低碳微合金高强度钢中铁素体的形核、三维形态与长大动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在新一代钢铁材料的发展中,固态相变过程中进行最终组织控制已经成为提高钢铁材料性能最有效的方法之一。奥氏体→铁素体相变通常是钢铁材料冷却过程中最先发生的固态相变,铁素体晶粒尺寸和形态对钢的力学性能有重要的影响。基于其重要的理论意义和工业应用价值,近60年来,奥氏体→铁素体相变一直是钢铁材料研究领域中的热点。因此,深入理解不同铁素体组织的形核、三维形态以及长大动力学将有助于精确地预测钢铁材料微观结构的演变,设计最合适的化学成分和热处理工艺路线。
     本文采用连续截面和计算机辅助三维重建技术、高温共聚焦激光显微镜技术、热压连接、电子背散射衍射技术等实验方法以及热力学和第一原理计算等手段对低碳微合金高强度钢中奥氏体母相不同位置铁素体的形核、三维形态以及长大动力学等进行了系统的研究。主要研究结果如下:
     (1)晶界铁素体是高温奥氏体相冷却过程中最先出现的相。奥氏体晶界面上形成的铁素体在二维截面上形态多样,但其三维形态往往在一个维度上尺寸较大,在其他维度上尺寸较小表现为长条状;奥氏体晶界棱上形成的铁素体在二维截面表现为三角形,其三维形态表现为金字塔形;奥氏体晶界角上形成的铁素体具有不规则的形状,填充晶界角。奥氏体晶界面上形成的铁素体在长大过程中会相互碰撞、融合,形成大块状铁素体,覆盖奥氏体晶界。
     (2)在低过冷度下,在奥氏体晶内夹杂物上形核生成的等轴形铁素体,随着等温保持时间的延长,等轴形铁素体的数量增加而其仍保持等轴形态;在高过冷度下,等轴形铁素体和针状铁素体均能在夹杂物上形成,但样品在等温保持过程中等轴形铁素体由于其亚板条的生长速度差异而逐渐失去初期的形态特征;形成晶内铁素体的夹杂物为以Al2O3为核心外层包裹MnS的复合夹杂物,本研究中晶内铁素体的形核方式可能为夹杂物周围形成锰贫乏区而促进铁素体形核。同时通过氧化物双重热压连接实验以及第一性原理计算等对锰贫乏区促进铁素体的形核机制进行了进一步的实验和理论验证。等轴形铁素体具有亚结构,且各个亚结构之间取向差较小;等轴形铁素体的三维形态表现为多面体。
     (3)在较大的过冷度下,在奥氏体晶内夹杂物上可形核生成晶内针状铁素体。针状铁素体的三维形态为板条状而不是二维截面上观察到的针状。针状铁素体板条具有特殊的长大方向,这是针状铁素体与奥氏体具有特殊取向关系的结果。针状铁素体晶粒细化的机制为:先形成的针状铁素体板条对奥氏体晶粒进行分割而限制后形成铁素体等组织的尺寸而细化晶粒。晶内针状铁素体的原位观察测量的板条伸长速率与魏氏铁素体板条的伸长速率相近。
     (4)相对于奥氏体晶界面上形成的铁素体,在奥氏体晶界棱上形成的铁素体具有较大的长大速率常数;随着过冷度的减小,晶内等轴形铁素体与奥氏体晶界面上形成铁素体的长大速率常数的变化趋势具有很好的连续性;实验中观察到在替代型合金元素分配与不分配转变温度以下,随着过冷度的减小铁素体的长大模式从准平衡模型向局域平衡模型过渡,此现象可以通过溶质拖曳效应理论解释。
     (5)魏氏铁素体的形成温度低于晶内等轴形铁素体的形成温度,但高于晶内针状铁素体的形成温度。魏氏铁素体板条的三维形态表现为板状;魏氏铁素体锯齿条具有三棱柱的形态;魏氏铁素体板条可以在奥氏体晶界面上直接形成,也可在已经形成的晶界铁素体上激发形核形成,或者在已经存在的魏氏铁素体板条的宽面形成。高温共聚焦激光显微镜技术原位观察结果表明,魏氏铁素体板条的生长并不是匀速的而是伴随着减速和加速,长大过程中存在微调其长大方向而取得更大速率的现象。在样品内部测得的魏氏铁素体板条的生长速率接近于局域平衡模型理论预测值,而在样品表面原位观察测量得到生长速率的最大值接近于准平衡模型下的预测值。这种差异表明,合金元素在样品内部和样品表面铁素体长大过程中的参与方式或者程度等方面存在差异。
In the new generation steel, the microstructure control in the solid-state phasetransformation process has become the most effective way to improve the performances of thesteels. Austenite to ferrite transformation is usually the first solid-state phase transformation insteels during cooling. The grain size and morphology of the ferrite significantly influence thehardenability and mechanical properties of the steels. Based on its industrial application valueand important theoretical significance, the diffusion phase transformation from austenite toferrite has been intensely studied in the last nearly60years. Hence, the deeper understanding inthe3-dimentional morphology and growth kinetics of ferrite in the low carbon high strengthmicro-alloyed steels will significantly contribute to the accurate prediction in the microstructureevolution, and to the designs of the most suitable chemical composition and heat treatmentprocessto obtain the steels with the desired microstructures.
     In this paper, the serial-sectioning and computer-aided three-dimensional reconstructiontechnique, high temperature confocal laser microscopy, electron back-scattering diffractiontechnology et.al have been utilized to systematically investigate nucleation and growthmechanisms, three dimensional morphology, and growth kinetics of the ferrite formed in a lowcarbon micro-alloyed steel. Main results for this study are as follows:
     (1) Grain boundary ferrite is the first decomposition product of the high temperatureaustenite during cooling. The morphology of ferrite allotriomorphs nucleated in the grainboundary face varied considerably from one grain to another, even on the same grain boundaryface. Most of face-nucleated ferrite allotriomorphs appeared to be large in one dimension andsmaller in other dimensions. They are better to be described as prolate ellipsoids rather thanexhibiting an equiaxed pancake shape along the grain boundary faces as usually assumed. Ferriteallotriomorphs nucleated at austenite grain boundary edges show the triangular-line shape on thetwo dimensional sections and take the form of triangular pyramids as the three dimensionalmorphology. Ferrite allotriomorphs nucleated at austenite grain boundary corners exhibitirregular shapes. During growth grain boundary ferrite starts to impinge against each other,coarsen and finally cover the austenite grain boundary.
     (2) Intragranular ferrite idiomorph can be formed at both low and high undercoolings. Atlow undercooling the number and size of intragranular ferrite idiomorphs increased withincreasing holding time. At high undercooling, intragranular ferrite idiomorph formed prior toacicular ferrite. However, they gradually lost its morphological characteristics with increasingholding time and the acicular ferrite began to dominate the microstructure. Intragranular ferriteidiomorph was nucleated on inclusions. The non-specific orientation relationship of intragranularferrite idiomorph to austenite was probably the underlying reason for the formation of theequiaxed shape.
     (3) Acicular ferrite can be formed on the inclusions under a larger under cooling; thethree-dimensional morphology of acicular ferrite is of a lath rather than a needle as traditionallyassumed; Acicular ferrite lath has special growth directions and its broad face is also parallel tosome special lattice planes of the austenite, which is resulted by its the special orientation relationship to the austenite. The grain refinement mechanism of acicular ferrite is that thepre-formed ferrite lath can partition austenite grains into compartments. The growth ofintragranular ferrite grains formed at later stages during isothermal holding or at lowertransformation temperatures during continuous cooling are thus confined to the smaller zonesand thus have smaller sizes. Intragranular acicular ferrite shows similar growth kinetics withWidmanst tten sideplates in in-situ observation.
     (4)The growth rate constant of ferrite in nucleated grain boundary edge is larger than thosenucleated in grain boundary face and intragranular ferrite idiomorph. Growth kinetics ofintragranular ferrite idiomorph was similar to that of grain boundary ferrite allotriomorph andfell between paraequilibrium and local equilibrium prediction limits. A transition in proeutectoidferrite growth kinetics from para-equlibrium to negligible partion local equilibrium was observedfrom650°C to750°C below the partion local equilibrium/negligible partition local equilibriumtransition temperature in the investigated steel. This transition is explained in terms of the drageffect of the substitutional alloying elements.
     (5) Widmanst tten sideplates directly emanated from austenite grain boundaries or from theexisting ferrite allotriomorph through the mechanism of edge-to-face sympathetic nucleation.Face-to-face sympathetic nucleation also occurred on the broad faces of the pre-formed ferritesideplates. The growth of plate on the free surface did not occur at a constant rate but ischaracterized by the acceleration and deceleration. The average lengthening rate ofWidmanst tten sideplates measured in-situ was one order of magnitude larger than the bulk value.The former is close to the prediction assuming paraequilibrium and the later is closer to theprediction assuming the negligible partition local equilibrium.
引文
[1] Enomoto M. Nucleation of phase transformations at intragranular inclusions in steel [J]. MetMater Int.1998,4(2):115-123.
    [2] Gregg JM. Ferrite nucleation on non-metallic inclusions in steel [D]. University ofCambridge,1994.
    [3] Shigesato G, Sugiyama M. Development of in situ observation technique using scanning ionmicroscopy and demonst ration of Mn depletion effect on intra-granular ferritetransformation in low-alloy steel [J]. J. Electron Microscopy,2002,51(6):359-367.
    [4] Shim JH, Byun JS, Cho YW, Oh YJ, Shim JD, Lee DN. Mn absorption characteristics ofTi2O3inclusions in low carbon steels [J]. Scripta Mater.2001,44:49-54.
    [5] Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intragranular ferritetransformation in the heat affected zone of welded joints with large heat input in structuralsteels [J]. ISIJ International,1996,36:1406-1422.
    [6] Enomoto M. Simulation of solute diffusion zone formation during continuous cooling insteels containing inclusions [J]. Zeitschrift für Metallkunde.,1999;90:19-24.
    [7] Bramfitt BL. Effect of carbide and nitride additions on heterogeneous nucleation behavior ofliquid iron [J]. Metall. Trans.,1970,1(7):1987-1995.
    [8]Howell PR, Honeycomb RWK, Crystallographic aspects of diffusional phase transformationin metals and alloys: In Aaronson H I, Laughlin D E, Sekerka R F, Wayman C M(eds.)Proc.Int.Conf.Solid-solid Phase Transformation.TMS-AIME:399-425.
    [9] Zhang S, Hattori N, Enomoto M, Tarui T. Ferrite nucleation at ceramic/austenite interfaces [J].ISIJ Int.1996;36:1301-1309.
    [10] Wu KM, EnomotoM. Intragranular Ferrite Formed in Association with Inclusions in avanadium microalloyed steel [J]. Acta Metallurgica Sinica (English Letters),2004,17:785-789.
    [11] Wu KM, He XL. Nucleation and three-dimensional morphology of intragranular ferrite in avanadium microalloyed steel [J], Journal of University of Sciene and Technology Beijing.2005,12(4):326-328.
    [12]余圣甫,雷毅,谢明立,黄安国,李志远.晶内铁素体的形成机理[J].钢铁研究学报,2005,17(1):47-50.
    [13] Stephen AC. Weld metal microst ructure in carbon manganese deposits [A]. TheInternational Conference on Quality and Reliability in Welding [C]. Hangzhou, China:1984.2B: B20-12B20-6.
    [14]潘涛,杨志钢,白秉哲,方鸿生.钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究,金属学报,2003;39:1037.
    [15] Ricks RA, Howell PR, Barritte GS. The nature of acicular ferrite in HSLA steel weld metals[J]. Journal of materials science,1982,17:732-740.
    [16]Yang JR, Badeshia, HKDH. Advances in Welding Science and Technology ed [M]. David,S.A., ASM, Metals Park, Ohio, USA.1986:187.
    [17]Madariaga I., Romero, S.L. and Gutiérrez, I.: Upper Acicular Ferrite Formation in AMedium-Carbon Microalloyed Steel by Isothermal Transformation: NucleationEnhancement by CuS [J], Metall. Mater. Trans.A1998,29A:1003-1015.
    [18] Madariaga I, Gutiérrez I. Nucleation of acicular ferrite enhanced by the precipitation of CuSon MnS particles [J]. Scripta Matcrialia,1997,37:1185-1192.
    [19] Yamamoto K, Hasegawa T, Takamura J. Effect of boron on intra-granular ferrite formationin Ti-oxide bearing [J]. ISIJ International,1996,36(1):80-86.
    [20] Dubé CA, Aaronson HI, La formation de la ferrite proeutecto de dans les aciers au carbon[J]. Mehl RF. Rev. Metall.,1958,55:201-210.
    [21] Aaronson HI, ed. The Decomposition of Austenite by Diffusional Processes [M],Interscience, New York, NY,1962.
    [22] Enomoto M, Aaronson HI. Partition of Mn during the growth of proeutectoid ferriteallotriomorphs in an Fe-1.6at. pct C-2.8at. pct Mn alloy [J]. Metall Trans1987,18:1547-1557.
    [23] Bhadeshia HKDH. Bainite in steels [M]. Second edition. London: The Institute of Materials,2001.
    [24] Spanos G, Moon DW, Fonda RW, Menon ESK, Fox AG. Microstructural, compositional,and micro-hardness across a gas–metal arc weldment made with an ultralow-carbonconsumable [J]. Metall.Mater Trans A.2001,32:3043-3054.
    [25] Bhadeshia HKDH, Materials Science&Metallurgy [M], Part II Course C9, Alloys.
    [26] Kral MV, Spanos G. Three-dimensional analysis of proeutectoid cementite precipitates [J].Acta mater.1999,47(2):711-724.
    [27] Kral MV, Spanos G. Three-dimensional analysis and classification ofgrain-boundary-nucleated proeutectoid ferrite precipitates [J]. Metallurgical and MaterialsTransactions A.2005,36(5):1199-1207.
    [28] Spanos G, Wilson AW, Kral MV. New Insights into the Widmanst tten proeutectoid ferritetransformation: integration of crystallographic and three-dimensional morphologicalobservations [J], Metallurgical and Materials Transactions A,2005,36A,2005:1209-1218.
    [29] Wu KM, Yokomizo T, Enomoto M. Three-dimensional morphology and growth Kinetics ofintragranular ferrite idiomorphs formed in association with inclusions in an Fe-C-Mn alloy[J], ISIJ International,2002,42:1144-574.
    [30] Yokomizo T, Enomoto M, Umezawa O, Spanos G, Rosenberg RO. Three-dimensionaldistribution, morphology, and nucleation site of intragranular ferrite formed in associationwith inclusions [J]. Materials Science and Engineering A,2003,344:261-267.
    [31] Wu KM, Enomoto M. Three-dimensional morphology of degenerate ferrite in an Fe-C-Moalloy [J]. Script Mater.2002,46(8):569-574.
    [32] Hackenberg RE, Nordstrom DP, Shiflet GJ. Morphology and three-dimensional structureof ferrite formed below the bay in an Fe-C-W alloy [J], Scripta Materialia,472002,47:357-361.
    [33] Rowenhorst DJ, Gupta A, Feng CR, Spanos G,3D Crystallographic and morphologicalanalysis of coarse martensite: Combining EBSD and serial sectioning [J], Scripta Materialia,2006,55:11-16.
    [34] Bradley JR, Rigsbee JM, Aaronson HI. Growth kinetics of grain boundary of ferriteallotriomorphs in Fe-C alloys [J]. Metallurgical Transactions A.1977,8(2):323-333.
    [35] Zener C, Kinetics of the decomposition of austenite [M]. Trans. AIME.1946,167:550-595.
    [36] Hillert M. The Mechanism of Phase Transformations in Crystalline Solids [M], Institute ofMetals, London,1969:231-247.
    [37] Purdy GR, Weichert DH, Kirkaldy JS. The growth of proeutectoid ferrite in ternaryFe-C-Mn austenites [J]. Trans. TMS-AIME.1964,230:1025-1034.
    [38] Coates DE, Diffusion-controlled precipitate growth in ternary system I [J], Metall. Trans.,1972,3:1203-1212.
    [39] Coates DE, Metall. Trans. Diffusion controlled precipitate growth in ternary systems: II [J],1973,4:1077-1086.
    [40] Coates DE, Diffusional Growth Limitation and Hardenability [J]. Metall. Trans.1973,4:2313-2325.
    [41] Hultgren A. Isothermal transformation of austenite [J]. Trans. ASM1947,39:915-1005.
    [42] Hillert M. Paraequilibrium, Internal Report [C]. Swedish Institute for Metal Research,Stockhelm, Sweden,1953.
    [43] Frank FC. Radially symmetric phase growth controlled by diffusion [J]. Proc. Roy. Soc., A.1950,201:586-599.
    [44] Zener C. Theory of growth of spherical precipitates from solid solution [J]. Journal AppliedPhysics,1949,20(4):950-953.
    [45]Abramowitz M, Stegun IA eds., Handbook of Mathematical Functions [M], National Bureauof Standards, Washington,1964.
    [46] Zhang GH, Wei R, Enomoto M, Suh DW. Growth kinetics of proeutectoid ferrite inFe-0.1C-1.5Mn-1Si quaternary and Fe-0.1C-1.5Mn-1Si-0.2Al quinary alloys [J]. MetallMater Trans A,2012,43:833.
    [47] Kirkaldy JS. Diffusion in multicomponent metallic systems: I. Phenomenological theory forsubstitutional solid solution alloys [J]. Can J Phys,1958,36:899-906.
    [48] Kirkaldy JS. Diffusion in multicomponent metallic systems: II. Solutions for two-phasesystems with applications to transformations in steel [J]. Can J Phys.1953,36(7)907-916.
    [49] Kirkaldy JS. Diffusion in multicomponent metallic systems: III. The motion of planarinterface [J]. Can J Phys.1958,36:917.
    [50] Brown LC, Kirkaldy JS, Carbon Diffusion in Dilute Ternary Austenites [J]. Trans. Met. Soc.AIME,1964,230:223-226.
    [51] Ghosh G, Olson GB. Metall. Simulation of paraequilibrium growth in multicomponentsystems [J]. Mater Trans A.2001,32A:455-467.
    [52] Tanaka T, Aaronson HI, Enomoto M."Nucleation kinetics of grain boundary allotriomorphsof proeutectoid ferrite in Fe-C-Mn-X2alloys [J]. Metall. Mater. Trans. A,1995,26A:547-559.
    [53] Tanaka T, Aaronson HI, Enomoto M. Growth-kinetic of grain-boundary allotriomorphs ofproeutectoid ferrite in Fe-C-Mn-X2alloys [J]. Metall. Mater. Trans. A,1995,26(3):561-580.
    [54] Wei R, Kanno K, Enomoto M. Alloying Element Partition and Growth Kinetics ofProeutectoid Ferrite in Hot-Deformed Fe-0.1C-3Mn-1.5Si Austenite [J], Metallurgical andMaterials Transactions A,2011,42(8):2189-2198.
    [55] Wei R, Enomoto M. Discussion on the Alloying Element Partition and Growth Kinetics ofProeutectoid Ferrite in Fe-C-Mn-X Alloys [J]. Metallurgical and Materials Transactions A,2011,42(12):3554-3557.
    [56] Kinsman KR, Aaronson HI. Influence of Al, Co, and Si upon the kinetics of the proeutectoidferrite reaction [J]. Metall Trans,1973,4:959-967.
    [57] Bradley JR, Aaronson HI. Growth kinetics of grain boundary ferrite allotriomorphs inFe-C-X alloys [J]. Metall Mater Trans A,1981,12A:1729. Metall. Trans. A,1981,12A:1729-1741.
    [58] Boswell PG, Kinsman KR, Shiflet GJ, Aaronson HI. In: Mechanical Properties and PhaseTransformations in Engineering Materials [C], S. D. Antolovich, R. O. Ritchie, W.W.Berberich, Eds.,TMS-AIME, Warrendale, PA,1986:445-466.
    [59] Tanaka T, Aaronson HI, Enomoto M. Growth-kinetic of grain-boundary allotriomorphs ofproeutectoid ferrite in Fe-C-Mn-X2alloys [J]. Metall. Mater. Trans. A,1995,26(3):561-580.
    [60] Chen H, Appolaire B, van der Zwaag S. Application of cyclic partial phase transformationsfor identifying kinetics transitions during solid-state phase transformations: experiments andmodeling [J]. Acta Mater,2011,59:6751-6760.
    [61] Chen H, van der Zwaag S. Analysis of ferrite growth retardation induced by local Mnenrichment in austenite created by prior interface passages [J]. Acta Mater,2013,61:1338-1349.
    [62] Zurob HS, Hutchinson CR, Béché A, Purdy GR, Bréchet YJM. A transition from localequilibrium kinetics for ferrite growth in Fe-C-Mn: A possible role of interfacial segregation[J]. Acta Mater,2008,56:2203-2211.
    [63] Capdevila C, Cornide J, Tnaka K, Nakanishi K, Urones-Garrote E. Kinetic Transitionduring Ferrite Growth in Fe-C-Mn Medium Carbon Steel. Metall. Mater. Trans. A,2011,42(12):3719-3728.
    [64] Zhang GH, Heo YU, Song EJ, Suh DW. Kinetic Transition During the Growth ofProeutectoid Ferrite in Fe-C-Mn-SiQuaternary Steel. Met. Mater. Int.,2013,19(2):153-158.
    [65] Liu ZQ, Miyamoto G, Yang ZG, Furuhara T. Direct measurement of carbon enrichmentduring austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys [J]. Acta Mater.2013,61:3120-3129.
    [66] Liu ZK. The transformation phenomenon in Fe-Mo-C alloys: A solute drag approach [J].Metall. Mater. Trans. A,1997,28A:1625-1631.
    [67] Hillert M, Sundman B. A solute drag treatment of the transition from diffusion-controlledto diffusionless solidification [J]. Acta Metall.,1977,25:11-18.
    [68] Purdy GR, Brechet YJM. A solute drag treatment of the effects of alloying elements on therate of the proeutectoid ferrite transformation in steels [J]. Acta Metall Mater,1995,43:3763-3774.
    [69] Cahn JW. The impurity-drag effect in grain boundary motion [J], Acta Metallurgica.1962,10:789-798.
    [70] Enomoto M. Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy[J]. Acta Mater,1999.47:3533-3540.
    [71] Guo H, Purdy GR, Enomoto M, Aaronson HI, Kinetic transitions and solute (Mn) fieldsassociated with later stages of ferrite growth in Fe-C-Mn-Si [J]. Metall. Mater. Trans. A,2006,37A:1721-1729
    [72] Guo H, Enomoto M. Effects of substitutional solute accumulation at alpha/gammaboundaries on the growth of ferrite in low carbon steels [J]. Mater Trans A,2007,38A:1152.
    [73] Cho JY, Suh DW. Orientation distribution of proeutectoid ferrite nucleated at prior austenitegrain boundaries in vanadium-added steel [J]. ISIJ International, V2002,42(11):1321-1323.
    [74] Suh DW, Kang JH, Oh KH, Lee HC. Evaluation of the deviation angle of ferrite from theKudjumov–Sachs relationship in a low carbon steel by EBSD [J]. Scripta Materialia,2002,46:375-378.
    [75] Guo H, Gao X-X, Bai Y, Enomoto M, Yang S-W, He X-L, Variant selection of bainite on thesurface of allotriomorphic ferrite in a low carbon steel [J], Materials Characterization,2012,67:34-40.
    [76] Novillo E, Hernández D, Gutiérrez I, López B Analysis of ferrite grain growth mechanismsduring transformation in a niobium alloyed steel using EBSD [J]. Materials Science andEngineering A,2004,385:83-90.
    [77] King AD, Bell T. Morphology and crystallography of Widmanst tten proeutecoid ferrite [J].Metal Science.1974,8:253-260.
    [78] Nagano T, Enomoto M. Calculation of the interfacial Energies between αand γ Iron andEquilibrium Particle shape [J]. Metallurgical and Materials Transaction A.2006,37A:929-937.
    [79] Cui GB, Guo H, Yang SW, He XL. Influence of interface between grain boundary ferriteand prior austenite on bainite transformation in a low carbon steel [J]. Acta Metall Sin2009,45:680-686.
    [80] Hillert M. Diffusion in growth of bainite [M]. Metall Mater Trans A1994,25A:1957-1966.
    [81] Enomoto M, Phase Transformation in Metals [M], Uchida Rokakuho Publishing Co. Ltd,2000(in Japanese).
    [82] Enomoto M, Nojiri N, Sato Y. Effects of vanadium and niobium on the nucleation kineticsof proeutectoid ferrite at austenite grain boundary in Fe-c and Fe-C-Mn alloys [J]. MaterTrans JIM,1994,35:859.
    [83] Zhang GH, Takeuchi T, Enomoto M, Adachi, Y. Influence of crysrallography on ferritenucleation at austenite grain-boundary faces,edges, and corners in a Co-Fe alloy. Metall.Mater. Trans. A,2011,42A:1597-1608.
    [84]King AD, Bell T. Crystallography of grain boundary proeutectoid ferrite, Metall. Trans. A,1975,6A:1419-1429.
    [85]Smith CS. Microstructure and geometry. Trans Am Soc Metals.1953,45:533-75.
    [86] Cahn JW. The kinetics of grain boundary nucleated reactions [J]. Acta Metallurgica,1956,4:449-459.
    [87] Enomoto M, Kobayashi Y. Grain boundary nucleation of proeutectoid ferrite in an Fe-C-Nialloy [J]. ISIJ International,1999,39(6):600-606.
    [88]Babu SS, David SA. Inclusion formation and microstructure evolution in low alloy steelwelds [J]. ISIJ Int,2002;42:1344-1353.
    [89]Enomoto M. Int Conf on Thermomechanical Processing of Steels&Other Materials [M], edby Chandra T, Sakai, Warrendale, PA: TMS,1997:427.
    [90]Lee JL. Evaluation of the nucleation potential of intragranular acicular ferrite in steelweldments [J]. Acta Metall Mater,1994;42:3291-3298.
    [91]Lee JL, Pan YT. The formation of intragranular acicular ferrite in simulated heat affectedzone [J]. ISIJ Int,1995,35:1027-1033.
    [92]Yang JR, Huang CY, Huang CF. Acicular Ferrite Transformation in Deformed Austenite ofan Alloy-Steel Weld Metal [J]. J Mater Sci,1995,30:5036-5041.
    [93]Tomita Y, Saito N, Tsuzui T, Tokunaga Y, Okamoto K. Improvement in HAZ toughness ofsteel by TiN-MnS addition [J]. ISIJ Int,1994;34:829-835.
    [94]宋余九,金属的晶界与强度[M],西安交通大学出版社,1988年,2月.
    [95] Furahara T, Shinyoshi T, Miyamoto G, Yamaguchi J, Sugita N, Kimura N, Takemura N,Maki T. Multiphase crystallography in the nucleation of intragranular ferrite on MnS-V(C,N) complex precipitate in austenite [J]. ISIJ International,2003,43(12):2028-2037.
    [96] Miyamoto G, Shinyoshi T, Yamaguchi J, Furuhara T, Maki T, Uemori R. Crystallographyof intragranular ferrite formed on (MnS and V(C, N)) complex precipitate in austenite [J].Scripta Materialia,2003,48:371-377.
    [97] Pan T, Yang Z-G, Zhang C, Bai B-Z, Fang H-S. Kinetics and mechanisms of intragranularferrite nucleation on non-metallic inclusions in low carbon steels [J]. Materials Science andEngineering A438–440(2006)1128-1132.
    [98]Ishikawa F, Takahashi T, Ochi T. Intragranular ferrite nucleation in medium-carbonvanadium steels [J]. Metall Mater Trans A.1994,25A:929-936.
    [99]Yang ZR. Development of microstructure in high-strength weld deposits [D]. University ofCambridge,1987.
    [100] Gourgues AF, Flower HM, Lindley TC. Electron backscattering diffraction study ofacicular ferrite, bainite, and martensite steel microstructures [J]. Materials Science andTechnology,2000,16:26-40.
    [101] Enomoto M, Wu KM, Inagawa Y, Murakami T, Nanba S. Three-dimensional observationof ferrite plate in low carbon steel weld [J]. ISIJ International,2005,45(5):756-762.
    [102] Park JY, Park JK, Choo WY. Effect of Ti addition on the potency of MnS for ferritenucleation in C-Mn-V steels [J]. ISIJ International,2000,40(12):1253-1259.
    [103]Barbaro FJ, Krauklis P, Easterling KE. Formation of acicular ferrite at oxide particles insteels [J], Mater Sci Tech,1989,5:1057-1068.
    [104]Zhang Z, Farrar R A. Role of non-metallic inclusions in formation of acicular ferrite in lowalloy weld metals [J], Mater Sci Tech.1996,12:237-260.
    [105] Lee TK, Kim HJ, Kang BY, Hwang SK. Effect of inclusion size on the nucleation ofacicular ferrite in welds [J]. ISIJ International,2000,40:1260-1268.
    [106]Yang JR, Badeshia HKDH. Advances in Welding Science and Technology ed [C]. David,S.A., ASM, Metals Park, Ohio, USA.1986:187.
    [107]Badeshia HKDH. Modeling of the Microstructure in the Fusion Zone of Steel WeldDeposits, Proc.2nd int. Conf. on Trends in Welding Research, Gatelingburg, TN, May,Keynote address,1989:189-198.
    [108]Kluken A Q, Grong O, Rorvik G. Solidification microstructures and phase transformationsin Al-Ti-Si-Mn deoxidized steel weld metals Metall. Mater. Trans. A.1990,21A:2047-2058.
    [109] Townsend RD, Kirkaldy JS. Widmanst tten ferrite formation in Fe-C alloy [J]. Transactionof the ASM.1968,61:605-619.
    [110] Phelan D, Stanford N, Dippenaar R. In situ observations of Widmanst¨atten ferriteformation in a low-carbon steel [J]. Materials Science and Engineering A.2005,407:127-134.
    [111] Hillert M. Diffusion and interface control of reactions in alloys [M], Metall Trans1975;6A:5-19.
    [112] Simonen EP, Aaronson HI, Trivedi R. Lenthening kinetics of ferrite and bainite plate [M].Metall Trans1973,4:1239-1245.
    [113] Trivedi R, Pound CM. Effect of concentration-dependent diffusion coefficient on themigration of interphase boundaries [J]. J Appl Phys1967,38:3569-3576.
    [114] Enomoto M. Phase Transformation in Metals (in Japanese)[M]. Uchida RokakuhoPublishing Co. Ltd:2000.
    [115] Kaufman L, Radcliffe SV, Cohen M. Thermodynamics of the bainite reaction.Decomposition of austenite by diffusional process [M],1962:313-52.
    [116] gren, J. A revised expression for the diffusivity of carbon in binary Fe-C austenite [J].Scripta Metall.1986,20:1507-1510.
    [117] Wells C, Batz W, Mehl, RF. Diffusion coefficient of carbon in austenite [J]. Trans. AIME.1950,188:553-560.
    [118] Aaronson HI. The mechanism of phase transformation in metals [M], Institute of MetalsMonograph and Reports Series No.18, London, Institute of Metals.1956;47-56.
    [119] Aaronson HI, Wells C. Sympathetic nucleation of ferrite [J], Trans AIME1956,206:1216-1223.
    [120] Aaronson HI, Spanos G, Masumura RA, Vardiman RG, Moon DW, Menon ESK.Sympathetic nucleation: an overview [J]. Mater Sci Eng B1995,32:107-123.
    [121] Enomoto M. Computer simulation of morphological change of grain boundary precipitatesgrowing by the ledge mechanism [J]. Metall Trans A.1991,22:1235-1245.
    [122] Spanos G, Masumura, RA, Vandermeer RA, Enomoto M. The evolution and growthkinetics of precipitate plates growing by the ledge mechanism [J]. Acta Metall Mater.1994,42:4165-4176.
    [123] Spanos G, Hall MG. The formation mechanism(s), morphology, crystallography of ferritesideplates and crystallography of ferrite sideplates [J]. Metall Mater Trans A1996,27A:1519-1534.
    [124] Phelan D, Dippenaar R. Widmanst tten ferrite plate formation in low-carbon steels [J].Metallurgical and materials transaction A.2004,35A:3701-3706.
    [125] Hawkins MJ, Barford J. Experimental kinetics of nainite formation [J], JISI,1972,210:97-105.
    [126] Eichen E, Aaronson HI, Pound GM, Trivedi RK. Thermionic emission microscope study ofthe formation of ferrite plates [J]. Acta Metall1964,15:1298-1301.
    [127] Yamanaka A, Takaki T, Tomita Y. Phase-Field simulation of austenite to ferritetransformation and widmanst tten ferrite formation in Fe-C alloy [J]. Mate Trans.2006,47:2725-2731.
    [128] Onink M, Tichelaar FD, Brakman CM, Mittemeijer EJ, S. van der Zwaag. An in situ hotstage transmission electron microscopy study of the decomposition of Fe-C austenite [J]. JMater Sci.1995,30(24):6223-6234.
    [129] Krielaart GP, Sietsma J, Van der Zwaag S. Ferrite formation in Fe-C alloys during austenitedecomposition under non-equlibrium interface conditions [J], Mate Sci Eng A.1997,237A:216-223.
    [130]Tomita Y, Saito N, Tsuzui T, Tokunaga Y, Okamoto K. Improvement in HAZ toughness ofsteel by TiN-MnS addition [J]. ISIJ Int,1994;34:829-835.
    [131]Shim JH, Cho YW, Chung SH, Shim JD, Lee DN. Nucleation of intragranular ferrite atTi2O3particle in low carbon steel [J]. Acta Mater,1999;47:2751-2760.
    [132]杨志刚.晶内铁素体在夹杂物上形核机制的讨论[J].《金属热处理》,2005年,第30卷,第1期,20-23.
    [133]Howell PR, Honeycomb RWK, Crystallographic aspects of diffusional phasetransformation in metals and alloys: In Aaronson H I, Laughlin D E, Sekerka R F, WaymanC M(eds.) Proc.Int.Conf.Solid-solid Phase Transformation.TMS-AIME:399-425.
    [134]Ishikawa F, Takahashi T, Ochi T. Intragranular ferrite nucleation in medium-carbonvanadium steels [J]. Metall Mater Trans A.1994,25:926-936.
    [135]Zhang SH, Hattori N, Enomoto M, Tarui, T. Ferrite nucleation at ceramic/austeniteinterfaces [J]. ISIJ Int.1996;36:1301-1309.
    [136]Krauklis P, Barbaro FJ, Easterling KE. In: Proc Int Conf on Martensitic Transformations,Monterey: Monterey Institute for Advanced Studies [M],1993:439.
    [137] Morikage Y, Oi K, Kawabata F, Amano K. Effect of TiN Size on Ferrite Nucleation onTiN in Low-C Steel [J], Tetsu-to-Hagane.1998,84:40-45.
    [138] Park JY, Park JK, Choo WY. Effect of Ti addition on the potency of MnS for ferritenucleation in C-Mn-V steels [J]. ISIJ Int.2000,40(12):1253-1259.
    [139] Shim J, Oh YJ, Suh JY, Cho YW, Shim JD, Byun JS, Lee DN. Ferrite nucleation potencyof non-metallic inclusions in medium carbon steels [J]. Acta Mater.2001,49:2115-2122.
    [140] Jin HH, Shim JH, Cho YW, Lee HC. Formation of intragranular acicular ferrite grains in aTi-containing low carbon steel [J]. ISIJ Int.2003,43(7):1111-1113.
    [141] Ishikawa F, Takahashi T.The Formation of intragranular ferrite plates in medium-carbonsteels for hot-forging and its effect on the toughness [J]. ISIJ Int.,1999,35:1128-1133.
    [142] Guo Z, Kimura N, Tagashira S, Furuhara T, Maki T. Kinetics and crystallography ofintragranular pearlite transformation nucleated at (MnS+VC) complex precipitates inhypereutectoid Fe-Mn-C alloy [J]. ISIJ Int.2002,42(9):1033-1041.
    [143] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J, WIEN2k, An Augmented PlaneWave+Local Orbitals Program for Calculating Crystal Properties (Technical University atWien),2001.
    [144] Perdew JP, Burke K, Ernzerhof M, Generalized Gradient Approximation Made Simple [J].Phys. Rev. Lett.1996,77:3865-3868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700