [1]张衡,硕士学位论文《全固态激光器热助推泵浦和综合泵浦技术研究》,天津大学精密仪器与光电子工程学院,2008年5月
    [2]Sharone Goldring and Raphael Lavi, Nd:YAG laser pumped at 946nm, Opt. Lett. 2008, 33(7): 669-671
    [3]Damien Sangla , Francois Balembois and PatrickGeorges, Nd:YAG laser diode-pumped directly into the emitting level at 938 nm, Opt. Express, 2009, 17(12):10091-10097.
    [4]Damien Sangla,Marc Castaing, Francois Balembois, and Patrick Georges, Highly efficient Nd:YVO_4 laser by in-band diode pumping at 914 nm, Opt. Lett. 2009, 34(14): 2159-2161.第三章
    [1]M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, Thermal modeling of CW end-pumped solid-state lasers, App. Phys. Lett., 1990, 56(19): 1831-1833
    [2]A. K. Cousins, Temperature and thermal stress scaling in finite-length end-pumped laser rods, IEEE J. Quantum Electron., 1992, 28 (4): 1057-1069
    [3]T. Y. Fan, Heat generation in Nd:YAG and Yb:YAG, IEEE J. Quantum Electron., 1993, 29(6): 1457-1459
    [4]C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, R. Gruber, Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLG rods, IEEE J.Quantum Electron., 1994, 30(7): 1605-1615
    [5]Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, S. C. Wang, Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers, IEEE J. Quantum Electron., 1997, 3(1): 29-34
    [6]Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, S. C. Wang, Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect, IEEE J. Quantum Electron., 1997, 33(8): 1412-1429
    [7]M. Tsunekane, N. Taguchi, T. Kasamatsu, H. Inaba, Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry, IEEE J. Quantum Electron., 1997, 3(1): 9-18
    [8]M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, D. C. Hanna, Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG, Phys. Rev. B, 1998, 58(24): 16076-16092
    [9]R. Weber, B. Neuenschwander, M .Mac Donald, M. B. Roos, H. P. Weber, Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods, IEEE J. Quantum Electron., 1998, 34(6): 1046-1053
    [10]M. Tsunekane, N. Taguchi, Humio Inaba, Improvement of thermal effects in a diode-end-pumped, composite TM:YAG rod with undoped ends, Appl. Opt., 1999, 38(9): 1788-1791
    [11]M. P. Macdonald, Th. Graf, J. E. Balmer, H. P. Weber, Reducing thermal lensing in diode-pumped laser rods, Opt. Commun., 2000, 178: 383-393
    [12]张行愚,赵圣之,王青圃,张其第,B. Ozygus, H. Weber,激光二极管抽运的激光器热透镜效应的研究,中国激光,2000, 27(9): 777-781
    [13]Y. F. Chen, Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers, J. Opt. Soc. Am. B, 2000, 17(11): 1835-1840
    [14]W. A. Clarkson, Thermal effects and their mitigation in end-pumped solid-state lasers, J. Phys. D: Appl. Phys., 2001, 34: 2381-2395
    [15]B. A. Usievich, B. A. Sychugov, F. Pigeon, A. Tishchenko, Analytical treatment of the thermal problem in axially pumped solid-state lasers, IEEE J. Quantum Electron., 2001, 37(9): 1210-1214
    [16]W. J. Xie, S. C. Tan, Y. L. Lan, K. S. Lai, R. F. Wu, Y. L. Lim, E. Lau, Analysis of a dynamical procedure on diode-end-pumped solid-state lasers, IEEE J. Quantum Electron., 2001, 37(10): 1368-1372
    [17]郑义,高明义,姚建铨,LD端面泵浦各向异性激光介质的热效应研究,光电子激光,2003, 14(10): 1094-1098
    [18]周睿,博士学位论文《高功率连续运转全固态蓝光、红光激光器研究》,天津大学精密仪器与光电子工程学院,2006
    [19]L. D. Landau, E. M. Lifshitz, Theory of Elasticity, New York, Pergamon, 1986, 16-17
    [20]M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, Thermal modeling of CWend-pumped solid-state lasers, App. Phys. Lett., 1990, 56(19): 1831-1833
    [21]S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, Scaling cw diode-end-pump Nd:YAG lasers to high average powers, IEEE J. Quantum Electron., 1992, 28(4): 997-1009
    [22]M. Tsunkekane, N. Taguchi, T. Kasamatsu, H. Inaba, Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pump geometry, IEEE, J. Selected Topics Quantum Electron., 1997, 3(1): 9-18
    [23]A. K. Cousins, Temperature and thermal stress scaling in finite-length end-pumped laser rods, IEEE J. Quantum Electron., 1992, 28 (4): 1057-1069
    [24]Y. F. Chen, Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture, IEEE J. Quantum Electron., 1999, 35(2): 234-239
    [28]Fan T Y, Heat generation in Nd:YAG and Yb:YAG, IEEE J. Quantum Electron. 1993, 29(6): 1457-1459
    [29]Raphael Lavi, and Steven Jackel, Thermally boosted pumping of neodymium lasers, Appl. Opt. 2000, 39(18): 3093-3098第四章
    [1]T. R Steele, D. C Gerstenberger, A. Drobshoff, R. W Wallace. Broadly tunable high-power operation of an all-solid-state titanium-doped sapphire laser system. Opt. Lett. 1991; 16(6):399-401.
    [2]P. Lacovara, L. Esterowitz, and R. Allen, Flash-lamp-pumped Ti:Al2O3 laser using fluorescent conversion. Opt. Lett. 1985; 10(6):273-275.
    [3]P. Albers, E Stark, G Huber. Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire. J. Opt. Soc. Am. B 1986; 3(1):134-139.
    [4]D.W. Coutts, W.J. Wadsworth, and C.E. Webb, High average power blue generation from a copper vapour laser pumped titanium sapphire laser. J. Mod. Optic. 1998; 45(6):1185-1197.
    [5]A.J.S. McGonigle, and D.W. Coutts, A Ti:sapphire laser end-pumped by a fibre-coupled copper vapour laser. Opt. Commun. 2002; 209:217-221.
    [6]石朝辉,樊仲维,张鸿博,潘树志,崔建丰,毕勇,李瑞宁,许祖彦,全固态高平均功率宽调谐掺钛蓝宝石激光器,中国激光,2005; 32(4):453-456.
    [7]Ding X, Zou Y, Zou L, Ma HM, Wen WQ, Yu YZ, Lu Y, Wang P, and Yao JQ. All-solid-state quasi-continuous-wave high power dipersion cavity tunable Ti:sapphire laser. Chin. Opt. Lett. 2006; 4(2):96-98.
    [8]G.T. Maker, Ti:sapphire laser pumped by a frequency-doubled diode-pumped Nd:YLF laser. Opt. Lett. 1990; 15(7):375-377.
    [9]Ding X, Zhang H, Wang R, Yu XY, Wen WQ, Zhang BG, Wang P, Yao JQ. Performance of gain-switched all-solid-state quasi-continuous-wave tunable Ti:sapphire laser system. Chin. Phys. B 2008; 17(10):3759-3764.
    [10]Y. H. Cha, K. H. Ko, G. Lim, J. M. Han, H. M. Park, T. S. Kim, and D. Y. Jeong, Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser. Appl. Opt. 2010, 49(9), 1666-1670.
    [11]E. Jurdik, J. Hohlfeld, A. F. van Etteger, A. J. Toonen, W. L. Meerts, H. van Kempen, and Th. Rasing, Performance optimization of an external enhancement resonator for optical second-harmonic generation. J. Opt. Soc. Am. B, 2002, 19(7): 1660-1667.
    [12]F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, High-efficiency blue-light generation with a ring cavity with periodically poled KTP, J. Opt. Soc. Am. B. 2007, 24(3): 576-580.
    [13]H. Kumagai, Y. Asakawa, T. Iwane, K. Midorikawa, and M. Obara, Efficient frequency doubling of 1-W continuous-wave Ti:sapphire laser with a robust high-finesse external cavity, Appl. Opt. 2003, 42(6): 1036-1039
    [14]M. Thorhauge, J. L. Mortensen, P. Tidemand-Lichtenberg, and P. Buchhave, Tunable intra-cavity SHG of CW Ti:Sapphire lasers around 785 nm and 810 nm in BiBO-crystals, Opt. Express. 2006, 14(6): 2283-2288.
    [15]L. S. Cruz, and F. C. Cruz, External power-enhancement cavity versus intracavity frequency doubling of Ti:sapphire lasers using BIBO, Opt. Express. 2007, 16(7) :11913-11921.
    [16]X. Ding, R. Wang, H. Zhang, W.Q. Wen, L. Huang, P. Wang, J.Q. Yao, X.Y. Yu, and Z. Li, Generation of 3.5W high efficiency blue-viole laser by intracavity frequency-doubling of an all-solid-state tunable Ti:sapphire laser, Opt. Express. 2008, 16(7):4582-4587.
    [17]F. Song, C. Zhang, X. Ding, J. Xu, and G. Zhang,“Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO_4 lasers,”Appl. Phys. Lett. 2002, 81(12): 2145-2147.第五章
    [1]William.G.Wagner, Bela A.Lengyel, J.Applied Phsics, 1963, 34(7):2040-2046
    [2]Adelbert Owyoung, G.R.Hadley and Peter Esherick, Opt. Lett, 1985,10(10): 484-486
    [3]徐冰,李礼煌,欧阳斌等,增益开关型Ti3+:Al2O3激光器的时间特性研究,光学学报,1993,13(5): 425-429
    [4]张国威,增益开关型固体可调谐激光器的时间特性,激光技术,1995,19(3):129-134
    [5]杨扬,刘宏发,张国威,掺钛蓝宝石激光器的增益开关特性研究,激光技术,1995,19(4):204-208
    [6]吴秋阳,徐冰,张正泉,徐至展,增益开关型四能级激光器的时间特性分析,中国激光,1998,25(8):573-576
    [7]张国威,第六章可调谐激光器的时间特性,《可调谐激光技术》,国防工业出版社,2002年1月第一版,p273-285
    [8]邹跃,硕士学位论文《固体激光器增益开关特性及4I9/2→4F3/2直接泵浦Nd:YVO_4激光器的研究》,天津大学精密仪器与光电子工程学院,2007.12
    [9]王军民,李瑞宁,梁晓燕等,四镜环行腔连续稳频钛宝石激光器,中国激光,1994,21(10):772-777
    [10]John M, Eggleston Larry G, Deshazer and Kenneth W. Kangas, IEEE J.Quantum Electronic, 1988, 24(6): 1009-1015
    [11]Ding X, Zhang H, Wang R, Yu XY, Wen WQ, Zhang BG, Wang P, Yao JQ. Performance of gain-switched all-solid-state quasi-continuous-wave tunable Ti:sapphire laser system. Chin. Phys. B, 2008, 17(10):3759-3764.
    [12]Ding X, Wang R, Zhang H, Yu XY, Wen WQ, Wang P, Yao JQ. High-efficiency Nd:YVO_4 laser emission under direct pumping at 880 nm, Opt. Commun. 2009, 282: 981-984第六章
    [1]Damien Sangla,Marc Castaing, Francois Balembois, and Patrick Georges, Highly efficient Nd:YVO_4 laser by in-band diode pumping at 914 nm, Opt. Lett. 2009, 34(14): 2159-2161。
    [2]G. Turri, H. P. Jenssen, F. Cornacchia, Mauro Tonelli, and M. Bass, Temperature-dependent stimulated emission cross section in Nd3+:YVO_4 crystals, J. Opt. Soc. Am. B, 2009, 26(11): 2084-2088.
    [3]V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, A. Ikesue, The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics, Phys. Rev. B 2001,64: 092102-(1-4)
    [4]V. Lupei, N. Pavel, and T. Taira, 1064 nm laser emission of highly doped Nd:Yttrium aluminum under 885 nm diode laser pumping, Appl. Phys. Lett. 2002, 80(23): 4309-4312
    [5]J.L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, Heat generation in Nd:YVO_4 with and without laser action, IEEE Photon. Technol. Lett. 1998, 10(12): 1727 -17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700