阿托伐他汀对大鼠野百合碱肺动脉高压模型肺组织P38MAPK表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察野百合碱(MCT)诱导的肺动脉高压大鼠肺组织P38MAPK的表达及阿托伐他汀对它的影响,探讨P38MAPK在MCT诱导的肺动脉高压发病中的可能作用。
     方法:将24只健康雄性SD大鼠随机分为正常对照组(n=8),MCT诱导的肺动脉高压组(MCT组,n=8),阿托伐他汀干预组(AS组,n=8)。MCT组和AS组(阿托伐他汀干预组)分别一次性腹部皮下注射MCT(60mg/kg),对照组以等量生理盐水代替。AS组自注射MCT之日起以阿托伐他汀(10mg/kg)灌胃,每日一次。MCT组以生理盐水(10ml/kg)每日灌胃。3周后达实验终点测定大鼠平均肺动脉压(mPAP)、平均颈动脉压(mCAP),计算右心室肥大指数(RVHI)。肺组织切片进行苏木素-伊红(HE)染色,光镜下观察肺组织形态学的改变,并计算肺中小动脉管壁厚度占血管外径的百分比(WT%)和肺动脉管壁面积/管总面积的百分比(WA%),以此反映肺血管重建情况。采用免疫组化法观察大鼠肺组织P38MAPK表达的变化。
     结果:
     1.MCT组大鼠的mPAP和RVHI均显著高于对照组(P<0.01),而AS组大鼠的mPAP和RVHI均较MCT组明显降低(P<0.01),但AS组大鼠的mPAP和RVHI均较对照组明显增高(P<0.05)。三组大鼠的mCAP没有明显差别(P均>0.05)。
     2.对照组大鼠肺中小动脉管壁薄,管腔大;MCT组大鼠肺中小动脉,管壁厚度明显增加,管腔面积明显变小,伴有明显的血管周围炎;AS组大鼠肺中小动脉管壁厚度较MCT组明显减小,管腔面积较MCT组明显增大,血管周围炎明显减轻。
     3.MCT组大鼠肺中小动脉WT%和WA%均明显高于对照组(P<0.01),AS组大鼠肺中小动脉WT%和WA%均明显低于MCT组(P<0.01),但AS组大鼠肺中小动脉WT%和WA%均明显高于对照组(P<0.01)。
     4、MCT组大鼠的肺血管内皮P38MAPK的表达显著高于对照组(P<0.01),而AS组大鼠的肺血管内皮P38MAPK的表达与对照组无明显差别(P>0.05)。
     结论:阿托伐他汀可抑制MCT诱导的肺血管内皮P38MAPK的表达,减轻肺部炎症及肺动脉高压。
Objective: To investigate the effect of atorvastatin on monocrotaline(MCT)-induced rats pulmonary hypertension and the expression ofP38MAPK in lung.
     Methods: Twenty-four male SD rats were randomly divided intothree groups with eight rats each group: control group, MCT group andatorvastatin group (AS group). The rats in MCT and AS group wereinjected with 60mg/kg of MCT subcutaneously and the rats in controlgroup were injected with saline. Atorvastatin (10mg/kg/d) were givenorally for 21 days to the rats in AS groups and vehicle were given to therats in MCT group since the day when rats were injected MCT. At 22days, mean pulmonary arterial pressure (mPAP), mean carotid pressure(reCAP) and right ventricular hypertrophy index (RVHI) were measured.The index of wall thickness of pulmonary arteriole was measured by acomputerized image analyzer. The expression of P38MAPK in lung wasobserved by immunohistochemistry.
     Results:
     1. The mPAP and RVHI were increased significantly in MCT groupthan that in control group (P<0.01). This increase in mPAP and RVHI waspartially prevented by atorvastatin (P<0.01). There was no significant discrepancy on mCAP between three groups (P>0.05).
     2. The thickness of the medial wall of pulmonary medial arteries andarteriole was significantly increased in MCT group as compared withcontrol group. Large numbers inflammatory cells congregated around thesmall vascular and in the pulmonary interstitial in MCT group.Atorvastatin treatment was associated with a significant reduction ofMCT-induced thickening and the number of inflammatory cells.
     3. WT% and WA% of pulmonary medial arteries and arteriole wereincreased significantly in MCT group than that in control group (P<0.01).This increase in WT% and WA% was partially prevented by atorvastatin(P<0.01).
     4. The expression of P38MAPK in pulmonary vascular endothelialcells were increased significantly in MCT group than that in controlgroup (P<0.01). There was no significant discrepancy on the expressionof P38MAPK between AS and control group (P>0.05).
     Conclusions: Atorvastatin could inhibit MCT-induced P38MAPKexpression of pulmonary vascular endothelial cells, prevent inflammatoryresponse in lung and the development of pulmonary hypertension.
引文
[1] Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis, 2002, 45(3): 173-202.
    [2] Dorfmuller P, Perros F, Balabanian K, et al. Inflammation in pulmonary arterial hypertension. Eur Respir J, 2003, 22(2): 358-63.
    [3] Eddahibi S, Morrell N, d'Ortho M-P, et al. Pathobiology of pulmonary arterial hypertension. Eur Respir J, 2002, 20(6): 1559-72.
    [4] Kurt R, Stenmark, Neil J, et al. Hypoxia, leukocytes, and the pulmonary circulation. J Appl Physiol, 2005, 98(2): 715-21.
    [5] Dorfmuller P, Zarka V, Durand-Gasselin I, et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am J Resp Crit Care Med, 2002, 165(4): 534-39
    [6] Balabanian K, Foussat A, Dorfmuller P, et al. CX_3C chemokine fractalkine in pulmonary arterial hypertension. Am J Resp Crit Care Med, 2002, 165(10): 1419-25.
    [7] Hashimoto S, Matsumoto K, Gon Y, et al. p38 Mitogen-activated protein kinase regulates IL-8 expression in human pulmonary vascular endothelial cells. Eur Respir J, 1999, 13(6): 1357-64.
    [8] Hashimoto S, Gon Y, Asai Y, et al. p38 MAP kinase regulates RANTES production by TNF-alpha-stimulated human pulmonary vascular endothelial cells. Allergy, 1999, 54(11): 1168-72.
    [9] Hashimoto S, Gon Y, Matsumoto K, et al. Selective inhibitor of p38 mitogen-activated protein kinase inhibits lipopolysaccharide-induced interleukin-8 expression in human pulmonary vascular endothelial cells. J Pharmacol Exp Ther, 2000, 293(2): 370-5.
    [10] Hashimoto S, Gon Y, Matsumoto K, et al. Regulation by intracellular glutathione of TNF-alpha-induced p38 MAP kinase activation and RANTES production by human pulmonary vascular endothelial cells. Allergy, 2000, 55(5): 463-9.
    [11] Hashimoto S, Gon Y, Matsumoto K, et al. N-acetylcysteine attenuates TNF-alpha-induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular, endothelial cells. Br J Pharmacol, 2001, 132(1): 270-6.
    [12] Yan W, Zhao K, Jiang Y, et al. Role of p38 MAPK in ICAM-1 expression of vascular endothelial cells induced by lipopolysaccharide. Shock, 2002, 17(5): 433-8.
    [13] Sukkar MB, Issa R, Xie S, et al. Fractalkine/CX3CL1 production by human airway smooth muscle cells: induction by IFN-gamma and TNF-alpha and regulation by TGF-beta and corticosteroids. Am J Physiol Lung Cell Mol Physiol, 2004, 287(6): L1230-40.
    [14] Sans M, Danese S, et al Motte C.Enhanced recruitment of CX3CR1+T cells by mucosal endothelial cell-derived fractalkine in inflammatory bowel disease. Gastroenterology, 2007, 132(1): 139-53.
    [15] Francis Dodeller, Hendrik Schulze-Koops. The p38 mitogen-activated protein kinase signaling cascade in CD4 T cells. Arthritis Res Ther, 2006, 8(2): 205.
    [16] Deborah Brancho, Nobuyuki Tanaka, Jaeschke A, et al. Mechanism of p38 MAP kinase activation in vivo. Genes Dev, 2003, 17(16): 1969-78.
    [17] Tyler Zarubin, Jiahuai Han. Activation and signaling of the p38 MAP kinase pathway. Cell Res, 2005, 15(1): 11-8
    [18] Welsh DJ, Peacock AJ, MacLean M, et al. Chronic hypoxia induces constitutive p38 mitogen-activated protein kinase activity that correlates with enhanced cellular proliferation in fibroblasts from rat pulmonary but not systemic arteries. Am J Respir Crit Care Med, 2001, 164(2): 282-9.
    [19] Welsh DJ, Hamett M, MacLean M, et al. Proliferation and signaling in fibroblasts: role of 5-hydroxytryptamine2A receptor and transporter. Am J Respir Crit Care Med, 2004, 170(3): 252-9.
    [20] Xudong Yang, Lu Long, Mark Southwood, et al. Dysfunctional Smad Signaling Contributes to Abnormal Smooth Muscle Cell Proliferation in Familial Pulmonary Arterial Hypertension. Circulation Research, 2005, 96(10): 1053-563.
    [21] Morrell ED, Tsai BM, Wang M, et al. p38 mitogen-activated protein kinase mediates the sustained phase of hypoxic pulmonary vasoconstriction and plays a role in phase Ⅰ vasodilation. J Surg Res, 2006, 134(2): 335-41.
    [22] Jun Lu, Hideto Shimpo, Akira Shimamoto, et al. Specific inhibition of p38 mitogen-activated protein kinase with FR167653 attenuates vascular proliferation in monocrotaline-induced pulmonary hypertension in rats. J Thorac Cardiovasc Surg, 2004, 128(6):850-9.
    [23] Lee JH, Lee DS, Kim EK, et al. Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am J Respir Crit Care Med, 2005, 172(8):987-93.
    [24] Nishimura T, Vaszar LT, Faul JL, et al. Simvastatin rescues rats from fatal pulmonary hypertension by inducing apoptosis of neointimal smooth muscle cells. Circulation, 2003, 108(13): 1640-5.
    [25] Girgis RE, Li D, Zhan X, et al. Attenuation of chronic hypoxic pulmonary hypertension by simvastatin. Am J Physiol Heart Circ Physiol, 2003, 285(3):H938-45.
    [26] Murata T, Kinoshita K, Hori M, et al. Statin protects endothelial nitric oxide synthase activity in hypoxia-induced pulmonary hypertension. Arterioscler Thromb Vasc Biol, 2005, 25(11):2335-42.
    [27] Guerard P, Rakotoniaina Z, Goirand F, et al. The HMG-CoA reductase inhibitor, pravastatin, prevents the development of monocrotaline-induced pulmonary hypertension in the rat through reduction of endothelial cell apoptosis and overexpression of eNOS. Naunyn Schmiedebergs Arch Pharmacol, 2006, 373(6):401-14.
    [28] Jiang JL, Wang S, Li NS, et al. The inhibitory effect of simvastatin on the ADMA-induced inflammatory reaction is mediated by MAPK pathways in endothelial cells. Biochem Cell Biol, 2007, 85(1):66-77.
    [29] Hilgendorff A, Muth H, Parviz B, et al. Statins differ in their ability to block NF-kappaB activation in human blood monocytes. Int J Clin Pharmacol Ther, 2003, 41(9):397-401.
    [30] Cowan KN, Heilbut A, Humpl T, et al. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat Med, 2000, 6(6):698-702.
    [31] Rakotoniaina Z, Guerard P, Lirussi F, et al. The protective effect of HMG-CoA reductase inhibitors against monocrotaline-induced pulmonary hypertension in the rat might not be a class effect: comparison of pravastatin and atorvastatin. Naunyn Schmiedebergs Arch Pharmacol, 2006, 374(3): 195-206.
    [32] 潘殿柱,李永春.阿托伐他汀对低氧大鼠肺血管重建的影响.中国全科医学,2005,14(14):1149-51
    [33] 孙波,刘文利.右心导管法测定大鼠肺动脉高压的实验方法.中国医学科学 院学报,6(6):46 5-46,1984,6(6):465-7.
    [34] Julian R J, Caston L J, Leeson S. The effect of dietary sodium on right ventricular failure-induced ascites, gain and fat deposition in meat-type chickens. Can J Vet Res, 1992, 56(3):214-9.
    [35] Monge C, Leon-Velarde F. Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev, 1991, 71 (4): 1135-72.
    [36] Julian RJ, Caston L J, Leeson S. The effect of dietary sodium on right ventricular failure-induced ascites, gain and fat deposition in meat-type chickens. Can J Vet Res, 1992, 56(3):214-9.
    [37] Monge C, Leon-Velarde F. Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev, 1991, 71(4): 1135-72.
    [38] Bing W, Junbao D, Jianguang Q, et al. L-arginine impacts pulmonary vascular structure in rats with an aortocaval shunt. J Surg Res, 2002,108(1):20-31.
    [39] 石琳,杜军保,齐建光,等.L-精氨酸对大鼠高肺血流所致肺血管结构重建及内源性硫化氢的影响.基础医学与临床,2004,24(2):184-7.
    [40] Wright JL, Farmer SG, Churg A. A neutrophil elastase inhibitor reduces cigarette smoke-induced remodelling of lung vessels. Eur Respir J, 2003, 22(1):77-81.
    [41] Barth PJ, Kimpel C, Roy S, et al. An improved mathematical approach for the assessment of the medial thickness of pulmonary arteries. Pathol Res Pratt, 1993, 189(5):567-76.
    [42] Martin KB, Klinger JR, Rounds SI. Pulmonary arterial hypertension: new insights and new hope. Respirology, 2006, 11(1):6-17.
    [43] Cool CD, Groshong SD, Oakey J, et al. Pulmonary hypertension: cellular and molecular mechanisms. Chest, 2005, 128(6 Suppl):565S-71S.
    [45] Zaiman A, Fijalkowska I, Hassoun PM, et al. One hundred years of research in the pathogenesis of pulmonary hypertension. Am J Respir Cell Mol Biol, 2005, 33(5):425-31.
    [46] 齐建光,杜军保,李简,等.左向右分流所致肺动脉高压大鼠模型的建立及其肺血管结构的变化.中华实验外科杂志,2002,19(3):199-200.
    [47] 林群,曾邦雄,翁国星,等.野百合碱复合单肺切除诱导实验性肺动脉结构重建病理形态学改变.福建医科大学学报,2005,39(1):30-2.
    [48] Cowan KN, Heilbut A, Humpl T, et al. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat Med, 2000, 6(6):698-702.
    [49] 周光德,陈瑞芬,刘国贞,等.野百合碱引起肺血管重建的观察.中国病理 生理杂志,2001,17(6):573-4.
    [50] van Suylen RJ, Smits JF, Daemen MJ. Pulmonary artery remodeling differs in hypoxia-and monocrotaline-induced pulmonary hypertension. Am J Respir Crit Care Med, 1998, 157(5Pt1):1423-8.
    [51] Rabinovitch M. EVE and beyond, retro and prospective insights. Am J Physiol, 1999, 277(1Ptl):L5-12.
    [52] Lame MW, Jones AD, Wilson DW, et al. Protein targets of monocrotaline pyrrole in pulmonary artery endothelial cells. J Biol Chem, 2000, 275(37):29091-9.
    [53] 陈瑞芬,周光德,曹文军,等.野百合碱诱导实验性肺动脉高压病理形态观察.电子显微学报,2002,21(1):1-4.
    [54] Tofovic SP, Salah EM, Mady HH, et al. Estradiol metabolites attenuate monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol, 2005, 46(4):430-7.
    [55] Voelkel NF, Tuder RM, Bridges J,et al. Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. Am J Respir Cell Mol Biol, 1994, 11(6):664-75.
    [56] Yasuhiro Ikeda, Yoshikazu Yonemitsu,Chu Kataoka, et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary hypertension in rats.A m J Physiol Heart Cite Physiol,2002,283(5): H2021-8.
    [57] Kimura H, Kasahara Y, Kurosu K, et al. Alleviation of monocrotaline-induced pulmonary hypertension by antibodies to monocyte chemotactic and activating factor/monocyte chemoattractant protein-1. Lab Invest, 1998, 78(5):571-81.
    [58] Mark A Birrell, Sissie Wong, Kerryn McCluskie, et al. Second-Generation Inhibitors Demonstrate the Involvement of p38 Mitogen-Activated Protein Kinase in Post-Transcriptional Modulation of Inflammatory Mediator Production in Human and Rodent Airways. J Pharmacol Exp Ther, 2006, 316(3):1318-27.
    [59] David C, Underwood, Ruth R, et al. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung.Am J Physiol Lung Cell Mol Physiol, 2000, 279(5): L895-902.
    [60] Talaibek Borbiev, Anna Birukova. p38 MAP kinase-dependent regulation of endothelial cell permeability.Am J Physiol Lung Cell Mol Physiol,2004,287(5): L911-8.
    [61] Kao PN. Simvastatin treatment of pulmonary hypertension: an observational case series. Chest, 2005, 127(4): 1446-52.
    [62] Souza-Costa DC, Figueiredo-Lopes L, Alves-Filho JC, et al. Protective effects of atorvastatin in rat models of acute pulmonary embolism: involvement of matrix metalloproteinase-9. Crit Care Med, 2007, 35(1): 239-45.
    [63] Baetta R, Donetti E, Comparato C, et al. Proapoptotic effect of atorvastatin on stimulated rabbit smooth muscle cells. Pharmacol Res, 1997, 36(2): 115-21.
    [64] Cheng G, Shan J, Xu G, et al. Apoptosis induced by simvastatin in rat vascular smooth muscle cell through Ca2+-calpain and caspase-3 dependent pathway. Pharmacol Res, 2003, 48(6): 571-8.
    [65] Mraiche F, Cena J, Das D, et al. Effects of statins on vascular function of endothelin-1. Br J Pharmacol, 2005, 144(5): 715-26.
    [66] Jacobson JR, Barnard JW, et al. Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol, 2005, 288(6): L1026-32.
    [67] Yao HW, Mao LG, Zhu JP. Protective effects of pravastatin in murine lipopolysaccharide-induced acute lung injury. Clin Exp Pharmacol Physiol, 2006, 33(9): 793-7.
    [68] Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature, 1990, 343(6257): 425-30.
    [69] van AelstL, D, SouzaSchorey C. Rho GTPases and signaling networks. Genes Dev, 1997, 11(18): 2295-322.
    [1] Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis, 2002, 45(3):173-202.
    [2] Jun Lu, Hideto MD, Shimpo MD, et al.Specific inhibition of p38 mitogen-activated protein kinase with FR167653 attenuates vascular proliferation in monocrotaline-induced pulmonary hypertension in rats. J Thorac Cardiovasc Surg, 2004, 128(6):850-9.
    [3] Zaiman A.,Fijalkowska I,Hassoun PM, et al, One hundred years of research in the pathogenesis of pulmonary hypertension.Am J Respir Cell Mol Biol, 2005, 33(5): 425-31.
    [4] Marc Humbert MD, Nicholas PhD, Morrell W,et al.Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol, 2004, 43(12 Suppl S):13S-24S.
    [5] MR Karamsetty, JR Klinger, NS Hill. Evidence for the role of p38 MAP kinase in hypoxia-induced pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol, 2002, 283(4): L859-66.
    [6] Philippe P, Roux, John Blenis. ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions. Microbiology and Molecular Biology Reviews, 2004, 68(2): 320-44.
    [7] Eddahibi S, Morrell N, Ortho MP, et al. Pathobiology of pulmonary arterial hypertension. Eur Respir J, 2002, 20(6): 1559-72.
    [8] John M, Kyriakis, Joseph. Avruch. Mammalian Mitogen-Activated Protein Kinase Signal Transduction Pathways Activated by Stress and Inflammation. Physiological Reviews, 2001, 81(2): 807-69
    [9] Dan I, Watanabe NM, Kusumi A. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol, 2001, 11 (5): 220-30.
    [10] Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J, 2002, 351 (2): 289-305.
    [11] Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell, 1995, 80(2): 187-97.
    [12] Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem, 1996, 271(40): 24313-6.
    [13] Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal regulated kinase activation. Cell, 1995, 80(2): 179-85
    [14] Mittelstadt PR, Salvador JM, Fornace AJ Jr, et al. Activating p38 MAPK: new tricks for an old kinase. Cell Cycle, 2005, 4(9): 1189-92.
    [15] Keren A, Tamir Y, Bengal E. The p38 MAPK signaling pathway: A major regulator of skeletal muscle development. Mol Cell Endocrinol, 2006, 252(1-2): 224-30.
    [16] Yong Jiang, Hermann Gram, Ming Zhao, et al. Characterization of the Structure and Function of the Fourth Member of p38 Group Mitogen-activated Protein Kinases, p38&J Biol Chem, 1997, 272(48): 30122-8.
    [17] Francis Dodeller, Hendrik Schulze-Koops. The p38 mitogen-activated protein kinase signaling cascade in CD4 T cells. Arthritis Res Ther, 2006, 8(2): 205.
    [18] Raingeaud J, Whitmarsh A, Barrett T, et al. MKK3-and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol, 1996, 16(3): 1247-55.
    [19] Derijard B, Raingeaud J, Barrett T, et al. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science, 1995, 267(5198): 682-5.
    [20] Vergarajauregui S, San Miguel A, Puertollano R. Activation of p38 Mitogen-Activated Protein Kinase Promotes Epidermal Growth Factor Receptor Internalization. Traffic, 2006, 7(6): 686-98.
    [21] Kaur R, Liu X, Gjoerup O, et al. Activation of p21-activated kinase 6 by MAP kinase kinase 6 and p38 MAP kinase. J Biol Chem, 2005, 280(5): 3323-30.
    [22] Xia W, Longaker MT, Yang GP. P38 MAP kinase mediates transforming growth factor-beta2 transcription in human keloid fibroblasts. Am J Physiol Regul Integr Comp Physiol, 2006, 290(3): R501-8.
    [23] Schiller M, Bohm M, Dennler S, et al. Mitogen- and stress-activated protein kinase 1 is critical for interleukin-1-induced, CREB-mediated, c-fos gene expression in keratinocytes. Oncogene, 2006, 25(32): 4449-57.
    [24] Lokuta MA, Huttenlocher A. TNF-alpha promotes a stop signal that inhibits neutrophil polarization and migration via a p38 MAPK pathway. J Leukoc Biol, 2005, 78(1): 210-9.
    [25] Ammoun S, Lindholm D, Wootz H, et al. G-protein-coupled OX1 OREXIN/hcrtr- 1 hypocretin receptors induce caspase-dependent and-independent cell death through p38 mitogen-/stress-activated protein kinase. J Biol Chem, 2005, 281(2): 834-42.
    [26] Salvador JM, Mittelstadt PR, Guszczynski T, et al. Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat Immunol, 2005, 6(4): 390-5.
    [27] Deborah Brancho, Nobuyuki Tanaka. Mechanism of p38 MAP kinase activation in vivo. Gene Dev, 2003, 17(16): 1969-78.
    [28] Farooq A, Zhou MM. Structure and regulation of MAPK phos-phatases. Cell Singnal, 2004, 16(1): 769-79.
    [29] Sudo T, Kawai K, Matsuzaki H, et al. p38 mitogen-activated protein kinase plays a key role in regulating MAPKAPK2 expression. Biochem Biophys Res Commun, 2005, 337(2): 415-21.
    [30] Cai Huang, Ken Jacobson, Michael D. MAP kinases and cell migration. Journal of Cell Science, 2004, 117(Pt 20): 4619-28.
    [31] Baan B, Dam H, Zon GC, et al. The role of JNK, p38 and ERK MAP-kinases in insulin-induced Thr69 and Thr71-phosphorylation of transcription factor ATF2. Mol Endocrinol, 2006, 20(8): 1786-95.
    [32] Kelkar N, Standen CL, Davis RJ. Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell Biol, 2005, 25(7): 2733-43.
    [33] Lee MR, Dominguez C. MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38alpha protein. Curr Med Chem, 2005, 12(25): 2979-94.
    [34] Rohit Budhiraja MD, Rubin M, Tuder MD, et al. Endothelial Dysfunction in Pulmonary Hypertension. Circulation, 2004, 109(2): 159-65.
    [35] Talaibek Borbiev, Anna Birukova. p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol, 2004, 287(5): L911-8.
    [36] Talaibek Borbiev, Anna Birukova. p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol, 2004, 287(5): L911-8.
    [37] Garcia JG, Wang. Critical involvement of p38 MAP kinase in pertussis toxin-induced cytoskeletal reorganization and lung permeability. FASEB J, 2002, 16(9): 1064-76.
    [38] Usamah S, Kayyali. Cytoskeletal Changes in Hypoxic Pulmonary Endothelial Cells Are Dependent on MAPK-activated Protein Kinase MK2.J. Biol. Chem, 2002, 277(45): 42596-602.
    [39] Qin Wang, Michael Yerukhimovich. MKK3 and -6-dependent activation of p38α MAP kinase is required for cytoskeletal changes in pulmonary microvascular endothelial cells induced by ICAM-1 ligation. Am J Physiol Lung Cell Mol Physiol, 2005, 288(2): L359-69.
    [40] Wakayama, T, Iseki, S. Expression and cellular localization of the mRNA for the 25- kDa heat- shock protein in the mouse. Cell Biol, 1998, 22(4): 295-304.
    [41] Huot, J, Houle F, Marceau F, et al. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res, 1997, 80(3): 383-92.
    [41] Hubloue I, Biarent D, Abdel Kafi, et al. Endogenous endothelins and nitric oxide in hypoxic pulmonary vasoconstriction. Eur Respir J, 2003, 21 (1): 19-24.
    [42] Ozaki M, Kawashima S, Yamashita T, et al. Reduced hypoxic pulmonary vascular remodeling by nitric oxide from the endothelium. Hypertension, 2001, 37(2): 322-7.
    [43] Smith AP, Demoncheaux EA, Higenbottam TW. Nitric oxide gas decreases endothelin-1 mRNA in cultured pulmonary artery endothelial cells. Nitric Oxide, 2002, 6(2): 153-9.
    [44] Marletta MA. Nitric oxide synthase structure and mechanism. J Biol Chem, 1993, 268(3): 12231-4.
    [45] Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med, 1995, 333(4): 214-21.
    [46] Xing F, Jiang Y. Downregulation of human endothelial nitric oxide synthase promoter activity by p38 mitogen-activated protein kinase activation. Biochem Cell Biol, 2006, 84(5): 780-8.
    [47] HedgesJC, Yamboliev IA, Ngo M, et al. p38 mitogen-activated protein kinase expression and activation in smooth muscle. Am J Physiol Cell Physiol, 1998, 275 (2 Pt 1): C527-34.
    [48] Massett MP, Ungvari Z, Csiszar A, et al. Different roles of PKC and MAP kinases in arteriolar constrictions to pressure and agonists. Am J Physiol Heart Circ Physiol, 2002, 283(6): H2282-7.
    [49] Greg A, Knock, Anushika S, et al. Modulation of PGF2G-and hypoxia-induced contraction of rat intra-pulmonary artery by p38 MAPK kinase inhibition: a nitric oxide dependent mechanism. Am J Physiol Lung Cell Mol Physiol, 2005, 289(6): 1039-48.
    [50] Khalil N. Bitar. HSP27 phosphorylation and interaction with actin-myosin in smooth muscle contraction. Am J Physiol Gastrointest Liver Physiol, 2002, 282(5): G894-903.
    [51] SchneiderGB, Hamano H, Cooper LF. In vivo evaluation of hsp27 as an inhibitor of actin polymerization: hsp27 limits actin stress fiber and focal adhesion formation after heat shock. J Cell Physiol, 1998, 177(4): 575-84.
    [52] Morrell ED, Tsai BM, Wang M. p38 mitogen-activated protein kinase mediates the sustained phase of hypoxic pulmonary vasoconstriction and plays a role in phase I vasodilation. J Surg Res, 2006, 134(2): 335-41.
    [53] Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis, 2002, 45(3): 173-202.
    [54] Welsh DJ, Scott P, Plevin R, et al. Hypoxia enhances cellular proliferation and inositol 1,4,5-triphosphate generation in fibroblasts from bovine pulmonary artery but not from mesenteric artery. Am J Respir Crit Care Med, 1998, 158(6): 1757-62.
    [55] Mortimer HJ, Peacock AJ, Kirk A, et al. p38 MAP kinase: Essential role in hypoxia-mediated human pulmonary artery fibroblast proliferation. Pulm Pharmacol Ther, 2006, Sep 8; [Epub ahead of print].
    [56] Welsh DJ, Scott PH, Peacock AJ. p38 MAP kinase isoform activity and cell cycle regulators in the proliferative response of pulmonary and systemic artery fibroblasts to acute hypoxia. Pulm Pharmacol Ther, 2006, 19(2): 128-38.
    [57] Xudong Yang, Lu Long, Mark Southwood, et al. Dysfunctional Smad Signaling Contributes to Abnormal Smooth Muscle Cell Proliferation in Familial Pulmonary Arterial Hypertension. Circulation Research, 2005, 96(10): 1053-63.
    [58] Rudarakanchana N, Flanagan JA, Chen H, et al. Functional analysis of bone morphogenetic protein type Ⅱ receptor mutations underlying primary pulmonary hypertension. Hum Mol Genetics, 2002, 11 (13): 1517-25.
    [59] Hideki Takahashi, Naoto Goto, et al. Downregulation of type Ⅱ bone morphogenetic protein receptor in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 2006, 290(3): L450-8.
    [60] McMurtry MS, Moudgil R, Hashimoto K, et al. Overexpression of human bone morphogenetic protein receptor 2 does not ameliorate. monocrotaline pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol, 2007, 292(4): L872-8.
    [61] J. H. Newman. Pulmonary Hypertension. Am J Respir Crit Care Med, 2005, 172(9): 1072-77.
    [62] Pietra GG, Edwards WD, Kay JM, et al. Histopathology of primary pulmonary hypertension. A qualitative and quantitative study of pulmonary blood vessels from 58 patients in the National Heart, Lung, and Blood Institute, Primary Pulmonary Hypertension. Registry Circulation, 1989, 80(5): 1198-206.
    [63] Tuder RM, Groves B, Badesch DB, et al. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol, 1994, 144: 275(2)-85.
    [64] Ziesche R, Petkov V, Williams J, et al. Lipopolysaccharide and interleukin 1 augment the effects of hypoxia and inflammation in human pulmonary arterial tissue. Proc Natl Acad Sci USA, 1996, 93(22): 12478-83.
    [65] Tofovic SP, Salah EM, Mady HH, et al. Estradiol metabolites attenuate monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol, 2005, 46(4): 430-7.
    [66] Tamura, DY, Moore EE, Johnson JL, et al. p38 mitogen-activated protein kinase inhibition attenuates intercellular adhesion molecule-1 up-regulation on human pulmonary microvascular endothelial cells. Surgery, 1998, 124(2): 403-7
    [67] Simon, C, Goepfert H, Boyd D. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type Ⅳ collagenase secretion and in vitro invasion. Cancer Res, 1988, 58(6): 1135-9.
    [68] Scott, PH, Paul A, Belham CM, et al. Hypoxic stimulation of the stress-activated protein kinases in pulmonary artery fibroblasts. Am J Respir Crit Care Med, 1998, 158(3): 958-62.
    [69] Kankaanranta H, De Souza PM, Barnes PJ, et al. SB 203580, an inhibitor of p38 mitogen-activated protein kinase, enhances constitutive apoptosis of cytokine-deprived human eosinophils. J Pharmacol Exp Ther, 1999, 290(2): 621-8.
    [70] Underwood DC, Osborn RR, Kotzer CJ, et al. SB 239063, a potent p38 MAP kinase inhibitor reduced inflammatory cytokine production, airways eosinophil infiltration and persistence. J Pharmacol Exp Ther, 2000, 293(1): 281-8.
    [71] David C, Underwood, Ruth R, et al. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol, 2000, 279(5): L895-902.
    [72] Mark A, Birrell, Sissie Wong, et al. Second-Generation Inhibitors Demonstrate the Involvement of p38 Mitogen-Activated Protein Kinase in Post-Transcriptional Modulation of Inflammatory Mediator Production in Human and Rodent Airways. Journal of Pharmacology And Experimental Therapeutics, 2005, 316(6): 1318-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700