骨调素和钙调素基因对京海黄鸡重要经济性状遗传效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验用PCR-SSCP方法检测骨调素(Osteopontin, OPN)和钙调素(Calmodulin, CAM)基因的SNP。系统研究OPN和CAM基因SNP,并与京海黄鸡的生长性状、繁殖性状、300日龄蛋壳质量性状、屠宰性状和肉品质性状进行联合分析,旨在探索京海黄鸡重要经济性状早期分子标记辅助选择有效的遗传标记。研究结果如下:
     1.用PCR-SSCP扩增了OPN基因的全序列,在京海黄鸡的OPN基因上发现了20个SNP:A306T,A459C,G1367T,C1389G,G1399A,A1443G,T1463C,A1489G,G2219C, C2225T,G2257C,G2283C,A2288G,G3010A,G3159A,G3770A,C3830T,A3887G,A3918G和3217T的缺失导致的多态。
     2.在京海黄鸡群体里发现CAM的5个SNP:G56A , A57G和C96T(GenBank NO: M31605);T479C和G480A(GenBank NO: L00101)。
     3在OPN基因OP2座位上,h1h1型个体蛋形指数最小,显著小于h1h2型个体(P<0.05)。在公鸡群体中,h2h2基因型个体半净膛率和全净膛率显著高于h1h1基因型的个体(P<0.05)。h1h2型的个体胸肌率显著大于h2h2型的个体(P<0.05)。公鸡中h1h1型对腿肌系水力产生显著大的负向遗传贡献率,为-15.41%;h1h2型对腿肌系氺力产生显著大正向遗传贡献率,为11.82%。母鸡中h1h2型对腿肌剪切力产生显著大的正向遗传贡献率,为9.41%;h2h2型对腿肌剪切力产生显著大的负向遗传贡献率,为-22.78%。该基因座对京海黄鸡公鸡的半净膛率、全净膛率、胸肌率和腿肌系水力的MEI都大于10%;对母鸡的腿肌剪切力的MEI为12.46%。
     4. OPN基因OP5座位对母鸡的屠宰性状如:半净膛率、全净膛率、胸肌重和腿肌重有显著影响。对母鸡胸肌剪切力效应显著:GG和GT型对母鸡的胸肌剪切力产生显著大的遗传贡献率,分别为25.97%和-15.06%。OP5座位上,母鸡半净膛率、全净膛率、胸肌重、腿肌重和胸肌剪切力的MEI分别为13.25,15.54,13.91,18.42和16.03。
     5. OPN基因OP6座位对开产日龄和300日龄蛋数有显著影响:h2h2基因型对300日龄蛋数产生极显著大的负向遗传贡献率,为-9.26%。OP6座位对公母鸡的胸肌重有显著效应,MEI超过11。
     6. OPN基因OP9座位h2h5型对蛋壳强度有显著大的负向遗传贡献率,为-8.83%。OP9座位对母鸡的腹脂率、胸肌率、胸肌剪切力、胸肌系氺率和腿肌系水率有显著影响,相应的MEI分别为18.10,19.28,16.37,20.410和29.39。
     7. OPN基因OP12座位对京海黄鸡的生长性状有显著影响:h1h6是增加体重的劣势基因。OP12座位对公母鸡的活重和腿肌重有显著效应,MEI均超过11。在母鸡群体中,h3h3型个体的腹脂率最低,遗传贡献率为-19.72%。
     8. OPN基因OP15基因座对京海黄鸡的生长性状有显著影响:h5h5型是增加体重的劣势基因,h1h2型是增加体重的优势基因。但是h1h2型是增加产蛋数的劣势基因。h1h1型对壳钙重和壳钙百分率产生显著大的负向遗传贡献率,分别为-14.61%和-13.67%。OP15座位对母鸡的腹脂率有显著影响:h2h4型个体值显著高于h2h2型的个体,OP15基因座对母鸡腹脂率的MEI为12.44。
     9. CAM基因CA2座位对300日龄蛋数和66周龄蛋数有显著效应:h2h2型是增加产蛋数的劣势基因。H3h3型个体的蛋壳强度显著低于其他基因型,h3h3型对蛋壳强度产生极显著大的负向遗传贡献率,为-24.69%。CA2座位h1h3型对胸肌剪切力产生显著大的遗传贡献率,在公母鸡群体中的遗传贡献率分别为19.97和45.05;CA2座位对公母鸡胸肌剪切力的MEI分别为:21.35和33.24。
     10. CAM基因CA5座位不同基因型对的母鸡腹脂重有显著大的遗传贡献率,AA型对母鸡群体产生显著大的正向遗传贡献率,为32.5%; BB型对母鸡群体产生显著大的负向遗传贡献率,为-15.03%。
     11. OPN基因和CAM基因对京海黄鸡的0周龄体重、8周龄体重、12周龄体重、蛋壳重、蛋壳强度、蛋形指数、蛋壳百分率、成年体重、300日龄蛋数和66周龄蛋数的互作效应显著(P<0.05)或极显著(P<0.01)。
PCR-SSCP method was used to study the SNP of OPN and CAM genes that might be correlated with reproduction traits and egg quality traits in Jinghai Yellow chicken, and the systematic investigation was conducted on Jinghai Yellow chicken OPN and CAM genes to evaluate the association of molecular markers with growth traits, reproduction traits, egg shell quality traits, carcass traits and meat quality traits.
     The main results are listed as follows:
     1. The full length DNA of OPN gene was obtained using the techniques of PCR-SSCP. 20 OPN SNPs were found in Jinghai Yelow chicken:A306T,A459C,G1367T,C1389G,G1399A,A1443G,T1463C,A1489G,G2219C, C2225T,G2257C,G2283C,A2288G , G3010A , G3159A , G3770A , C3830T , A3887G , A3918G, 3217T deletion/insertion。
     2. Five CAM SNPs were found in Jinghai Yellow chicken: G56A , A57G and C96T(GenBank NO: M31605);T479C and G480A(GenBank NO: L00101)。
     3. At the OP2 locus of OPN gene, birds with h1h1 genotype has the lowest value in egg shell index compared with h1h2 genotype (P<0.05). Birds with h2h2 genotype have significant higher value in semi-eviscerated weight ratio and eviscerated weight ratio than with h1h1 genotype in male birds, and birds with h1h2 has higher value in breast meat ratio than birds with h2h2 genotype (P<0.05). The contribute percentage (CP) of water holding capacity (WHC) in thigh meat with h1h1 genotype was -15.41%, and with h1h2 genotype was 11.82% in males. The contribute percentage of shear force in thigh meat with h1h2 genotype was 9.41%, and the CP with h2h2 genotype was -22.78% in females. The main effete index (MEI) of semi-eviscerated weight ratio, eviscerated weight ratio, breast meat ratio and WHC in thigh meat was all over 10% in males, and the MEI of shear force in thigh meat was 12.46.
     4. Significant differences were found between genotypes in OP5 locus and semi-eviscerated weight ratio, eviscerated weight ratio, breast meat weight and thigh meat weight in females. CP of GG and GT genotype were high of shear force in breast meat, and the values were 25.97% and -15.06% in females. The (MEI) of semi-eviscerated weight ratio, eviscerated weight ratio, breast meat ratio, thigh meat weight and shear force in thigh meat were 13.25%, 15.54, 13.91, 18.42 and 16.03 in females.
     5. Significant differences were found between genotypes in OP6 locus and age at first egg and egg numbers at 300 days. CP of h2h2 genotype was -9.26% of egg numbers at 300 day birds. The MEI of breast meat weight was over 11 in both sexes.
     6. At the OP2 locus of OPN gene, CP of h2h5 genotype was -8.83% of egg shell strength. The MEI of abdominal fat ratio, breast meat ratio, shear force in breast, WHC in breast meat and thigh meat were 18.10, 9.28, 16.37, 20.41 and 29.39 in females.
     7. Significant differences were found between genotypes in OP12 locus and growth traits: h1h6 genotype was the latest predominant genotype that increased body weight. The MEI of live weigh, and thigh meat weight were over 11% in both sexes. For abdominal fat ratio, CP of h3h3 genotype was -19.72% in females.
     8. Significant differences were found between genotypes in OP15 locus and growth traits: h5h5 genotype was the one lest predominant genotype that increased body weight, h1h2 genotype was the predominant genotype that increased body weight, but h1h2 genotype was the one lest predominant genotype that increased egg numbers. For calcium weight in egg shell and calcium ratio in egg shell, CP of h2h4 genotype was -14.61% and -13.67%. Significant differences were found between genotypes in OP15 locus and abdominal fat ratio: birds with h2h2 genotype have significant high value than with h2h2 genotype, and MEI of abdominal fat ratio was 12.44 in females.
     9. At the CA2 locus of CAM gene, significant differences were found between genotypes in and egg numbers at 300 days and egg numbers at 66 weeks: h2h2 genotype was the latest predominant genotype that increased egg numbers. Egg strength of h3h3 genotype has the lowest value than with other genotypes, and the CP was -24.69%. The MEI of live weigh, and thigh meat weight were over in both sexes. For abdominal fat ratio, CP of h3h3 genotype was -19.72% in females. CP of shear force in breast meat of h1h3 genotype was -19.97% and 45.05% in males and females respectively, and MEI of shear force in breast meat was 21.35 and 33.24 in males and females.
     10. At the CA5 locus of CAM gene, CP of abdominal fat ratio of AA and BB genotype was 32.50% and -15.03% respectively in females.
     11. Significant or very significant interaction effect of OPN and CAM were found on birth weight, body weight at 8 week, body weight at 12 week, egg shell weight, egg shell strength, egg shell index, egg shell percentage, grown up weight, eggs at 300 day and eggs at 66 week in Jinghai Yellow chicken
引文
[1] Allan M F, R M Thallman, R A Cushman, et al. Association of a single nucleotide polymorphism in SPP1 with growth traits and twinning in a cattle population selected for twinning rate[J]. J. Anim. Sci., 2007, 85:341-347
    [2] Al-Shami R, S?rensen ES, Ek-Rylander B, et al. Phosphorylated osteopontin promotes migration of human choriocarcinoma cells via a p70 S6 kinase-dependent pathway [J]. J Cell Biochem, 2005, 94: 1218-1233.
    [3] Amit Ron, Ragini Raj Singh, Nick Fishelson, et al. Site localization of membrane-bound proteins on whole cell level using atomic force microscopy [J]. Biophysical Chemistry, 2008, 132:127-138
    [4] Apparao K B, Mur ray M J, Fritz M A , et al . Osteopontin and its receptor alphavbeta (3) integrin are coexpressed in the human endomet rium during the menstrualcycle but regulated differentially [J]. J Clin Endocrinol Metabm, 2001, 86 (11): 4991-5000.
    [5] Archibald A L, and Imlah P. The halothane sensitivity locus and its linkage relationships [J]. Animal blood groups and biochemical genetics, 1985, 16: 253-263
    [6] Bain M M. Recent advances in the assessment of eggshell quality and their future application [J]. World′s Poultry Science Journal, 2005, 161 (6) : 268-277.
    [7] Barker J S F.A global protocol for determining genetic distances among domestic livestock breeds[C]. Proceedings 5th world congress. Genetic Applied Livestock production, 1994, 21: 501-508
    [8] Benchang Guo, Joseph R. Tumang, Thomas L. Rothstein. B cell receptor crosstalk: B cells express osteopontin through the combined action of the alternate and classical BCR signaling pathways [J]. Molecular Immunology, 2009, 46: 587-591
    [9] Bodine P V, Tupper J T. Calmodulin antagonists decrease the binding of epidermal growth factor to transformed, but not to normal, human fibroblasts [J]. Biochem J,1984, 218: 629 -632.
    [10] Botstein D, White R L, Skolnick M, et al. Contruction of a genetic linkage map in man using restriction fragment length polymorphism [J].Am J Hun Genet, 1980, 32:314-331
    [11] Cancel A M, Chapman D A, Killian G J. Osteopontin is the 55- kilodalton fertility-associated protein in Holstein bull seminal plasma [J]. Biol Reprod, 1997, 57: 1293-301.
    [12] Cemal I and Karaka O. Power of some statistical tests for the detection of major genes in quantitative traits I: Tests of variance homogeneity [C]. Hayvansal Oretim, 2005, 46(2): 4046
    [13] Chien Y C, Hincke M T, Vali H, et al., Ultrastructural matrix-mineral relationships in avian eggshell, and effects of osteopontin on calcite growth in vitro[J], J. Structural Biology, 2008, 163:84-99
    [14] Chih-Yen Chien, Chih-Ying Su, Hui-Ching Chuang, et al. Comprehensive study on the prognostic role of osteopontin expression in oral squamous cell carcinoma [J]. Oral Oncology, 2009, doi:10.1016/j.oraloncology.2008.12.006
    [15] Christensen B , Nielsen MS , Haselmann KF ,et al . Posttranslationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications [J]. Biochem J, 2005, 4 (5):1-28.
    [16] Claudio E. Pedraza, Liliya G. Nikolcheva, Mari T. Kaartinen,et al. Osteopontin functions as an opsonin and facilitates phagocytosis by macrophages of hydroxyapatite-coated microspheres: Implications for bone wound healing [J]. Bone, 2008, 43:708-716
    [17] Cockett N E, Jackson S P, Green R D, et al. Identification of genetic markers for and the location of a gene (callipyge) causing muscle hypertrophy in sheep [C]. Proc. Texas Tech Univ Agric Rep, 1993, NO T-5-327: 4-6
    [18] Darling M R, Gauthier M, Jackson-Boeters L, et al. Chambers AF, Tuck AB. Osteopontin expression in salivary gland tumours [J]. Oral Oncology, 2006, 42:363-369.
    [19] Darling M R, M. Gauthier, L. Jackson-Boeters,et al. Osteopontin expression in salivary gland tumours [J]. Oral Oncology, 2006, 42: 63-369
    [20] Davis, G H. Shackell G H, Kyle S E, et al. High prolificacy in screened Romney family line [C]. Proceedings of Australian Association for animal breeding and genetics, 1988, 7: 406-409
    [21] Denhardt DT, Mistretta D, Chambers AF, et a1.Transcriptional regulation of osteopontin and the metastatic phenotype:evidence for a Ras-activated enhancer in the human 0PN promoter[J].Clin-Exp Metastasis,2003,20(1):77-84.
    [22] Denhardt D T,Noda M,O Regan A W,et a1. Osteopontin as a means to cope with environmental insults:Regulation of in-flammation,tissue remodeling,and cell survival[J].J Clin In-vest, 2001, 107:1055-1061.
    [23] Ellegren H.Variable sine 3'Poly (A) sequence, an abundant class of genetic marker in the pig genome [J]. Mammalian Genome, 1993, (4): 429-434
    [24] FAO. Markers assisted selection in sheep and goals.
    [25] Feng X P, Kuhnlein U, Aggrey S E, et al. Trait association of genetic markers in the growth hormone and the growth hormone receptor gene in a White Leghorn strain [J]. Poultry science, 1997, 76: 1770-1775
    [26] Fernandez M S, Escobar C, I Lavelin, et al., Localization of osteopotin in oviduct tissue and eggshell during different stages of the avain egg laying cycle [J]. J. Structural Biology, 2003,143:171-180
    [27] Fotou N, Karatzas C N, Kuhnlein U, et al. Identification of growth hormone DNA polymorphisms which respond to divergent selection for abdominal fat content in chickens [J]. Theor Appl Genett, 1993, 85: 931-936
    [28] Garlow J E, Ka H, Johnson G A, et al. Analysis of osteopontin at thematernal-Plaeental interface in Pigs [J].Biology of reproduction, 2002, 66(3): 718-725.
    [29] Gehrig L M B, Delbaere L T J, Hickie R A. Preliminary X-ray data for the calmodulin/trifluoperazine complex. J Mol Biol, 1984,177 (3) : 559-561
    [30] Gifford J L, Walsh M P, Vogel H J. Structures and metalion-binding properties of the Ca2 + -binding helix-loop-helix EF-hand motifs [J]. Biochem, 2007, 405 (2):199.
    [31] Gimelfarb A and Lande R.Simulation of marker assisted selection for non-additive traits [J].Genet Res, 1994, 64(2):127-136.
    [32] Goncalves R F, D.A. Chapmana, R.P. Bertolla, et al. Pre-treatment of cattle semen or oocytes with purified milk osteopontin affects in vitro fertilization and embryo development [J]. Animal Reproduction Science, 2008, 108: 375-383
    [33] Groenen M A M, Crooijmans R P M A. Structural genomics: in- tegrating linkage, physical and sequence maps [J]. Poultry Breeding and Biotechnology, 2003, 12(2):497-536.
    [34] Hanset R and Michaux C. On the genetic determinism of muscular hypertrophy in the Belgain White and Blue cattle breed I-Experimental data, Genetics selection evolution, 1985a, 17: 359-368
    [35] Hanset R and Michaux C. On the genetic determinism of muscular hypertrophy in the Belgain White and Blue cattle breed II-Population data [J]. Genetics selection evolution, 1985b, 17: 369-386
    [36] Hedrick P W. Population Biology [M]. Boston: Jones and Bartlett Publishers,1984
    [37] Hunter G K, Kyle C, Goldberg H A. Modulation of crystal formation by bone phosphoprotein: structural specificity of the steopontin mediated inhibition of hydroxyapatite formation [J]. Biochem J, 1994, 300: 723-728.
    [38] Illera M J, Cullinan E, Gui Y, et al . Blockade of t he avb3integrin adversely affects implantation in t he mouse [J]. Biol Reprod, 2000, 62 (4):1285-1290.
    [39] Jae Hee Seo, Yun-Hye Jin, Hyung Min Jeong, et al. Calmodulin-dependent kinaseII regulates Dlx5 during osteoblast differentiation [J]. Biochemical and Biophysical Research Communications, 2009, 384: 100-104
    [40] Jane E, Hakhyun K, Greg A, et al . Analysis of osteopontin at the mater nal-placental interface in pigs [J]. Biol Reprod, 2002, 66 (2):718-725.
    [41] Jiang R S, Xu G Y, Zhang X Q, et al. Association of polymorphisms for prolactin and prolactin receptor genes with broody traits in chickens [J]. Poultry science, 2005, 84:839-845
    [42] Johson G A, Burghardt R C, Joyce M M, et al. Osteopontin is synthesized by uterine lands and a 45-KD cleavage fragment is localized at the uterine2placental interface throughout ovine pregnancy [J]. Biol Reprod, 2003, 69 (1):92-98.
    [43] Jono S, Peinado C, Giachelli CM. Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification [J]. J Biol Chem, 2000, 275(4): 20197-20203.
    [44] Johnson G A, Bazer FW, Jaeger L A, et al. Muc-1, integrin, and osteopontin expression during the implantation cascade in sheep [J]. Biol Reprod., 2001, 65: 820-828.
    [45] Koyu Ito, Shigeyuki Kon, Yosuke Nakayama, et al. The differential amino acid requirement within osteopontin inα4 andα9 integrin-mediated cell binding and migration [J]. Matrix Biology, 2009, 28: 11-19
    [46] Hema Rangaswami, Anuradha Bulbule and Gopal C. Kundu. Osteopontin: role in cell signaling and cancer progression [J]. Trends in cell biology, 2006, 16(2):79-77
    [47] Huang W, Carlsen B, Rudkin G, et al. Osteopontin is a negative regulator of proliferation and differentiation in MC3T3-E1 preosteoblastic cells [J]. Bone, 2004, 34 (5): 799-808.
    [48] Kathryn X. Wang , David T. Denhardt. Osteopontin: Role in immune regulation and stress responses [J]. Cytokine & Growth Factor Reviews, 2008, 19: 333-345
    [49] Keykhosravani M, Doherty-Kirby A, Zhang C, et al. Comprehensive identificationof post-translational modifications of rat bone osteopontin by mass spectrometry [J]. Biochemistry, 2005, 44:6990-7003.
    [50] Killian G J, Chapman D A, Rogowski L A. Fertility-associated proteins in Holstein bull seminal plasma [J]. Biol Reprod, 1993, 49: 1202-1207.
    [51] Kitipong Uaesoontrachoona, Hyun-Jin Yooa, Elizabeth M. Tudora, et al. Osteopontin and skeletal muscle myoblasts: Association with muscle regeneration and regulation of myoblast function in vitro [J]. The International Journal of Biochemistry & Cell Biology, 2008, 40: 2303-2314
    [52] Koyu Ito, Shigeyuki Kon, Yosuke Nakayama, et al. The differential amino acid requirement within osteopontin inα4 andα9 integrin-mediated cell binding and migration [J]. Matrix Biology, 2009, 28: 11-19
    [53] Lavelin L,Meiri N,Pines M. New insight in egg shell formation [J]. Poult Sci. 2000,79(7): 1014-1017
    [54] Lavelin L,Yarden N,Ben-Bassat S,et al. Regulation of osteopontin gene expression during egg shell formation in the laying hen by mechanical strain [J].Matrix Biol, 1998, 17: 615-623.
    [55] Li H, N Deeb, H Zhou, et al. Chicken quantitative trait loci for groeth and body composition associated with transforming growth factor-B genes [J]. Poultry scienc, 2003, 82: 347-356
    [56] Lin Li, Dong-Qing Wei, Jing-Fang Wang,et al. Computational studies of the binding mechanism of calmodulin with chrysin [J]. Biochemical and Biophysical Research Communications, 2007, 358:1102–1107
    [57] Li, S., Xie, L., Meng, Q., Zhang, R.. Significance of the extra C-terminal tail of CaLP, a novel calmodulin-like protein involved in oyster calciummetabolism. Comp. Biochem. Physiol, 2006,B 144:463–471.
    [58] Luis A J, Priya S C, Harry W J. Apocalmodulin [J]. Physiologic Revi, 1999, 79 (3): 661-682.
    [59] Marcus C. Schaub,Claus W. Heizmann. Calcium, troponin, calmodulin, S100 proteins: From myocardial basics to new therapeutic strategies [J]. Biochemical and Biophysical Research Communications, 2008, 369: 247-264
    [60] Marom R, I. Shur, R. Solomon, et al. Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells [J]. J. Cell. Physiol, 2005, 202: 41-48.
    [61] Mathias E and Mundy P. Herd movements. Ober Ramstadt, Germany. League for pastoral peoples and endogenous livestock development [C]. 2005
    [62] Matin-Neito J, Villalobo A. The human epidermal growth factor receptor contains a juxta membrane calmodulin-binding site [J]. Biochemistry, 1998, 37: 227-236.
    [63] Merat P. Genes majeurs chez la poule (Gallus gallus): autres genes que ceux affectant la taille [J]. Productions animals, 1990, 3(5): 355-368
    [64] Monaco E, B. Gasparrini, L. Boccia, et al. Effect of osteopontin (OPN) on in vitro embryo development in cattle [J]. Theriogenology, 2009, 71:450-457
    [65] Mototani H,Mabuchi A,Saito S,et a1.A functional single nucleotide polymorphism in the core promoter region of CAINII is associated with hip osteoarthritis in Japanese[J ].Hum Mo1 Genet,2005;14(8):1009-1017
    [66] Moura A A, Chapman D A, Killian G J. Proteins of the accessory sex glands associated with the oocyte-penetrating capacity of cauda epididymal sperm from Holstein bulls of documented fertility [J]. Mol Reprod Dev, 2007, 74: 214-222.
    [67] Nagaraja S C, S E Aggrey, J Yao, et al. Trait association of a genetic marker near the IGF-I gene in egg-laying chickens [J]. J. Hered, 2000, 91: 150-156
    [68] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals [J]. Genetics, 1978, 89:483-490
    [69] Nei M, Takezaki N. Estimation of genetic distance and phylogentic trees from DNA analysis[C].Proc. 5th World Congr. Genet. Appl, Livest. Prod, 1994, 21:404-411
    [70] Ishibashi J, R L Perry, A Asakura, et al. MyoD induces myogenic differentiationthrough cooperation of its NH2-and COOH-terminal regions. 2005, J. Cell Biol., 171:471-482.
    [71] Q Takahashi K, Takahashi F, Tanabe KK, et al . The carboxyl terminal fragment of osteopontin suppresses arginine-glycine-asparatic acid-dependent cell adhesion [J]. Biochem Mol Biol Int, 1998, 46 (6):1081.
    [72] Pines M,Knopov V,Bar A. Involvement of osteopontin in eggshell formation in the laying chicken [J]. Matrix Biol, 1996,14(9): 765-771.
    [73] Piper L R and Bindon N M. Genetic segregation for fecundity in Borroda Merino sheep [C]. Proceeding of the Wold congress on sheep and beef cattle breeding. 1982, Volume 1, pp, 395-400
    [74] Ramaiah, S.K., Rittling, S. Role of osteopontin in regulating hepatic inflammatory responses and toxic liver injury [J]. Expert Opin. Drug Metab. Toxicol, 2007, 3:519-526.
    [75] Ri Cui, Fumiyuki Takahashi, Rina Ohashi, et al. Osteopontin is involved in the formation of malignant pleural effusion in lung cancer [J]. Lung Cancer, 2009, 63: 368-374
    [76] Roland D A S. Egg shell problems estimates of incidence and economic impact [J]. Poult. Sci. 1988, 67: 1801-1803.
    [77] Rohrer G A, Alexander L J, Keele J W, et al. A microsatellite linkage map of the porcine genome [J]. Genetics, 1994, 136:231-245
    [78] Rothschild M, Jacobson C, Vaske D, et al. The estrogen receptor locus is associated with a major gene influencing litter size in pigs [C]. Proceeding of the national academy of science. USA, 1996, 93: 201-205
    [79] Rummel T, Valle Zarate A and Gootwine E, The worldwide gene flow of the improved Awassi and Assaf sheep breeds from Israel[C]. Gene flow in animal genetic resources: a study on status, impact and trends, 2006, 305-358
    [80] Smith,E J,Shi L,Durmmond P,et al. Development and characterization of ESTfor the turkey genome and comparative sequence analysis with other birds [J]. Animal Geneti,2000, 31: 62-67.
    [81] Sodek J, Chen J, Nagata T, et al . Regulation of osteopnontin expression in osteoblasts [J]. Ann N YAcad Sci, 1995, 21,760 :223
    [82] Southwood O I, Short T H, Plastow G S. Genetic markers for litter size in commercial lines of pig [A]. In: Armidale, Proceedings of the 6th World Congress on Genetics Applied to Livestock Production [C].Australia, 1998, 453 - 456.
    [83] Tatsuda K, Fujinaka K. Genetic mapping of the QTL affecting body weight in chickens using a F2 family [J]. Br Poult Sci, 2001, 42(3): 333-337.
    [84] Tobias Nystr?m, Ponuts Dunér, Anna Hultgardh-Nilsson. A constitutive endogenous osteopontin production is important for macrophage function and differentiation [J]. Experimental cell research, 2007, 313:1149-1160
    [85] Van Kaam J B C H M., Groenen M A M, Bovenhuis H, et al.,Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency[J]. Poultry Science, 1999a, 78(1):15-23.
    [86] Van Kaam J B C M H, Groenen M A M, et al., Whole genomescan in chickens for quantitative trait loci affecting carcass traits [J]. Poultry Science, 1999b, 78(8), 1091-1099.
    [87] Weintraub A S, X Lin, V V Itskovich, et al. Prenatal detection of embryo resorption in osteopontin-deficient mice using serial noninvasive magnetic resonance microscopy[J]. Pediatric. Res., 2004, 55:419-424.
    [88] White S.N,E Casa, M F Allan, et al. Beef cattle evaluation of six DNA markers developed for dairy traits reveals an osteopontin polymorphism is associated with postweaning growth [J]. J. Anim. Sci., 2007, 85:1-10
    [89] Yi-Ping Wang, Bu-Yuan Liu. High Expression of steopontin and CD44v6 in Odontogenic Keratocysts [J]. J Formos Med Assoc, 2009, 108(4): 286-232
    [90] Yokosaki Y., Tanaka K., Higashikawa F., et al. Distinct structural requirements forbinding of the integrinsαvβ6,αvβ5,α5β1 andα9β1 to osteopontin [J]. Matrix Biol, 2005, 24: 418-427.
    [91] Yokosaki Y, Matsura N , Sasaki T , et al . The integrinα9β1 binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino terminal fragment of osteopontin [J]. Biol Chem, 1999, 274(11) : 36328-36334.
    [92] Yongping Gao, Christopher M. Gillen, Michele G. Wheatly. Cloning and characterization of a calmodulin gene (CaM) in crayfish Procambarus clarkii and expression during molting [J]. Comparative Biochemistry and Physiology, 2009, Part B, 152:216-225
    [93] Zayzafoon, M., 2006. Calcium/calmodulin signaling controls osteoblast growth and differentiation [J]. J. Cell Biochem. 1:56-70.
    [94] Zhang M, Tanaka T, Ikura M. Calcium-induced conformational transition revealed by the solution structure of Apo calmodulin [J]. Nature Struct Biol, 1995, 2 (11): 758-766
    [98]Zhang G X,Zhao ZQ,Wang H D,et a1.Enhancement of osteopontin expression in HepG2 cells by epidermal growth factor via phosphatidylinositol 3-kinase signaling pathway[J].World J Gastroenterol,2004, 10(2):205-208.
    [99]杜晓惠.鸡多趾候选基因的SNPs及表达差异研究[D].四川农业大学博士学位论文,2005
    [100]杨燕.京海黄鸡分子标记与生长及屠宰性状关系的研究[D].扬州大学博士学位论文,2007
    [101]常洪.中国家畜遗传资源研究[M].陕西:陕西人民教育出版社,1997.
    [102]陈幼春.中国家畜多样性保护的意义[J].生物多样性,1995,3(3): 143-146.
    [103]张继全,邵春荣,王毓英,等.多位点基因型遗传距离的估测精度[J].畜牧医学学报, 1998, 29(2): 128-131.
    [104]马力耕,陆运青,孙大业.钙调素分子进化的研究[J].河北省科学院学报,1996,3:43-46
    [105]孙大业,唐军,李红兵.细胞外钙调素的研究及其意义[J].科学通报, 1995, 40 (13) : 1153-1159.
    [106]邱云志,甘露,王红,等.钙调素及其对细胞增殖的影响研究现状[J].华北国防医药,2006,18(3):214-216
    [107]赵慧斌,李晓军,武建国.钙调素的分子识别研究进展[J].医学研究生学报,2003,11: 846-849
    [108]马力耕,孙大业,阎隆飞.钙调素的结构生物学研究进展[J].生物化学与生物物理进展,1999,26(3):209-213
    [109]顾永清.钙调素的生理功能[J].生物学通报,1994,29(10)12-15
    [110]华惠敏,王超,张珠明.钙调素及其研究进展[J].宁夏农学院学报,1998,19(3): 89-93
    [111]赵慧斌.细胞表面钙调素结合位点的定位及钙调素定量方法的研究,第二军医大学硕士学位论文,2004
    [112]尹呈,吕佩源.钙调素与脑血管病[J].国外医学脑血管疾病分册2002,10(6):454-457
    [113]吴常信.关于优质鸡育种与生产中几个问题的探讨[J].中国禽业导刊,2005,10:5-6
    [114]李道劲.我国优质鸡育种的发展趋向[J].中国家禽,2003,25(1):7-8
    [115]陈宽维,孙永进.优质肉鸡配套的现状及其展望,第三届优质肉鸡的改良、生产及发展研讨会论文集
    [116]吴常信.优质鸡生产中杂种优势的利用[C],第五届优质鸡的改良、生产及发展研讨会论文集(福建武夷山,1998.11)
    [117]邱祥聘,嘉勇.优质肉鸡的内涵和改良之我见[C].第一届优质鸡研讨会文集(香港,1989.2)
    [118]李东.我国鸡的育种历史、现状和新进展[J].中国家禽,1996,3:2-4
    [119]魏彩藩.中国南方优质鸡育种与发展趋势[J].中国禽业导刊,2001,18(1):4-5
    [120]赵淑清,武维华. DNA分子标记和基因定位[J].生物技术通报,2000,6:1-4
    [121]王宇宏,刘文忠.标记辅助选择(MAS)及在畜禽育种工作中的应用.浙江畜牧兽医,2006,6:8-10
    [122]牟彦双,李辉.鸡基因组研究新进展.遗传[J],2006,28(5):617-622
    [123]赵心怡,杨威,张勇,等.鸡基因组计划及在遗传学研究中的应用.遗传[J],2006,28(8):1002-1008
    [124]王丹晨,李荣岭,康文霞.分子生物学技术在动物育种中的应用[J].山东农业大学学报(自然科学版), 2006,37 (2) : 313-315
    [125]王宇宏,刘文忠.标记辅助选择(MAS)及在畜禽育种工作中的应用[J].浙江畜牧兽医,2006,6: 8-10
    [126]苟潇,连林生.动物数量育种中的分子标记辅助选择.动物科学与动物医学, 2001, 9 (1): 14-16
    [127]赵心怡,杨威,张勇,等.鸡基因组计划及在遗传学研究中的应用[J].遗传,2006,28(8):1002-1008
    [128]赵青,钟土木,徐宁迎.金华猪分子遗传标记及其DNA多态性的研究进展.中国畜牧杂志[J],2008,44(13):57-61
    [129]黄仕和,许四宏,李云.骨桥蛋白的生物学功能[J].生命的化学,2001,21 (5):389-391
    [130]程焰,曾繁典. Osteopontin研究进展[J].生理科学进展,1999,30(3):267-270
    [131]牛志宏,冯云.骨桥蛋白与妊娠建立和维持[J].中国妇幼健康研究,2006,17 (3):187-189
    [132]高艳虹,王洪复.骨桥蛋白与骨代谢[J].中国骨质疏松杂志.2001,7(3):277-279
    [133]宾冬梅,钟金凤,戴文建,等.蛋壳质量指标及测定方法[J].中国禽业导刊,2006,23(16):37
    [134]陶肖君,都正里,王小阳,等.蛋壳强度与蛋壳表型性状的关系[J].中国畜牧杂志,1994,30(2):11-14
    [135]张波.影响蛋壳质量的营养因素[J].中国饲料,2004,4: 40-42
    [136]俞路,王雅倩,章世元,等.鸡蛋壳内部组成、构造及其质量的基因调控技术[J].动物营养学报,2008 , 20 (3): 366-370
    [137]李治学,魏丽娜,章世元.鸡蛋壳质量与结构关系的研究[J].中国畜牧杂志,2008,44 (1) : 35-39
    [138]刘宏,王勤涛,吴织芬,等. rhBMP22对人牙周细胞骨桥蛋白表达的影响[J] .中华口腔医学杂志,2000, 35(5) : 330
    [139]杨淑莉,韩梅,温进坤.骨桥蛋白与心血管疾病[J] .中国动脉硬化杂志, 2000 , 8(4) :371.
    [140]范哲,李鸿雁,龙毅.骨桥蛋白的研究进展[J].中国实验诊断学,2005,9(2):307-309
    [141]孙婕,刘宁,尹国友.骨桥蛋白与生物矿化[J].中国骨质疏松杂志,2008. 14(5):360-363
    [142]何荣环,黄荷凤.骨桥蛋白与生殖[J].国外医学计划生育分册,2004,23 (2): 99-101
    [143]雷海鸣,卞建民.骨桥蛋白与肿瘤转移[J].山西医药杂志,2007,36(9): 813-815
    [144]吴井生,朱孟玲,陈超,等.影响猪繁殖性能的候选基因OPN的研究进展[J].四川畜牧兽医,2007,2:31-32
    [145]吴井升,朱孟玲,邢军,等.猪骨调素OPN基因多态性的研究[J].江苏农业科学,2008,5:56-59
    [146]孟庆利,刘铁铮,邢光东,等.骨调素基因与动物繁殖性能的关系[J].江苏农业科学,2003,5:92-96
    [147]罗仍卓么,王立贤,孙世铎.猪OPN基因与繁殖性状的关联分析[J].农业生物技术学报,2008,16(3):412-416
    [148]孟庆利.骨调素和雌激素受体基因与猪繁殖性能关系的研究[D].南京农业大学硕士学位论文,2004.
    [149]汪晓鸿.大白猪OPN基因的克隆及其表达规律研究[D].东北农业大学硕士学位论文,2007
    [150]孟庆利,刘铁铮.猪骨调素基因多态性对产仔性状的影响[J].家畜生态学报,2005,26(3): 13-16
    [151]尚帮华,杨婷,连林生,等.骨调素基因多态性及其与大河乌猪繁殖性状相关分析的研究[J].云南农业大学学报,2007,22(6):843-846
    [152]曲湘勇.鹅脂肪性状候选基因的研究[D].湖南农业大学博士学位论文,2007
    [153]董先平,智刚,徐天乐.钙调素参与离子通道和受体功能的调控[J],自然科学进展,2002,12(3):232-239
    [154]甘露,邱云志,苏德华,等.细胞外钙调素对细胞增殖的影响研究进展[J].白求恩军医学院学报,2O06,4(4):222-223
    [155]司峻岭,李晓军,武建国.细胞外钙调素与细胞增殖的调控[J].金陵医院学报,1999,5:111-114
    [156]秦钢,李杨瑞,陈彩虹.分子标记聚合育种在作物新品种选育中的应用[J].广西农业科学,2006,37(4):345-349
    [157]吴建利,庄云杰,李德葆,等.水稻对稻瘟病抗性的分子生物学研究进展[J].中国水稻科学, 1999,13:123-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700