家蝇抗菌肽生产与制剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蝇在我国分布广,资源丰富,容易养殖,成本低,在新饲料资源开发及医药开发方面是一个很好的资源。
     为了建立了较为稳定的畜禽粪便养殖蝇蛆的方法,本文对生产蝇蛆的生态条件进行优选,得到结论:对蝇蛆生长影响最大的因素是食料,其次是温度,再次是饲养的湿度。最适培养料为麸皮、鸡粪和猪粪(1:1:1);最适温度为25℃;最佳湿度为70%。
     进行家蝇抗菌肽生产工艺的优化——诱导家蝇幼虫高效表达抗菌肽,确定最佳的提取条件;并对家蝇抗菌肽的生产工艺进行简化,以适应工业化生产的要求。
     针对得到的抗菌肽进行生物学性质研究,包括对临床多重耐药菌的抑菌活性测定,测定抗菌肽对临床多重耐药菌的最低抑菌浓度(MIC)和最低杀菌浓度(MBC);考察抗菌肽对温度、pH值的稳定性;
     进行制剂的研究,通过正交试验确定家蝇抗菌肽凝胶剂的最佳配方:家蝇抗菌肽,25g;基质(羧甲基纤维素钠),3g;表面活性剂(二甲基亚砜),0.1g:保湿剂(甘油),20g;添加蒸馏水100g;pH,4.5。并进行含量测定及其对临床多重耐药菌的抑菌活性;通过离心法和高温加速法检测制剂稳定性,为今后的临床应用提供资料。
     最后,研究家蝇抗菌肽凝胶剂的临床疗效,探讨其临床适应症,用家蝇抗菌肽凝胶剂对临床型乳腺炎和隐性乳腺炎进行治疗,有效率分别达85%和94%,治愈率分别达60%和90%。
Musca Domestic and Larvae is a good resources of feed resources and medicineresources because of its broad distribution, easy cultivation and lowcost.
     We started our work in order to find new active antimicrobial peptides. Weestablishing cultivation method for Musca domestica and larvae, finding a newfeeding method for musca domestica with annimal manure. Effects of environmentalfactors on mass reproduction of Musca Domestic Larvae was made in laboratory, theresults showed that the optimum temperature of adult oviposition and larvae growthwas 25℃. The optimum water content of larva diet was 70%. The factors affectinglarva weight were diet, temperature and breeding density in descending order.
     And then We optimize the antibacterial prptides produced technics. We detect itcan inhibit the resistant-bacterial growth, the MIC and MBC of the anmicrobialpeptide from the Musca domestic larvae was determined, and they can inhibit thegrowth of different species of multi-drug resistant Gram-positive and multi-drugresistant Gram-negative bacteria to different extent. Finally, we determine the effect ofpH and temperature on stability of antibacterial peptide.
     By the orthogonal design L16(4~5), we determined the prescriptions ofantimicrobial peptide gel: antibacterial peptide (25g); bases (3g); surface-activeagents (0.1g); humectant (20g); water (100g); the optimum pH was 4.5.
     The inhibitition of antimicrobial peptide spray and gel to resistant bacteria aremeansured. We conclude the spray and gel are potential to clinic use.
     Finally, the clinical efficacy and the clinical indications of Musca Domesticantimicrobial peptide gel were observed, resulting that the average cure and efficientpercentage of this antibactria peptide gel for severe clinical mastitis were 60% and85%; and the average cure and efficient percentage of 3 days-administrated this gelfor subclinical mastitis were 74% and 88%, and 90% and 94% for 7days-administrated.
引文
[1] 李建民,周开亚,张双全,等.先天免疫中的抗菌肽及其进化[J].南京师大学报(自然科学版),1999,22:16-33
    [2] Masschalck B, van Houdt R, Michiels CW. High pressure increases bactericidalactivity and spectrum of lactoferrin, lactoferricin and nisin[J]. Int J Food Microbiol, 2001, 64(3): 325-332
    [3] Boman HG. Antibacterial Peptides: Key Components Needed in Immunity[J]. Cell, 1991, 65: 205-207
    [4] Koczulla AR, Bals R. Antimicrobial peptide: current status and therapeutic potential[J]. Drug, 2003, 63(4): 389-406
    [5] Hancock RE, Falla T, Brown M. Cationic bactericidal peptides[J]. Adv. Microb Phsiol, 1995, (37): 135-175
    [6] Kleinkauf H., H. Von Dohren. Peptide antibiotics, β-lactams and related compounds[J]. Crit. Rev. Biotechnol, 1988, (8): 1-32
    [7] Perlman D, Bodansky M. Biosynthesis of peptide antibiotics[J]. Annu Rev Biochem, 1971, 40: 449
    [8] Robert E. W. Hancock and Daniel S. Chapple: Peptide Antibiotics[J]. Antimicrob Agents Chemother, 1999, 43: 1317-1323
    [9] Robert E. W., Hancock. Cationic peptide: effectors in innate immunity and novel antimicrobials[J]. The Lancet infectious disease, 2001, (1): 156-164
    [10] Charles L. B., Michael Z. Peptides from frog skin[J]. Annual Review of Bio-chemistry, 1990, (59): 395-414
    [11] Broekaert W. F., Cammue B. P. A., Debo lleM. F. C., et al. Antimicrobial peptides from plants[J]. Critical Reviews in Plant Sciences, 1997, 16 (3): 297-323
    [12] 刘进国,赵燕飞,邹晓庭.乳酸链球菌肽的研究进展[J].中国兽药杂志,2004,38(10):29-31
    [13] Hancock R. E. W., Scott M. G. The role of antimicrobial peptides in animal defenses[J]. Proc Natl Acad Sci. USA, 2000, 97 (16): 8856-8861
    [14] Boman H. G. Peptide antibiotics and their role in innate immunity[J]. Curt Biol, 1995, (3): 435-448
    [15] Boman HG, Nilsson-Faye Ⅰ, Paul K, et al. Insect immunity: Ⅰ. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae[J]. Infection and Immunity, 1974,10:136-145
    [16] Samukovlis C, Kylsten P, Kimbiell DA, et al. The andropin gene and its product,a male-specific antibacterial peptide in Drosophila melanogaster[J]. Eur Mol Biol Organiz J, 1991, 10(1):163-169
    [17] Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P. Apidaecins: antibacterial peptides from honeybees[J]. EMBO ,1989, Aug;8(8):2387-2391
    [18] Cociancich S, Dupont A, Hegy G, et al. Novel inducible antibacterial peptides from a Hemipteran insect, the sap-sucking bug Pyrrhocoris apterus[J]. Biochem, 1994,300:567-575
    [19] Chernysh S, Cociancich S, Briand JP, et al. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc[J].Mytilus Edulislnsect Physiol, 1996, 42(3):84-88
    
    [20] Bulet P, Hegy G, Lambert J, et al. Insect immunity Insect immunity. The inducible antibacterial peptide diptericin carries two O-glycans necessary for biological activity[J]. Biochemistry, 1995, 34(22):7394-7400
    [21] Otvos L Jr. The short praline-rich antibacterial peptide family[J]. Cell Mol Life Sci, 2002, 59(7):1138-1150
    [22] Carisson A, Engstrom P. Hennich H. Attacin, an antibacterial protein from Hyalophora cecropia. inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with ompgene transcripti0n[J]. Infect and Immunity, 1991. 59(9):3040-3044
    [23] Okemoto K, Nakajima Y, Fujioka T. et al. Participation of two N-terminal residues in LPS-neutralizing activity of sareotoxin IA[J].J Biochem(Tokyo), 2002, 131(2):277-281
    
    [24] 徐进署,张双全.昆虫抗菌肽对病原微生物作用的研究进展[J].昆虫学报,2002,45(5):673—678
    [25] Christensen B, Fink J, Merrifield RB. et al. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes[J]. Proc Natl Acad Sci USA, 1988, 28:5072-5075
    [26] Fink J, Boman A, Boman HG, et al. Design, synthesis and antibacterial activity of cecropin-like model peptides[J]. Int J PeptProtein Res, 1989, 33(6):;412-421.
    [27] Clague MJ, Cherry RJ. A comparative study of band 3 aggregation in erythrocyte membranes by melittin and other cationic agents[J].Biochim Biophys Acta, 1989, 980(1): 93-99
    [28] Lockey T D. Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae[J]. Eur J Biochem, 1996, 236 (1): 263-271
    [29] Saint N, Cadiou H, Bessin Y. et al. Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers[J]. Biochim Biophys Acta, 2002, 1564(2): 359-364
    [30] Fehlbaum P, Bulet P, Chernysh S, et al. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides[J]. Proc Natl Acad Sci USA, 1996, 93(3): 1221-1225
    [31] Carlsson A, Engstrom P, Palva ET. et al. Attacin. an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherich ia coli by interfering with omp gene transcription[J]. Infect Immun, 1991, 59(9): 3040-3045
    [32] Ando K, Naton S. Inhibitory effect of sareotoxin ⅡA, an antibacterial protein of Sarcophaga pregine, on growth of Escherichia coli[J]. J Biochem, 1988, 103(1): 735-741
    [33] Hancock REW, Lehrer R. Cationic peptides: A new source of antibiotics[J]. Trends in Biotechnology, 1998, 16: 82-88
    [34] 黄自然,郑青,黄亚东.昆虫抗菌肽在医药上的应用[J].天然产物研究与开发,2000,13(2):79-83
    [35] 郑俊民主编.经皮给药新剂型[M].北京:人民卫生出版社,1997,134-178
    [36] 陆彬主编.药物新剂型与新技术[M].北京:人民卫生出版社,2002,353-409
    [37] 侯惠民,王浩,张光杰主编.辅料应用新技术(第二版)[M].北京:中国医药科技出版社,2002:176-185
    [38] 潘程远,莫建初.家蝇资源的利用[J].城市害虫防治,2006,2:25-29
    [39] 沈晓昆.蝇蛆养殖—解决动物蛋白饲料短缺的有效途径[J].饲料研究,1999,2:18-20
    [40] 张廷军.家蝇幼虫(蝇蛆)养殖的应用前景[J].农村养殖技术,1998,10:30-31
    [41] 黄德娟.我国昆虫资源的开发利用[J].生物学杂志,1999,16(2):33-33,39
    [42] 王文凯.昆虫资源的开发利用及其对策[J].湖北农学院学报,2000,20(1):90-95
    [43] 王艳辉.昆虫资源在医学上的应用及发展前景综述[J].蒙自师范高等专科学校学报,2000,2(2):19-21
    [44] 任国栋,石爱民.家蝇工程及其开发前景[J].昆虫知识,2002,39(2):103-106
    [45] 贺继东,夏文水.工程蝇蛆的开发利用和深度加工[J].食品工业科 技,2002,23(12):90-93
    [46] 胡广业,张文忠.不同生态条件下家蝇生存力与繁殖力的测试[J].生态学报,1988,04:42-47
    [47] Zocchi SS, Atkinson AC. Optimum experimental designs for multinomial Logistic models[J]. Biometrics, 1999: 55(2): 437-44
    [48] Vitanovic R, Jovanovic A. Results of laboratory study on residual effects of Baygon on the laboratory breed of housefly—Musca domestica[J]. Nar Zdrav, 1972, 28(7): 264-7
    [49] 王振堂,孙刚.家蝇种群疯长潜势及其开发研究[J].东北师范大学学报(自然科学版),1996,2:99-104
    [50] 魏秋生.家蝇的养殖技术[J].中国农村科技,1999,2:26-27
    [51] 韩如冰.家蝇精细养殖技术[J].畜牧兽医科技信息,2006,9:96-96
    [52] 翟桂荣.家蝇的饲养方法[J].中华预防医学杂志,1980,14(1):59-60
    [53] 鲁汉平,钟昌珍.蝇蛆养殖技术的研究:Ⅰ.影响成蝇卵量的因子作用模型[J].华中农业大学学报,1993,12(3):231-236
    [54] 鲁汉平,钟昌珍.蝇蛆养殖技术的研究:Ⅱ.影响幼虫生长的因子作用模型[J].华中农业大学学报,1994,13(6):641-643
    [55] 鲁汉平,钟昌珍.蝇蛆养殖技术的研究:Ⅲ.养殖技术的模拟化及决策分析[J].华中农业大学学报,1995,14(1):43-49
    [56] 胡广业,张文忠.不同生态条件下家蝇生存力与繁殖力的测试[J].生态学报,1988,8(4):17-19
    [57] 徐大刚,吴健桦,杨鹤萍,等.家蝇幼虫处理猪粪的效果研究[J].中国媒介生物学及控制杂志2005,16(2)9-11
    [58] 罗金香,杨春龙,吴伟动.家蝇抗菌肽的研究与应用[J].昆虫知识,2005,42(3):235-239
    [59] 傅善江,李京东.昆虫抗菌肽的结构特点及展望[J].潍坊教育学院学,报,2005,18(2):38-39
    [60] 王国昌,梁海燕,薛萍.昆虫抗菌肽的研究进展[J].安徽农业科学,2006,34(13):2939-2943
    [61] 周义文,尹一兵,涂植光,等.家蝇抗菌肽抗菌活性及抗菌机制的初步研究[J].中国抗生素杂志,2004,29(5):272-274
    [62] An C J, Shi M, Hao Y J, et al. Inducedment and activity analysis of antibacterial-related protein in housefly larvae[J]. Acta Entomolgica Sinica, 2003, 46(5): 545-548
    [63] Bai M. Zhou L. Purification of a kind of antimicrobial protein from Musca domestica larvae[J]. Chin J Appl Environ Biol, 2001, 7(6): 568-571
    [64] Donald D, Ourth, Timothy, et al. Imduction of cecropin-like and attacin-like antibacterial but not antiviral activity in Heliothis Virescens larvae[J]. Biochem Biophy Res Commu, 1994, 200 (1): 35-44
    [65] Ren Lai, Yong-tang Zheng, et al. Antimicrobia] peptides from skin secretions of Chinese red belly toad Bombina maxima[J]. Peptides, 2002: 427-435
    [66] Gou Xiaojun, Li Xianghui, Ding Tianbing, et al. Purification and Characterization of two forms of Antimicrobial Peptide from Jilin Frog Skin[Y]. Chemical Research in Chinese Universities, 1999, 15(4): 333-336
    [67] Boman H G. Peptide antibiotics and their role in innate immune system[y]. Curr Bio1, 1995, 3: 435-448
    [68] Cole A. M. Weis P., Diamond G., et al. Isolation and characterization of pleurocidin, an antimicrobial peptide in the kinsecretions of winter flounder[J]. J. Biol Chem, 1997, 272(18): 12008-12013
    [69] 杨晓红,张庆华,段希玲,等.几种昆虫抗菌肽对肿瘤细胞(K562)的作用研究[J].热带医学杂志,2006,6(6):669-671
    [70] 孙恩涛,秦志辉.昆虫抗菌肽研究进展[J].热带病与寄生虫学,2006,4(1):47-50
    [71] 周义文,尹一兵,涂植光,等.家蝇抗菌肽抗菌活性及抗菌机制的初步研究[J].中国抗生素杂志,2004,29(5):272-274
    [72] 金冬雁,黎孟枫译.J.萨姆布鲁克,E.F.弗里寺,T.曼尼阿蒂斯.著.分子克隆[M].第二版,北京:科学出版社,1992,908-913
    [73] 张卓然.主编.临床微生物学和微生物学检验[M].第3版.北京:人民卫生出版社,2003,492-500
    [74] 陈留存,王金星,刘瑶,等.家蝇抗菌肽的分离纯化及性质研究[J].山东大学学报(自然科学版),2001,36(3):351-356
    [75] 田晓乐.家蝇抗菌肽的制备及制剂研究[D].吉林大学,2002
    [76] 石爱民.食用家蝇养殖与蛋白饮料的研究[D].河北农业大学,2003
    [77] 曲琪环,韩岚岚,周玉岩,等.家蝇抗菌肽的作用及在农业上的应用前景[J].饲料博览,2006,1:25-27
    [78] 屈军梅,陈平洁,李文平,等.家蝇抗菌肽提取及对鸡大肠杆菌病药效试验[J].中国畜牧兽医,2006,33(3):56-58
    [79] 毕殿洲.药剂学[M].第1版,北京:中国医药科技出版社,2000:182
    [80] Britishi Pharmacopocia[S], 1993
    [81] United States Pharmacopoeia [S], XXM, 1995: 2346
    [82] 高正华.国内外药物凝胶剂研究进展[J].中国药房,2001,12(11):691-692
    [83] 张填,陈钧,陈剑,等.正交设计优选丁香酚座疮凝胶剂处方量[J].中国医院药学杂志,2006,26(2):177-178
    [84] 张先洲,吴峰,罗顺德.正交设计筛选青藤碱凝胶剂处方[J]。中国医院药学杂志,2003,23(8):463-465
    [85] 陈红梅,巴根那,满都拉.正交实验优选蒙药妇康凝胶剂的制备工艺[J].内蒙古民族大学学报:自然科学版,2006,21(3):311-313
    [86] 常天辉,方灵武.速效去痛霜对离体小鼠皮透皮吸收作用的研究[J].中国医科大学学报,1992,21(1):18-20
    [87] 龙晓英,欧少英,罗佳波.双氯芬酸钠柔性脂质体的制备及其对离体小鼠皮肤的透皮效果[J].中国医药工业杂志,2004,35(4):216-218
    [88] 陈莉,张莉,李挺,等.布洛芬凝胶剂的制备及体外透皮特性的研究[J].武警医学,2006,17(10)730-732
    [89] 陈子东,王欣,刘芳.复方克林霉素凝胶剂的研制与质量控制[J].内蒙古石油化工,2006,32(9):23-24
    [90] 郭宏,聂淑芳,杨星钢,等.奥沙普秦凝胶剂处方筛选及稳定性研究[J].中国药学杂志,2006,41(10):759-762
    [91] 龚金红,刘扬,张全英,等.盐酸利多卡因凝胶剂处方优化及稳定性考察[J].抗感染药学,2005,2(2):71-73
    [92] 贾海波,肖秀玲.嘎木朱尔凝胶剂的制备及稳定性研究[J].中国民族医药杂志,2003,9(2):41-42
    [93] 史树堂,魏若晶,户志杰,等.多肽药物给药方式及吸收途径研究进展[J].河北职工医学院学报,2003,20(4):32-36
    [94] 张洁,张纯,高申.多肽类药物的口服吸收及其剂型研究[J].药物进展,2004,28(10):437-441
    [95] 戴婕,陈广惠,叶琳.促进多肽和蛋白质类药物透皮给药技术的研究进展[J].广东药学,2004,14(3):22-24
    [96] 韩志武.扇贝多肽的透皮吸收及抗氧化机制研究[D].青岛大学,2003
    [97] 肖喜东,徐志梅,金明焕.奶牛乳腺炎的病因、监测与防治[J].中国动物检疫,2001,18(4):24-24
    [98] Williams J H., Woolford M W., Day A M. The prophylactic effect of a dry-cow antibiotic against streptococcus uberis[J]. New Zealand Veterinary Joumal, 1995, 228-234
    [99] 伍义行,黄利权.奶牛乳腺炎防治的免疫学和药理学机制[J].乳业科学与技 术,2001,97(4):37-43
    [100] 朱志达.绿色药物“乳炎消”、“消炎膏”治疗奶牛乳腺炎与生产“无抗奶”[J].中国乳业,2002,2:20-20
    [101] 秦明.绿色畜禽产品如何选择药物[J].北方牧业,2006,17:27-27
    [102] 岳春旺,杜任军,孙茂红,等.中草药治疗奶牛乳腺炎的观察[J].中国奶牛,2001,6:38-39
    [103] 朱志达,韩张兴,葛建明.中药“速效消炎膏”治疗奶牛临床型乳腺炎的疗效分析[J].乳业科学与技术,2001,24(1):45-48
    [104] 孙敬方,朱德生,郝光荣,等.实验动物学技术[M].北京:科学技术文献出版社,1993,9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700