COXⅦa在中老年男子部分雄激素缺乏综合征中的作用及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中老年男性随着年龄的增长雄激素水平逐渐下降,并出现倦怠、乏力、抑郁、失眠、情绪波动、易怒、性欲减退、勃起功能障碍、体重减轻和骨质疏松等一系列临床症状,这一现象被称为中老年男子部分雄激素缺乏综合征(partial androgen deficiency of the aging male, PADAM)。PADAM和许多疾病有关,如心血管疾病、糖尿病等,老年人群因衰老引发的各种疾病发病率逐年增高,严重影响中老年男性的身体健康和生活质量。关注老年疾病,提高老年人生活质量,延长寿命,成为全球关注的重要医学课题。
     COXⅦa(cytochrome c oxidase subunitⅦa)是线粒体呼吸链第4个复合体的核编码亚基,参与该复合体的构成,在线粒体氧化呼吸链的电子传递中发挥重要作用。研究表明,COXⅦa在老年人睾丸组织显著上调,推测其可能与老年雄激素合成功能减退及老年男性雄激素部分缺乏综合征有关,但其具体机制仍不清楚,国内外报道极少见。本研究以D-半乳糖所致亚急性衰老大鼠为PADAM模型,利用基因转染和RNA干扰等现代分子生物学技术,从体内和体外两方面深入研究了COXWa在PADAM中的作用及机制,为研究PADAM的机理和基因靶向治疗提供理论基础。
     目的:探讨大鼠出生后不同发育阶段睾丸组织COXⅦa及睾酮合成酶和急性调节蛋白的表达变化并确定其与睾酮浓度的相关性。
     1实验动物:选用出生后1周龄、3周龄、5周龄、3月龄和24月龄清洁级雄性SD大鼠,每年龄组6只(1周龄组为12只);
     2睾酮测定:化学发光方法测定血清总睾酮水平,批内和批间变异系数分别为2.2%-2.4%和3.4%-4.7%:
     3 RT-PCR方法检测各年龄组睾丸组织COXⅦa、3β-HSD、17β-HSD、P450scc和StARmRNA变化;
     4 western blotting、免疫组化法检测各年龄组睾丸组织COXⅦa、3β-HSD、17β-HSD、P450scc和StAR蛋白表达变化和定位。
     1大鼠血清睾酮水平:3月龄组、24月龄组、5周龄组、3周龄组和1周龄组依次降低,3月龄组和24月龄组与各组之间差异有统计学意义(p<0.05),其余各组差异无统计学意义(p>0.05);
     2mRNA变化:COXⅦa mRNA水平24月龄组最高、3月龄组最低,与各组之间差异均有统计学意义(p<0.05);3β-HSD、17β-HSD和P450scc mRNA水平均为3月龄组和5周龄组高于其余各组,差异均有统计学意义(p<0.05);StARmRNA水平3月龄组最高,5周龄组和24月龄组次之,1周龄组和3周龄组最低,差异有统计学意义(p<0.05)。
     3蛋白表达和定位:COXⅦa蛋白表达于间质细胞胞质、胞核及精原细胞胞核,24月龄最高,3月龄组最低;3β-HSD蛋白表达于间质细胞胞质,17β-HSD蛋白表达于间质细胞胞质及精原细胞胞核,P450scc蛋白表达于间质细胞胞质、胞膜及精子细胞胞质,StAR蛋白表达于间质细胞胞质和胞膜以及精原细胞胞质;3β-HSD、17p-HSD、P450scc和StAR蛋白表达均为3月龄组和5周龄组高于其余各组,差异均有统计学意义(p<0.05)。
     4相关性分析:COXⅦa蛋白表达与血清睾酮水平、3β-HSD、17β-HSD、P450scc和StAR蛋白表达呈负相关关系,除StAR外,均有统计学意义(p<0.05;p<0.01)。
     1不同年龄大鼠睾丸组织COXⅦa表达存在差异,老年鼠表达高于青年鼠,且与血清睾酮浓度呈负相关关系,提示COXⅦa与睾酮合成有关,可能参与了PADAM的发生;
     2不同年龄大鼠睾丸组织3β-HSD、17β-HSD、P450scc和StAR表达存在差异,3月龄组和5周龄组高于1周龄组、3周龄组和24月龄组;
     3 COXⅦa蛋白表达与3β-HSD、17β-HSD和P450scc蛋白表达呈负相关,提示COXⅦa可能通过上述类固醇合成酶调控睾酮合成,似乎与急性调节蛋白无关。
     目的:1构建pEGFP-N1-COXⅦa重组质粒并瞬时转染原代培养的3月龄大鼠Leydig细胞,探讨COXⅦa过表达对睾酮合成能力的影响;
     2应用RNA干扰技术抑制COXⅦa在Leydig细胞中的表达,探讨COXWa抑制对睾酮合成能力的影响。
     1大鼠睾丸Leydig细胞原代培养和鉴定:根据王晓云等的差速贴壁方法稍加改进,分离纯化Leydig细胞,3β-羟基类固醇脱氢酶化学染色和免疫细胞化学染色鉴定细胞纯度,0.4%台盼蓝溶液检查细胞活力;
     2 pEGFP-N1-COXⅦa质粒构建、转染及细胞功能检测
     2.1构建pGM-T-COXⅦa克隆质粒:设计扩增COXⅦa的DNA引物,在上、下游引物的5’端分别加入BglⅡ和EcoRⅠ的酶切位点和保护碱基,从24月龄大鼠睾丸组织中RT-PCR扩增COXWa基因,将扩增产物纯化回收、经BglⅡ和EcoRⅠ酶切获得COXⅦa基因片段;用T4连接酶将具有相同BglⅡ和EcoRⅠ粘性末端的pGM-T载体和COXⅦa基因连接,将连接产物转化DH5α感受态细胞,涂板,挑克隆,摇菌抽质粒后酶切鉴定含COXⅦa基因的克隆,大量扩增该克隆后抽质粒,得到pGM-T-COXⅦa克隆质粒;
     2.2构建pEGFP-N1-COXⅦa表达质粒:大量扩增含pEGFP-N1空质粒的大肠杆菌,抽提得到pEGFP-N1空质粒;将pGM-T-COXⅦa和pEGFP-N1分别用BglⅡ和EcoRⅠ进行双酶切,酶切片段纯化回收后用T4连接酶进行连接,将连接产物转化DH5a感受态细胞,涂板,挑克隆,摇菌抽提质粒后酶切鉴定含COXⅦa基因的克隆,大量扩增该克隆后抽提质粒,得到pEGFP-Nl-COXⅦa表达质粒;
     2.3测序:将RT-PCR扩增的COXⅦa片段和pEGFP-N1-COXⅦa重组质粒送上海生工测序,测序结果与genebank中序列进行比对;
     2.4转染细胞:用脂质体介导法将pEGFP-N1-COXⅦa重组质粒转染Leydig细胞,分为空白对照组、空质粒组、转染脂质体组和转染pEGFP-N1-COXⅦa组;
     2.5阳性细胞鉴定:在荧光显微镜下观察,有绿色荧光表达者为阳性细胞,并用MitoTracker(?) Red CM-H2XRos孵育,共聚焦激光显微镜观察pEGFP-N1-COXⅦa在细胞内的表达和定位;
     2.6细胞功能检测:细胞兰TM检测细胞活力,化学发光法测定培养上清中总睾酮浓度,RT-PCR和western blotting分别检测COXⅦa mRNA和蛋白表达,免疫细胞化学进行蛋白定位。
     3.1转染:将筛选出的抑制效应最强的SiRNA转染PADAM模型大鼠的Leydig细胞,分为空白对照组、脂质体组、阴性对照组、RNA干扰组、阳性对照组和荧光标记阴性对照组(观察转染效率);
     3.2转染效率:荧光显微镜下观察荧光标记阴性对照组,判断转染效率;
     3.3细胞功能检测:细胞兰TM检测细胞活力,化学发光法测定培养上清中总睾酮浓度,RT-PCR和western blotting分别检测COXⅦa mRNA和蛋白表达。
     1分离的Leydig细胞纯度达95%以上,可以满足实验要求;
     2pEGFP-N1-COXⅦa质粒经测序证实序列正确;
     3过表达COXⅦa的Leydig细胞活力降低,睾酮分泌减少,与空白对照组、转脂质体组和转染空质粒组比较,差异具有统计学意义(p<0.05);
     4 COXⅦa蛋白表达于Leydig细胞胞质和胞核;pEGFP-N1-COXⅦa转染组COXWamRNA和蛋白表达均高于空白对照组、转脂质体组和转染空质粒组,差异具有统计学意义(p<0.05);
     5 RNA干扰抑制了Leydig细胞COXVHamRNA和蛋白表达,均低于空白对照组、脂质体组、阴性对照组,差异具有统计学意义(p<0.05);
     6 RNA干扰组细胞活力和睾酮分泌均高于空白对照组、脂质体组和阴性对照组。
     COXⅦa具有降低细胞活力、抑制睾酮分泌的作用。
     目的:探讨COXⅦa对大鼠睾酮合成的影响及其与类固醇合成酶和急性调节蛋白的关系,利用RNA干扰和中药何首乌饮探索PADAM治疗的新方法。
     1 COXⅦa过表达对青年大鼠睾酮合成及类固醇合成酶和蛋白的影响
     1.1动物分组:3月龄清洁级SD雄性大鼠随机分为pEGFP-N1-COXⅦa转染组(模型组)、空质粒组、脂质体组、葡萄糖对照组(葡萄糖组)和空白对照组,每组各8只动物;
     1.2化学发光法测定各组大鼠血清总睾酮浓度,生物化学方法检测血清SOD、T-AOC活力及MDA含量,RT-PCR和western blotting分别检测COXⅦa、3β-HSD,17β-HSD、P450scc和StAR mRNA和蛋白表达。
     2 RNA干扰及何首乌饮对PADAM大鼠睾酮合成及类固醇合成酶和蛋白的影响
     2.1建立PADAM大鼠模型:清洁级8周龄雄性SD大鼠,D-半乳糖300mg/kg/d腹腔注射,连续用药50d;
     2.2动物分组:正常对照组、PADAM模型组、RNA干扰组、睾酮注射组(阳性对照组)、何首乌饮治疗组和模型对照组,每组各8只动物。
     2.3化学发光法测定各组大鼠血清总睾酮浓度,生物化学方法检测血清SOD、T-AOC活力及MDA含量,RT-PCR和western blotting分别检测COXⅦa、3β-HSD、17β-HSD、P450scc和StAR mRNA和蛋白表达。
     1青年大鼠转染pEGFP-N1-COXVUa质粒后,与空质粒组、脂质体组、葡萄糖组和空白对照组比较:
     1.1血清睾酮浓度降低,差异有统计学意义(p<0.05);
     1.2血清SOD、T-AOC活力下降,MDA含量升高,差异有统计学意义p<0.05);
     1.3 COXⅦa mRNA和蛋白表达增高,差异有统计学意义p<0.05);
     1.43p-HSD、17p-HSD、P450scc和StAR mRNA和蛋白表达下降,差异有统计学意义(p<0.05);
     2 PADAM大鼠RNA干扰组和何首乌饮治疗与模型组、正常对照组比较:
     2.1血清睾酮浓度高于模型组,低于正常对照组,差异有统计学意义(p<0.05);
     2.2血清SOD、T-AOC活力高于模型组,低于正常对照组,MDA含量相反,差异有统计学意义(p<0.05);
     2.3 COXⅦa mRNA和蛋白表达较模型组显著下降,仍高于正常对照组,差异有统计学意义(p<0.05);
     2.43β-HSD、17β-HSD、P450scc和StAR mRNA和蛋白表达较模型组升高,但仍低于正常对照组,差异有统计学意义(p<0.05);
     1COXVHa过表达可致青年大鼠睾酮浓度下降,类固醇合成酶和急性调节蛋白表达减少;
     2 PADAM模型大鼠经RNA干扰及何首乌饮治疗后,大鼠睾酮合成能力均得到部分恢复,类固醇合成酶和急性调节蛋白表达增加;
     3 COXVHa在大鼠衰老过程中发挥作用,可能与类固醇合成酶和急性调节蛋白有关;
     4靶向COXⅦa的RNA干扰治疗和何首乌饮治疗可以延缓衰老。
     目的:探讨MAPK信号通路是否参与COXWa对Leydig细胞睾酮合成的调节过程。
     分别对青年大鼠和PADAM模型大鼠的Leydig细胞转染pEGFP-Nl-COXⅦa重组质粒和RNA Oligo后,进行下列实验:
     1流式细胞仪检测细胞凋亡率;
     2 RT-PCR检测:3β-HSD、17β-HSD、P450scc和StAR mRNA;
     3免疫细胞化学方法检测3β-HSD、17β-HSD、P450scc、StAR、Bax和Bcl-2蛋白表达;
     4 western blotting检测3β-HSD、17β-HSD、P450scc、StAR以及Bax、Bcl-2、ERK1/2、p-ERK1/2、JNK、p-JNK、P38、p-P38蛋白表达。
     1转染pEGFP-N1-COXⅦa重组质粒后,转染组与对照组、空质粒组和脂质体组比较:
     (1)细胞凋亡率增加,差异有统计学意义(p<0.05);
     (2) 3-HSD、17β-HSD. P450sccmRNA减少,差异有统计学意义p<0.05);StARmRNA差异无统计学意义;
     (3)3β-HSD、17β-HSD、P450scc和:StAR蛋白表达减少,差异有统计学意义(p<0.05);
     (4) Bcl-2表达减少,Bax表达增加,Bcl-2/Bax下降,差异有统计学意义(p<0.05);
     (5) ERK1/2、JNK和P38差异无统计学意义;p-ERK1/2和p-JNK显著增加,差异有统计学意义p<0.05);p-P38未见阳性条带。
     2 RNA干扰后,干扰组与阴性对照组、脂质体组和空白对照组比较:
     (1)细胞凋亡率减少,差异有统计学意义(p<0.05);
     (2) 3β-HSD、17β-HSD、P450sccmRNA增加,差异有统计学意义(p<0.05);StARmRNA差异无统计学意义;
     (3)3β-HSD、17p-HSD、P450scc和StAR蛋白表达增加,差异有统计学意义(p<0.05);
     (4) Bcl-2表达升高,Bax表达下降,Bcl-2/Bax增大(p<0.05);
     (5) ERK1/2、JNK和P38差异无统计学意义;p-ERK1/2和p-JNK显著减少,差异有统计学意义(p<0.05);p-P38未见阳性条带。
     1在COXⅦa过表达的Leydig细胞,p-ERK1/2和p-JNK高表达,睾酮分泌减少,Bcl-2/Bax下降,细胞凋亡增加,3β-HSD、17β-HSD、P450scc和StAR蛋白表达减少,提示p-ERK1/2和p-JNK抑制类固醇合成酶活性,促进细胞凋亡;
     2在COXⅦa干扰的Leydig细胞,p-ERK1/2和p-JNK低表达,睾酮分泌增加,Bcl-2/Bax升高,细胞凋亡减少,3β-HSD、17β-HSD、P450scc和StAR蛋白表达增加,提示抑制ERK1/2和JNK蛋白活化可以上调类固醇合成酶活性,抑制细胞凋亡;
     3 COXⅦa可能通过ERK1/2和JNK信号通路发挥作用。
Due to the decrease in androgen levels gradually with their aging, middle-aged males appear fatigue, weakness, depression, insomnia, mood swings, irritability, decreased libido, erectile dysfunction, weight loss and osteoporosis and a series of clinical syndrome, which are known as partial androgen deficiency syndrome of the aging male (PADAM). PADAM is associated with many diseases, such as cardiovascular disease, diabetes and so on. The higher incidence of various age-related diseases seriously affects older men's health and their quality of life. Concerning about the age-related diseases, improving the quality of life of older persons and extending their life span have become the important medical issues of the world's attention.
     COXⅦa (Cytochrome c Oxidase SubunitⅦa) is nuclear encoded subunit of complex IV of mitochondrial respiratory chain, involved in the complex composition and plays an important role in electron transfer of mitochondria respiratory chain oxidation. Studies indicate that COXⅦa in the testis of the aging male was significantly increased, suggesting that it may be involved in androgen dysfunction and partial androgen deficiency syndrome of the aging male, but the exact mechanism remains unclear, and there are rare domestic and foreign reports. PADAM model was established by injection of D-galactose. Some techniques of modern molecular biology such as gene transfection and RNA interference were used to study the effects and mechanism of COXⅦa on PADAM rats in vivo and in vitro, aiming to provide the theoretical basis for exploring the mechanism of PADAM and gene targeting therapy.
     To study the changes of COXⅦa,3β-HSD,17β-HSD, P450scc and StAR mRNA and acute regulatory protein expression in rat testes of different periodsand the correlation between them and testosterone concentration.
     1. Male SD rats aged 1 week,3 weeks,5 weeks,3 months and 24 months were studied, each group 6 animals(1 week group was 12).
     2. The serum testosterone was determined by chemiluminescence immunoassay (CLIA), variation coefficient of inter-group and intra-group was 2.2% to 2.4% and 3.4% to 4.7% respectively.
     3. RT-PCR was used to examine the changes of COXⅦa,3β-HSD,17β-HSD, P450scc and StAR mRNA of the testicular tissues among the above groups.
     4. Western blotting and immunohistochemistry were employed to detect the difference of COXⅦa,3β-HSD,17β-HSD, and P450scc and StAR protein expression of the testicular tissues among the above groups.
     1. The testosterone level in the rat serum decreased gradually from 3 months to 24 months,5 weeks,3 weeks and 1 week group. The difference between 3 months,24 months group and the other groups was statistically significant respectively (p<0.05).
     2. COXⅦa mRNA level in 24 month group was the highest, and that in 3 month group was the lowest, and the differences between 3 months,24 months group and the other groups were statistically significant(p<0.05); 3β-HSD,17β-HSD and P450scc mRNA levels in 3 months group and 5 weeks group were significantly higher than them in other groups(p<0.05); StARmRNA level in 3 months group was the highest,5 weeks and 24 months group were followed,1 week and 3 weeks group were the lowest, the difference was statistically significant(p<0.05).
     3. COXⅦa protein expressed in plasmid and nucleus of Leydig cells and the nucleus of spermatogonia. It was the highest in 24 month group and the lowest in 3 months group.3β-HSD protein was expressed in plasmid of Leydig cells, 17β-HSD protein in plasmid of Leydig cells and nucleus of spermatogonia, P450scc protein in plasmid, nucleus and membrane of Leydig cells, and plasmid of spermatid, StAR protein in the plasmid and membrane of Leydig cells and plasmid of spermatogonia.3β-HSD,17β-HSD, P450scc and StAR protein was significantly higher in 3 months group and 5 weeks group than them in other groups(p<0.05).
     4. There was negative correlation between COXⅦa protein and serum testosterone concentration,3p-HSD,17β-HSD, P450scc and StAR protein. The differences were statistically significant except StAR (p<0.05,p<0.01).
     1. The expression of COXⅦa had significant change in different periods and it was higher in old rats than in young rats, and was negatively related to serum testosterone concentration, suggesting that COXⅦa may be associated with testosterone synthesis and involved in the occurrence of PAD AM.
     2. The expression of 3β-HSD,17β-HSD, P450scc and StAR had significant change in rat testes of different periods, namely,3 months and 5 weeks group was significant higher than 1 week,3 weeks and 24 months group.
     3. There was negative correlation between COXⅦa and 3β-HSD,17β-HSD, P450scc, indicating that COXⅦa regulated testosterone synthesis through steroidogenesis enzymes but not StAR.
     1. To explore the impact of COXⅦa overexpression to testosterone synthesis by construction pEGFP-N1-COXⅦa recombinant plasmid and transient transfection primary cultured rat Leydig cells extracted from 3 months.
     2. To explore the impact of COXⅦa suppression to testosterone synthesis by application of RNA interference inhibition of COXⅦa in Leydig cells.
     1. Improved Wang Xiaoyun's differential adhesion speed method was used in the isolation of Leydig cells; 3β-hydroxysteroid dehydrogenase (3β-HsD) staining and immunohistochemical staining were employed in identifying the cell purity,0.4% solution of trypan blue in checking cell viability.
     2.pEGPF-N1-COXⅦa plasmid construction, tranfection and function examination
     2.1 Construct pEGPF-N1-COXⅦa plasmid:COXⅦa DNA was amplified by RT-PCR from 24 month rat testis and was digested with Bgl II and EcoR I, then was linked to the pGM-T vector by T4 ligase. E. coli including pGM-T-COXⅦa plasmid and E. coli including p-EGPF-N1 plasmid were propagated in a large scale. After extracted, two kinds of plasmid were digested with Bgl II and EcoR I. Then pEGPF-N1 and COXⅦa gene was linked together by T4 linkase.
     2.2 Transfection:After the sequence of the recombinant plasmid was proved correct, the recombinant plasmid was transferred into the primary cultured Lydia cells.
     2.3 Identification to positive cells:Cells with green fluorescence under the fluorescent microscope were positive. Co focal laser scanning microscopy was used to observe in the expression and localization of pEGFP-Nl-COXⅦa within the cell which were incubated with MitoTracker (?) Red CM-H2Xros together after 20 hours transfected with pEGFP-N1-COXⅦa.
     2.4 Function examination:Cell BlueTM Kit was used to determine cell viability, CLIA was used to examine testosterone concentration, RT-PCR and western blotting were used to detect COXⅦa mRNA and protein expression respectively, and immunocytochemistry for protein localization.
     3. RNA Interference
     3.1 Transfer:SiRNA Oligo with the most powerful inhibitory effect was screened out to be tranferred into PADAM rat Leydig cells with Lipofectamine 2000. Blank control group, Lipofectamine control, negative control, RNA interference group, positive control and fluorescent labeled negative control group were formed.
     3.2 Transfer efficiency:Fluorescent microscope was used to observe fluorescent labeled negative control cells to determine transfer efficiency.
     3.3 Function examination:Cell BlueTM Kit was used to determine cell viability, CLIA was used to examine testosterone concentration, RT-PCR and western blotting were used to detect COXⅦa mRNA and protein expression respectively.
     1. The purity of isolated Leydig cells was more than 95% in accordance with the test requirements.
     2. pEGPF-N1-COXⅦa plasmid sequence was confirmed correct by using the sequencing apparatus.
     3. Both the viability and testosterone level of Leydig cells overexpressing COXⅦa was significantly decreased than them of blank control, lipofectamine and empty plasmid group (p<0.05).
     4. COXⅦa protein was detected in Leydig cell plasmid and nucleus. COXⅦa mRNA and protein of Leydig cells overexpressing COXⅦa was significantly higher than that of blank control, lipofectamine and empty plasmid group (p<0.05).
     5. SiRNA suppressed COXⅦa mRNA and protein expression in the Leydig cells, which were significantly lower than that in blank control, Lipofectamine and negative control group(p<0.05).
     6. Both the viability and testosterone level of Leydig cells with SiRNA was significantly higher than that of blank control, Lipofectamine and negative control group (p<0.05).
     COXⅦa protein can suppress cell proliferation and testosterone secretion.
     To study the impact of COXVIIa to testosterone biosynthesis in rats and the relation between it and steroidogenesis enzymes and acute regulatory protein in vivo and to explore the new therapy by using RNA interference and Polygonum Multiflorum Trunb.
     1. The impacts of COXⅦa overexpression to testosterone synthesis, steroidogenesis enzymes and acute regulatory protein in young rats:
     1.1 Animal groups:3 months SD male rats were randomly divided into pEGFP-N1-COXⅦa group (M group), empty plasmid group (P group), lipofectamine (L group), glucose control (G group) and blank control group (Bc group), each group 8 animals.
     1.2 CLIA was used to determine the concentration of total testosterone in serum. Biochemical methods were used to examine SOD, T-AOC viability and MDA level; RT-PCR and western blotting was used to detect COXⅦa, 3β-HSD,17β-HSD, P450scc and StAR mRNA and protein expression respectively.
     2. The impacts to the Testosterone synthesis and steroidogesis enzyme and protein treated with RNA interference and Polygonum Multiflorum Trunb in PADAM model rats.
     2.1 Establishment of PADAM model:clean 8 weeks male SD rats were treated with D-galactose 300mg/kg/d intraperitoneally, for continuous 50d.
     2.2 Animal groups:normal control group (Bc group), PADAM model group (M group), RNA interference group (Si group), testosterone injection group (T group), Polygonum Multiflorum Trunb treated group (H group) and model control group (Mc group), each group 8 animals.
     2.3 CLIA was used to determine the concentration of total testosterone in serum. Biochemical methods were used to examine SOD, T-AOC viability and MDA level; RT-PCR and western blotting were used to detect COXⅦa, 3β-HSD,17β-HSD, P450scc and StAR mRNA and protein expression respectively.
     1. To compare with P group, L group, G group and Bc group, the expression of the several indicators in M group was as follows:
     1.1 Serum testosterone concentration was decreased (p<0.05).
     1.2 The SOD and T-AOC activity was decreased, MDA level was increased (p<0.05).
     1.3 COXⅦa mRNA and protein expression increased respectively (p<0.05).
     1.4 3β-HSD,17p-HSD, P450scc and StAR mRNA and protein expression was decreased respectively (p<0.05).
     2. Comparison between Si group, T group and M group and Bc group after RNA interference in PADAM model rats.
     2.1 Serum testosterone concentration of Si group and T group was significantly higher than that of M group, while lower than that of Bc group (p<0.05).
     2.2 The SOD, T-AOC viability of Si group and T group was higher than that of M group, while lower than that of Bc group, MDA content in the contrary (p<0.05).
     2.3 COXⅦa mRNA and protein expression of Si group and T group decreased compared with M group, still higher than that of Bc group (p<0.05).
     2.4 3β-HSD,17β-HSD, P450scc and StAR mRNA and protein expression significantly increased compared with M group, but still lower than that of Bc group (p<0.05).
     1. COXⅦa overexpression in young rats could decrease testosterone synthesis and expression of steroidogenesis enzymes and acute regulatory protein.
     2. RNA interference in PADAM model rats could lead to partial restoration of testosterone synthesis of rats, increased expression of steroidogenesis enzymes and acute regulatory protein.
     3. COXⅦa may be play a role in the aging process and related to steroidogenesis enzymes and the acute-regulated protein.
     4. RNA interference targeting COXⅦa gene and Polygonum Multiflorum Trunb can delay senescence of rats.
     To explore whether the pathway of ERK and JNK participates in the process that COXⅦa regulates testosterone synthesis of Leydig cells.
     Leydig cells extracted from young rats and RADAM model rats were transfected with pEGPF-N1-COXⅦa recombinant plasmid and SiRNA respectively, then the experiments were as followed:
     1. Flow Cytometry was used to detect cell apoptosis rate.
     2. PCR was used to detect 3β-HSD,17β-HSD, P450scc and StAR mRNA.
     3. Immunocytochemistry was used to detect 3β-HSD,17β-HSD, P450scc, StAR, Bax and Bcl-2 protein expression.
     4. Western blotting was used to detect 3β-HSD,17β-HSD, P450scc, StAR and Bax, Bcl-2, ERK1/2, p-ERK1/2, JNK, p-JNK, P38, p-P38 protein expression.
     1. To compare with control group, empty vector group and Lipofectamine group, the expression of the several indicators in pEGPF-N1-COXⅦa group was as follows: 1.1 The apoptosis rate increased significantly (p<0.05).
     1.2 The level of 3β-HSD,17β-HSD, P450scc mRNA decreased significantly (p<0.05), while there was no significant difference of StAR mRNA.
     1.3 The expression of 3β-HSD,17β-HSD, P450scc and StAR protein expression decreased significantly (p<0.05).
     1.4 Bcl-2 expression decreased, while Bax expression increased, Bcl-2/Bax decreased (p<0.05).
     1.5 ERK1/2, JNK and P38 showed no significant difference; p-ERK1/2 and p-JNK increased significantly (p<0.05); p-P38 no positive bands.
     2. To compare with the negative control group, Lipofectamine control group and blank control group, the expression of the several indicators in the interference group with was as follows: 1.1 The apoptosis rate decreased significantly (p<0.05). 1.2 The level of 3β-HSD,17P-HSD, P450scc mRNA increased significantly (p<0.05), while there was no significant difference of StAR mRNA. 1.3 The expression of 3β-HSD,17β-HSD, P450scc and StAR protein expression increased significantly (p<0.05). 1.4 Bcl-2 expression increased, while Bax expression decreased, Bcl-2/Bax increased (p<0.05). 1.5 ERK1/2, JNK and P38 showed no significant difference; p-ERK1/2 and p-JNK significantly reduced (p<0.05); p-P38 no positive bands.
     1. In the Leydig cells overexpressing COXⅦa, p-ERK1/2 and p-JNK expression and the apoptosis rate increased, while testosterone concentration, the ratio of Bcl-2/Bax, and 3β-HSD,17β-HSD, P450scc and StAR protein decreased, suggesting that p-ERK1/2 and p-JNK could suppress steroid synthesis and promote cell apoptosis.
     2. The results of RNA interference were in accordance with those of Leydig cells overexpressing COXⅦa.
     3. COXⅦa protein exerting its function may be through the route of ERK1/2 and JNK.
引文
1 Miller WL.Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter [J].Biochim Biophys Acta,2007, 1771(6):663-676.
    2 Martinez Jabaloyas JM, Queipo Zaragoza A, Ferrandis Cortes C, et al. Changes in sexual hormones in amale population over 50 years of age. Frequency of lowtestosterone levels and risk factors [J].Actas Urol Esp, 2008,32:603-613.
    3 Araujo AB, O'Donnell AB, Brambilla DJ, et al. Prevalence and incidence of androgen deficiency in middle-aged and older men:estimates from the Massachusetts Male Aging Study [J].Clin Endocrinol Metab,2004, 89:5920-5926.
    4 Juan E. Bltimel, Peter Chedraui, Sebastian A. GiliI, et al. Is the Androgen Deficiency of Aging Men (ADAM) questionnaire useful for the screening of partial androgenic deficiency of aging men? [J].Maturitas,2009, 63:365-368.
    5邵迎红,母义明,李明,等.老年雄性大鼠睾丸类固醇合成酶与间质细胞形态的变化[J].中国老年多器官疾病,2006,5(1):44-47.
    6王鲜忠,孙燕,吴建云,等.不同时期小鼠睾丸合成睾酮能力的差异[J].农业生物技术学报,2007,15(2):207-211.
    7 Calder KM, MeEwen JE.Deletion of the COX7 gene in Saccharomyces cerevisiae reveals a role for cytochrome c oxidase subunit Ⅶ in assembly of remaining subunits[J].Mol Microbiol,1991,5(7):1769-1777.
    8辛钟成,刘武江,田龙,等.老年人睾丸组织退化的基因表达谱研究[J].北京大学学报(医学版),2003,35(4):364-368.
    9 Liu Huiwen, Li Cun, Jin Lianhong, et al.Morphological studies on the development of germ cells of rat testis[J].Acta Anatomica Sinica,1996, 27(2):217.
    10周金黄.中草药对实验模型动物和老年动物神经内分泌免疫系统的生物调节活性及老年药理学[J].中国药理学与毒理学,1991,5(4):25-26.
    11 Duarte A, Castillo AF, Castilla R, et al.An aracbidonic acid generation/export system involved in the regulation of cholesterol transport in mitochondria of steroidogenic cells[J].FEBS Lett,2007, 581(21):4023-4028.
    12孙佳音,应锋,韩晓冬.睾丸间质细胞中睾酮合成酶及蛋白表达的调控因子[J].生殖与避孕,2009,29(1):42-47.
    13成令忠,钟翠平,蔡文琴.主编.现代组织学.北京:上海科学技术出版社, 2003:969-980.
    14 Rene H, Herve L, Jose M S.Origin,differentiation and regulation of fetal and adult Leydig cells[J].Molecular and Cellular Endocrinology,2001, 179:47-74.
    15 Luo LD, Chen HL, Zirkin BR.Leydig cell aging:steroidogenic acute regulatory protein(StAR) and cholesrerol side-chain cleavage enzyme[J].Androl,2001,22(2):149-156.
    16祝辉.青春期小鼠睾丸SF-1对睾酮生成的调节.硕士学位论文,2001,南京医科大学.
    17 Oshaughnesy PJ, Wilerton L, Baker PJ.Changes in Leydig cell gene expression during development in the mouse[J]. Biology of Reproduction, 2002,66(4):966-975.
    18詹晓庆,王鲜忠,孙燕,等.StARmRNA在仔猪睾丸组织中的表达研究[J].中国生物工程,2007,27(3):60-64.
    19 Zhang FP, Pakarainen T.Molecular characterization of posmatal development of testieular steroidogenesis in luteinizing hormone receptor knockout mice[J]. Endocrinology,2004,145 (3):1453-1463.
    20王鲜忠,孙燕,吴建云,等.StAR蛋白在仔猪睾丸组织中的表达[J].农业生物技术学报,2003,11(6):624-627.
    21 Fernando Segade, Belen Hurle, EstefaniClaudio, et al.Identification of an Additional Member of the Cytochrome c Oxidase Subunit Ⅶa Family of Proteins[J]. Biol Chem,1996,24:12343-12349.
    22 Chrzanowska-Lightowlers ZM, Turnbull DM, Bindoff LA, et al.LAn antisense oligo deoxynucleotide approach to investigate the function of the nuclear-encoded subunits of human cytochrome c oxidase[J].Biochem Biophys Res Commun,1993,196(1):328-335.
    23 Walker DW, Benzer S. Mitochondrial "swirls" induced by oxygen stress and in the Drosophila mutant hyperswirl[J].Proc Natl Acad Sci USA,2004, 101(28):10290-10295.
    24陈亮,辛钟成,田龙,等.Cox7a2对睾酮合成及StAR、P450scc和.3β-HSD蛋白表达影响研究[J].中国男科学,2006,20(9):2-6.
    1 Inal ME, Kanbak G, Sunal E.et al. Antioxidant enzyme activities and malondialdehyde levels related to aging[J].Clin Chim Acta,2001, 305(1-2):75-78.
    2 Coskun PE, Pecini ER, Wallance DC.Control region mtDNA variants: longevity, climatic adaptation, and a forensic conundrum[J].Proc Natl Acad Sci USA,2003,100(5):2174.
    3 Vihra BP, Sharma SP, Kansal VK.Age-dependent variations in mitochondrial and cytosolic antioxidant enzymes and lipid peroxidation in different regions of central nervous system of guinea pigs[J].Indian J Biochem Biophys,2001,38(5):321-326.
    4陈志宏,宋成军,高福禄.天年饮调节血脂及抗氧化作用的实验研究[J].时珍国医国药,2006,17(4):528-529.
    5李亚丽,张娜,庞晓静,等.何首乌饮对衰老大鼠抗氧化能力及血脂的影响[J].中国老年学,2008,3(28):525-526.
    6 Ostermeier C, Iwata S, Michel H.Cytochrome C oxidase[J].Curr Opin Structural Biol,1996,6(4):460-466.
    7齐晓岚,钟复光.慢性染砷大鼠肝脏线粒体DNA及相关酶活性变化研究[J].中国地方病学,2002,6(4):400-402.
    8 肖冰,韩芳,石玉秀.创伤后应激障碍模型大鼠杏仁核COX及Caspase3mRNA表达的变化[J].解剖科学进展,2009,15(4):353-356.
    9 Fernando Segade, Belen Hurle, Estefani Claudio, et al.Identification of an Additional Member of the Cytochrome c Oxidase Subunit Ⅶa Family of Proteins[J]. Biol Chem,1996,24:12343-12349.
    10 Chrzanowska-Lightowlers ZM, Turnbull DM, Bindoff LA, et al.LAn antisense oligo deoxynucleotide approach to investigate the function of the nuclear-encoded subunits of human cytochrome c oxidase[J]. Bio chem Biophys Res Commun,1993,196(1):328-335.
    11 辛钟成,刘武江,田龙,等.老年人睾丸组织退化的基因表达谱研究[J].北京大学学报(医学版),2003,35(4):364-368.
    12 王晓云,邢新,周广东,等.简易快速获得大量高纯度大鼠Leydig细胞[J].中华泌尿外科学,2007,28(增):86-90.
    13 Hatefi Y.The mitochondrial electron transport and oxidative phosphorylation system[J]. Annu Rev Biochem,1985,54:1015-1069.
    14 Kadenbach B, Jarausch J, Hartmann R, et al. Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel electrophoresis procedure[J]. Anal Biochem,1983,129: 517-521.
    15 Stiburek L, Hansikova H, Tesarova M, et al.Biogenesis of eukaryotic cytochrome C oxidase[J]. Physiol Res,2006,55(Suppl 2):S27-41.
    16 Gennis R, Ferguson MS.Structure of cytochrome oxidase, energy generator of acrobic life[commen].Science,1995,269(5227):1063-1064.
    17 Turrens JF.Mitochondrial formation of reactive oxygen species [J]. Physiol, 2003,552(2):335-344.
    18 Tan S, Sagara T, Liu YB, et al.The regulation of reactive oxygen species production during programmed cell death[J]. Cell Biol,1998, 141(6):1423-1432.
    19 Rana SV.Metals and apoptosis:recent developments [J]. Trace Elem Med Biol,2008,22(4):262-284.
    20 Butterfield DA.Lipid peroxidation and protein oxidation in Alzheimer's disease brain:potential causes and consequences involving amyloid β-peptide-associated free redical oxidative stress[J]. Free Radical Bio and Med,2002,32(11):1050-1060.
    21 Hsieh CL, Huang CN, Lin YC, et al.Molecular action mechanism against apoptosis by aqueous extract from guava budding leaves elucidated with human umbilical vein endothelial cell model[J]. Agric Food Chem,2007, 55(21):8523-8533.
    22 Oka S, Ohno M, Tsuchimoto D, et al.Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs[J].EMBO,2008,27(2):421-432.
    23 Harada H,Grant S.Apoptosis regulators[J]. Rev Clin Exp Hematol, 2003,7(2):117-138.
    24 Brown GC.Control of respiration and ATP synthesis in mammalian mitochondria and cells[J].Biochem,1992,284:1-13.
    25 Xiong J, Camello PJ, Verkhratsky A, et al.Mitochondrial polarization status and[Ca2+]i signaling in rat cerebellar granule neurons aged in vitro[J]. Neurobiol Aging,2004,25(3):349-359.
    26 Timothy R, Schmidt, Morris Goodman, et al.Molecular Evolution of the COX7A Gene Family in Primaes[J].Mol Biol Evol,1999,16(5):619-626.
    27陈亮,辛钟成,田龙,等.Cox7a2对睾酮合成及StAR、P450scc和3β-HSD蛋白表达影响研究[J].中国男科学,2006,20(9):2-6.
    28陈亮,辛钟成,刘刚,等.Cox7a2荧光载体构建及其在小鼠睾丸Leydig细胞表达和定位研究[J].中国男科学,2006,20(3):7-10.
    29陈亮,辛钟成,袁亦铭,等.Cox7a2在TM3睾丸Leydig细胞中表达,定位及与ERK1/2磷酸化相关性研究[J].临床泌尿外科,2006,21(8):627-629.
    30 Hannon GJ. RNA interference[J].Nature,2002,418:244-251.
    31 Yin J, Wan Y.RNA-mediated gene regulation system now and the future[J]. Int Mol Med,2002,10(4):335-365.
    1 Juan E. Blumel, Peter Chedraui, Sebastian A. GiliI, et al,Is the Androgen Deficiency of Aging Men (ADAM) questionnaire useful for the screening of partial androgenic deficiency of aging men? [J]. Maturitas,2009, 63:365-368.
    2 Kalinchenko SIu, Vorslov LO, Aglamazian NL, et al. Efficacy and safety of hormonal therapy with androgens (androgel) in men with erectile dysfunction, partial androgen deficiency of aging male and cardiovascular diseases[J].Urologiia,2007, Jan-Feb (1):57,59-61.
    3 Martinez Jabaloyas JM, Queipo Zaragoza A, Ferrandis Cortes C, et al. Changes in sexual hormones in a male population over 50 years of age. Frequency of low testosterone levels and risk factors[J].Actas Urol Esp, 2008,32:603-610.
    4 Mahmoud AM, Goemaere S, El-Garem Y, et al.Testicular volume in relation to hormone of gonadal function in community-dwelling elderly men[J].Clin Endocrinol Metab,2003,88(1):179-184.
    5 Tenover JL.Male hormone replacement therapy including'Andropause' [J].Endocrinol Metab Clin N Amer,1998,27:969-987.
    6 Miller WL.Steroidogenic acute regulatory protein(StAR), a novel mitochondrial cholesterol transporter[J].Biochim Biophys Acta,2007, 1771(6):663-676.
    7 李蓉,冷言冰,任炯刘,等.大鼠长期摄人贫铀对睾酮合成及StAR、P450scc基因表达的影响[J].中国放射医学与防护,2009,29(1):13-16.
    8 Kim HH, Kwak DH, Yon JM, et al. Differential expression of 3beta-hydroxysteroid dehydrogenase mRNA in rat testes exposed to endocrine disruptors[J].Reprod Dev,2007,53(3):465-467.
    9 Lin YM, Liu MY, Poon SL, et al. Gonadotrophin-releasing hormone-I and-II stimulate steroidogenesis in prepubertal murine Leydig cells in vitro[J].Asian J Androl,2008,10(6):929-936.
    10柳海燕,陶晓倩,时姗姗,等.大鼠睾丸间质细胞中促性腺激素释放激素激动剂调控睾酮合成的机制[J].南京医科大学学报,2009,29(10):1337-1341.
    11 Boianov M.Andropenua i khormono-zamestitellno lechenie primuzhe [J].Vutr Boles,2000,32(3):5-9.
    12 Marks LS, Mazer NA, Mostagnel E, et al.Effect of testosterone replacement therapy on prostate tissue in men with late-onset hypogonadism:a randomized trail[J].JAMA,2006,296:2351-2361.
    13 Katz A.Androgen replacement therapy in aging men[J].Nurse Pract,2004, 29:58-64.
    14李亚丽,张娜,邢恩鸿,等.何首乌饮对亚急性衰老大鼠的抗氧化和调血脂作用[J].中国新药,2008,17(4):289-291.
    15李亚丽,张娜,庞晓静,等.何首乌饮对衰老大鼠抗氧化能力及血脂的影响[J].中国老年学,2008,28(6):525-526.
    16陈雪,牛嗣云,曲银娥,等.何首乌饮对衰老大鼠肾脏增殖与凋亡的影响[J].时珍国医国药,2009,20(3):650-651.
    17李亚丽,周利霞,张娜,等.何首乌饮对亚急性衰老大鼠卵巢细胞凋亡及相关基因表达的影响[J].中国老年学,2009,29(3):265-266.
    18潘如能.大鼠睾丸注射微量昆明山海棠单体抗生育初筛试验方法学的建立[J].中国优生与遗传,2007,15(2):97-101.
    19许绍芬.神经生物学.2版,上海:上海医科大学出版社,1999.
    20章振保,杨庆涛.淫羊藿甙抗大鼠雄激素部分缺乏的实验研究[J].中国男科学,2006,20(3):47-50.
    21 Das UB, Mallick M.Protective effect of ascorbic acid on cyclophosphamid-induced testicular gametogenic and androgen disorders in male rats[J].Asian Androl,2002,4(3):201-207.
    22王静凤,田树川.海狗抗肾衰老作用的实验研究[J].中国海洋药物,2002, 21(5):34-36.
    23孙祥宙,邓春华,郭海彬,等.睾丸间质细胞移植治疗中老年男性雄激素缺乏症动物模型的实验研究[J].实用医学2004,20(9):1008-1009.
    24牛嗣云.松花粉抗下丘脑-垂体-睾丸衰老机理的研究.博士学位论文,2006,河北医科大学.
    25 Christ-Crain M, Meier C, Huber P. R, et al.Value of Gonadotropin-Releasing Hormone Testing in the Differential Diagnosis of Androgen Deficiency in Elderly Men[J].Clin Endocrinol Metab,2005, 90(3):1280-1286.
    26 Luo LD, Chen HL, Zirkin BR.Leydig cell aging:steroidogenic acute regulatory protein(StAR) and cholesrerol side-chain cleavage enzyme[J].Androl,2001,22(2):149-156.
    27 Zhou Wen, YangJin-qing, Wang Xu-bu, et al.Change of steroidogenic acute reglllatory protein and cytochrome P450 cholesterol side-chain cleavage mRNA in testis of rats after electmmagnetic irradiation[J].Chinese Journal of Clinical Rehabilitation,2005,9(3):229-231.
    28李蓉,冷言冰,任炯刘,等.大鼠长期摄人贫铀对睾酮合成及StAR、P450scc基因表达的影响[J].中国放射医学与防护,2009,29(1):13-16.
    29邵迎红.衰老对雄性大鼠睾丸功能的影响[J].博士学位论文,2004,解放军军医进修学院.
    30 Miller WL.Steroidogenic acute regulatory protein(StAR), a novel mitochondrial cholesterol transporter[J].Biochim Biophys Acta,2007, 1771(6)663-676.
    31 Leer-Sucheta S, Stocco DM, Azhar S, et al.Down-regulation of steroidogenic acute regulatory(StAR)protein in rat Leydig cells:implications for regulation of testosterone production during aging[J].Mech Ageing Dev,1999,107:197-203.
    32 Vihra BP, Sharma SP, Kansal VK.Age-dependent variations in mitochondrial and cytosolic antioxidant enzymes and lipid peroxidation in different regions of central nervous system of guinea pigs[J].Indian Biochem Biophys,2001,38(5):321-326.
    33 LIU Kun-zhi.The effect of deoxyribonucleic acid on the activity of superoxide dismutase and peroxidose[J].Acta Laser Biology Sinica,2002, 11(2):119-121.
    34 Inal ME,Kanbak G,Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging[J].Clin Chim Acta,2001, 305(1-2):75-78.
    35 陈志宏,宋成军,高福禄.天年饮调节血脂及抗氧化作用的实验研究[J].时珍国医国药,2006,17(4):528-529.
    1 Lewis TS, Shapiro PS & Ahn NG. Signal transduction through MAP kinase cascades [J]. Advances in Cancer Res,1998,74:49-139.
    2 Wong CH, Cheng CY. Mitogen-activated protein kinases, adherens junction dynamics, and spermatogenesis:A review of recent date. Dev Biol,2005,286(1):1-15.
    3于海歌.p,p'-DDE, β-BHC及其联合作用对大鼠支持细胞JNK MAPK信号转导通路的影响.硕士学位论文,2008,华中科技大学.
    4柳海燕,陶晓倩,时姗姗,等.大鼠睾丸间质细胞中促性腺激素释放激素激动剂调控睾酮合成的机制[J].南京医科大学学报,2009,29(10):1337-1341.
    5 Renlund N, Y Jo, Svechnikova I, Holst M, et al. Induction of steroidogenesis in immature rat Leydig cells by interleukin-1a is dependent on extracellular signal-regulated kinases[J].Mol Endocrinol, 2006,36(2):327-336.
    6 Martinelle N, Holst M, Soder O, et al. Extracellular signal regulated kinases are involved in the acute activation of steroidogenesis in immature rat Leydig cells by human chorionic gonadotropin [J]. Endocrinol,2004, 145(10):4629-4634.
    7蒋而鹏.p38MAPK在小鼠睾丸不同发育阶段及实验性隐睾中的表达.硕士学位论文,2003,第四军医大学.
    8 Johnson G L, Lapadat R.Mitogen-activated protein kinase pathways medialed by ERK, JNK and p38 protein kinases [J].Science,2002,298 (6):1911-1912.
    9 Hindley A, Kolch W.Extracellular signal regulated kinase (ERK) /mitogen activated protein killase (MAPK)-independent functions of Raf kinases [J].Cell Sci,2002,115:1575-1581.
    10 Sherr CJ.Cancer cell cycles [J].Science,1996,274(5293):1672-1677.
    11 Gyles SL, Burns CJ, Whitehouse BJ, et al. ERKs regulate cyclic AMP-induced steroid synthesis through transcription of the steroidogenic acute regulatory (StAR) gene [J].Bio Chem,2001,276:34888-34895.
    12 Christenson LK, Strauss 3rd JF. Steroidogenic acute regulatory protein (StAR) and the intramitochondrial translocation of cholesterol[J].Biochim Biophys Acta,2000,1529:175-187.
    13王献忠,孙燕,潘虹梅,等.hCG通过ERK1/2调节睾丸间质细胞StAR蛋白的表达[J].兽牧医学学报,2006,37(11):1154-1159.
    14 Stocco DM.StAR protein and the regulation of steroid hormone biosynthesis[J].Annu Rev Physiol,2001,63:193-213.
    15柳海燕,时姗姗,陶晓倩,等.促性腺激素释放激素激动剂通过ERKMAPK途径调控大鼠睾丸间质细胞3β-HSDmRNA表达[J].医学研究生学报,2009,22(8):789-793.
    16 Shiraishi K, Ascoli M.Lutropin/choriogonadotropin stimulate the proliferation of primary cultures of rat Leydig cells through a pathway that involves activation of the extracellularly regulated kinase 1/2 cascade [J]. Endocrinology,2007,148:(7):3214-3225.
    17 Tajima K, Dantes A, Yao Z, et al. Down-regulation of steroidogenic response to gonadotropins in human and rat preovulatory granulosa cells involves mitogen-activated protein kinase activation and modulation of DAX-1 and steroidogenic factor-1[J].Clin Endocrinol Metab,2003, 88:2288-2299.
    18 Martinat N, Crepieux P, Reiter E, et al. Extracellular signal-regulated kinases (ERK) 1,2 are required for luteinizing hormone (LH)-induced steroidogenesis in primary Leydig cells and control steroidogenic acute regulatory (StAR) expression[J].Reproduction and Nutrition Development, 2005,45:101-108.
    19 Seger R, Hanoch T, Rosenberg R, et al. The ERK signaling cascade inhibits gonadotropin-stimulated steroidogenesis [J].Bio Chem,2001, 276:13957-13964.
    20 Haper SJ, LoGrasso P. Signalling for survival and death in neurones; the role of stress-activated kinases, JNK and P38[J].Cell Signal,2001, 13(5):299-310.
    21陈良思.JNK信号转导通路及其在应激中的作用[J].2001,21(3):169-171.
    22 Widman C, Gibson S, Jarpe MB, et al.Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human [J]. Physiol Rev,1999,79:143-180.
    1 Harman SM, Metter EJ, Tobin JD, et al. Longitudinal effects of aging on serum total and free testosterone levels in healthy men Baltimore Longitudinal Study of Aging[J].Clin Endocrinol Metab,2001, 86:724-731.
    2 Juan E. Blumel, Peter Chedraui, Sebastian A. GiliI, et al.Is the Androgen Deficiency of Aging Men (ADAM) questionnaire useful for the screening of partial androgenic deficiency of aging men?[J].Maturitas,2009, 63:365-368.
    3 Shen SQ, Xu XY, Cai RF, et al. Health investigation of 3 551 middle-aged and old males in Jiangsu Province[J].Zhonghua Nan Ke Xue, 2005,11(6):438-441.
    4 Jiangyuan LI, Xiaoying LI, Ming LI, et al.Decline of serum free testosterone in aging headthy Chinese men[J].Aging Male,2005, 8:203-206.
    5 Kalinchenko SIu, Vorslov LO, Aglamazian NL, et al. Efficacy and safety of hormonal therapy with androgens (androgel) in men with erectile dysfunction, partial androgen deficiency of aging male and cardiovascular diseases[J], Urologiia,2007, Jan-Feb(1):57,59-61.
    6 Amore M. Partial androgen deficiency and neuropsychiatric symptoms in aging men[J].Endocrinol Invest,2005,28(11 Suppl Proceedings):49-54.
    7 Romanelli F, Latini M.The laboratory assessment of partial androgen deficiency of the aging male[J]. Endocrinol Invest,2005,28:39-42.
    8 李江源.中国中、老年男子部分性雄激素缺乏综合征诊断、治疗和监测的基本原则[J].中华男科学,2001,17(1):112-116.
    9 Moncada I. Testosterone and men's quality of life[J].Aging Male,2006, 9:189-93.
    10 Gooren LJ. Late-onset hypogonadism [J].Front Horm Res,2009, 37:62-73.
    11 Yassin AA, Saad F, Gooren LJ. Metabolic syndrome, testosterone deficiency and erectile dysfunction never come alone[J].Andrologia,2008, 40:259-64.
    12 Wemer AA. The male climacteric[J].AMa 1939,112(44):1443.
    13 Romanelli F, Latini M.The laboratory assessment of partial androgen deficiency of the aging male[J].Endocrinol Invest,2005,28:39-42.
    14李江源.PADAM的诊断和治疗进展.基础医学与临床[J],2006,26(3):231-237.
    15邓春华,丘少鹏.男科典型病例分析[M].北京:科学技术文献出版社,2003,481-513.
    16 Gray A, Feldman HA, McKinlay JB, et al.Age, disease, and changing sex hormone levels in middle-aged men:results of the Massachusetts Male Aging Study[J].Clin Endocrinol Metab,1991,73(5):1016-1025.
    17 Campusano C, Brusco F, Campino C, et al. Comparacion dedistintos metodos para evaluar la funcion androgenica en el adulto mayor[J]. Rev Med Chile,2006,134:1123-1128
    18 Martinez Jabaloyas JM, Queipo Zaragoza A, Ferrandis Cortes C, et al. Changes in sexual hormones in a male population over 50 years of age. Frequency of low testosterone levels and risk factors [J].Actas Urol Esp, 2008,32:603-610.
    19 Feldman HA, Longcope C, Derby CA, et al.Age trends in the level of serum testosterone and other hormones in middle-aged men:longitudinal results from the Massachusetts Male Aging Study[J].Clin Endocrinol Metab,2002,87:589-598.
    20 Harman SM, Metter EJ, Tobin JD, et al.Longitudinal effects of aging on serum total and free testosterone levels in healthy men[J].Clin Endocrinol Metab,2001,86:724-731.
    21 Muller M, den Tonkellar I, Thijssen JHH, et al.Endogenous sex hormones in men aged 40-80 years[J].Endocrinology,2003,149:583-589.
    22 Araujo AB, O'Donnell AB, Brambilla DJ, et al.Prevalence and incidence of androgen deficiency in middle-aged and older men:estimates from the Massachusetts Male Aging Study[J].Clin Endocrinol Metab,2004,89: 5920-5926.
    23 Bu B Yeap, Osvaldo PAlmeida, Zoe Hyde et al.In men older than 70 years, total testosterone remains stable while free testosterone declines with age. The Health in Men Study[J].Endocrinology,2007,156: 585-594.
    24 Chen RYT, Wittert GA, Andrews GR.Relative androgen deficiency in relation to obesity and metabolic status in older men[J].Diabetes Obesity and Metabolism,2006,8:429-435.
    25 Morales A, Lunenfeld B.Investigation, treatment and monitoring of late-onset hypogonadism in males official recommendations of ISSAM.Intemational Society for the Study of the Aging Male [J]. Aging Male,2002,5(2):74-86.
    26 Kaufman JM, Vermeulen A. The decline of androgen levels in elderly men and its clinical and therapeutic implications [J].Endocrine Reviews, 2005,26:833-876.
    27 Muller M, Grobbee DE, den Tonkelaar I, et al. Endogenous sex hormones and metabolic syndrome in aging men[J]. Clin Endocrinol Metab,2005, 90:2618-2623.
    28 Snyder PJ.Hypogonadism in elderly men-what to do until the evidence comes [J].N Engl Med,2004,350(5):440-442.
    29 Tan RS, Pu SJ.Is it andropause? Recognizing androgen deficiency in aging men[J].Postgrad Med,2004,115(1):62-66.
    30 Comhaire FH.Androppasue:hormone replacement therapy in the aging male[J].Eur Urol,2000,38:685-662.
    31李宏军.男性更年期综合征的发病机制[J].中国男科学杂志,2006,20(6):2-5.
    32. Moffat SD, Zonderman AB, Metter EJ, et al. Longitudinal assessment of serum free testosterone concentration predicts memory performance and cognitive status in elderly men[J].Clin Endocrinol Metab,2002, 87:5001-5007.
    33 Moffat SD, Zonderman AB, Metter EJ, et al. Free testosterone and risk for Alzheimer disease in older men[J].Neurology,2004,62:188-193.
    34 Fukui M, Kitagawa Y, Nakamura N, et al.Association between serum testosterone concentration and carotid atherosclerosis in men with type 2 diabetes[J]. Diabetes Care,2003,26:1869-1873.
    35 Kapoor D, Malkin CJ, Channer KS, et al.Androgens, insulin resistance and vascular disease in men[J].Clin Endocrinol,2005,63:239-250.
    36 Kupelian V, Page ST, Araujo Ab, et al. Low SHBG total testosterone, and symptomatic androgen deficiency are associated with development of metabolic syndrome in non-obese men[J].Clin Endocrinol Metab,2006, 91:843-850.
    37 Muller M, Grobbee DE, den Tonkelaar I, et al. Endogenous sex hormones and metabolic syndrome in aging men[J].Clin Endocrinol Metab,2005, 90:2618-2623.
    38 Kapoor D, Goodwin E, Channer KS, et al.Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes [J]. Euro Endocrinol,2006,154:899-906.
    39 Muller M, van den Beld AW, Bots ML, et al. Endogenous sex hormones and progression of carotid atherosclerosis in elderly men[J].Circulation, 2004,109:2074-2079.
    40 Hak AE, Witteman JC, Jong FH, et al.Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men:the Rotterdam Study[J].Clin Endocrinol Metab,2002,87:3632-3639.
    41 Van den Beld AW, Bots ML, Janssen JA, et al. Endogenous hormones and carotid atherosclerosis in elderly men[J].Epidemiol,2003,157: 25-31.
    42 Tan RS, Pu SJ.Impact of obesity on hypogonadism in the andropause[J].Int J Androl,2002,25(4):195-201.
    43 Mohr BA, Bhasin S, O'Donnell AB, et al.The effect of changes in adiposity on testosterone levels in older men:longitudinal results from the Massachusetts Male Aging Study[J].European Endocrinology,2006, 155:443-452.
    44 Svartberg J, Midtby M, Bonaa KH, et al.The associations of age, lifestyle factors and chronic disease with testosterone in men:the Tromso study [J]. Euro Endocrinol,2003,149:145-152.
    45 De Pergola G, Pannacciulli N, Ciccone M, et al.Free testosterone plasma levels are negatively associated with the intima-media thickness of the common carotid artery in overweight and obese glucose-tolerant young adult men[J].Obes Relat Metab Disord,2003,27:803-807.
    46 Bhasin S, Woodhouse L, Casaburi R, et al.Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle[J].Clin Endocrinol Metab,2005,90:678-688.
    47 DavisDL, AxelrodD, BaileyL, et at. Rethinking breast cancer risk and the environment:the case for the precautionary principle[J].Environ Health Perspect,1998,106(9):523-529.
    48宋宏宇,王捷.环境内分泌干扰物与农药[J].农药科学与管理,2001,22(2):23-25.
    49 Ankley GT, Jensen KM, Kahl MD, et al.Description and evaluation of short-term reproductive test with the fathead minnow(Pimephales promelas)[J].Environ Toxicol chem,2001,20(6):1276.
    50 Schonfelder G, Wittfoht W, Hopp H, et al.Parent bisphenol A accumulation in the human maternal-fetal-placental unit[J].Environ Health Perspect,2002,110(11):A7032-71.
    51 Latchoumycandane C, Mathur PP.Induction of oxidative stress in the rats testis after short-term exposure to the organochlorine pesticide methoxychlor [J].Arch Toxicol,2002,76(12):692.
    52 Stoker TE, Laws SC, Guidici DL, et al.The Effect of atrazine on puberty in male wistar rats:an evaluation in the protocol for the assessment of pubertal development and thyroid function [J].Toxical Sci,2000, 58(1):50.
    53 Takahashi O, Oishi S.Testicular toxicity of dietarily or parenterally administered bisphenol A in rats and mice [J].Food Chem Toxicol,2003, 41(7):1035.
    54 Travison TG, Araujo AB, Kupelian V, et al.The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men [J]. Clin Endocrinol Metab,2007,92:549-555.
    55 GrayPB, Yang CF, Pope HG Jr.Fathers have lower salivary testosterone levels than unmarried men and married non-fathers in Beijing, China [J].Proc Biol Sci,2006,273:333-339.
    56 Tan RS, Philip PS.Perceptions and risk factors for Andropouse and Andriol [J].1999,33:277-233.
    57魏莎莉,周生建,王瑶,等.吸烟对男性精液参数、精子功能及睾酮影响的研究[J].中国男科学杂志,2000,14:237-239.
    58 Bergendahl M, Aloi JA, Iranmanesh A, et al. Fasting suppresses pulsafile luteinizing hormone (LH)secretion and enhances orderliness of LH release in young but not older men[J].Clin Endocrinol Metab,1998, 83(6):1967-1975.
    59周文,杨进清,王虚步,等.电磁辐射对大鼠睾丸合成睾酮功能的影响[J].解放军预防医学杂志,2004,22(6):413-415.
    60王启荣,周丽丽,高红,等.运动性低血睾酮与血清皮质醇(酮)睾丸11β-HSDmRNA水平及其中药干预的影响[J].天津体育学院学报,2005,20(4):1-4.
    61 Yong CK.Hormonal replacement therapy and aging:Asian pratical recommendations on testosterone supplementation[J]. Asian Androl,2003, 5(4):399-344.
    62 Christ-Crain M, Meier C, Huber PR, et al.Value of Gonadotropin-Releasing Hormone Testing in the Differential Diagnosis of Androgen Deficiency in Elderly Men[J].Clin Endocrinol Metab,2005, 90(3):1280-1286.
    63郑晓春,陈淑英,郑松柏,等.中老年男性血清睾酮、游离睾酮、双氢睾酮和雄激素结合球蛋白含量的变化[J].中国男科学杂志,2003, 17(4):242-246.
    64应俊,姚德鸿,张庆华.血清睾酮、游离睾酮、双氢睾酮浓度与男性年龄关系的研究[J].中国男科学杂志,2000,14:13-15.
    65戴继灿,李跃辉,江鱼.雄激素水平增龄变化对老年男性的影响[J].中华男科学,2001,7:52-54.
    66 Valenti G. The pathway of partial androgen deficiency of aging male. J Endocrinol Invest[J].2005,28(11 Suppl Proceedings):28-33.
    67 Vihra BP, Sharma SP,Kansal VK.Age-dependent variations in mitochondrial and cytosolic antioxidant enzymes and lipid peroxidation in different regions of central nervous system of guinea pigs[J].Indian J Biochem Biophys,2001,38(5):321-326.
    68 LIU Kun-zhi.The effect of deoxyribonucleic acid on the activity of superoxide dismutase and peroxidose [J].Acta Laser Biology Sinica,2002, 11(2):119-121.
    69 Inal ME, Kanbak G, Sunal E.Antioxidant enzyme activities and malondialdehyde levels related to aging[J].Clin Chim Acta,2001, 305(1-2):75-78.
    70姚谦明,蒋宇刚,何启.何首乌对脑细胞Bcl-2基因表达的影响实验性研究[J].现代临床医学生物工程学杂志,2002,8(2):83-86.
    71李亚丽,张娜,邢恩鸿,等.何首乌饮对亚急性衰老大鼠的抗氧化和调血脂作用[J].中国新药杂志,2008,17(4):289-291.
    72陈志宏,宋成军,高福禄.天年饮调节血脂及抗氧化作用的实验研究[J].时珍国医国药,2006,17(4):528-529.
    73李亚丽,张娜,庞晓静,等.何首乌饮对衰老大鼠抗氧化能力及血脂的影响[J].中国老年学杂志,2008,3(28):525-526.
    74 Mendis-Handagama SMLC, Kerr JB, De-Kretser DM, et al. Experimental cryptorchidism in the adult mouse(qualitative and quantitative light microscopic morphology) [J].Androl 1990,11:539-547.
    75杜育达,李佳睿,黄晶,等.大鼠睾丸衰老与脂质过氧化[J].中国老年学杂志,2002,22:129-130.
    76 Neaves WB, Johnson L, Porter JC, et al.Leydig cell numbers, daily sperm production, and serum onadotropin levels in aging men[J].Clin Endocrinol Metab,1984,59(4):756-763.
    77 Mahmoud AM, Goemaere S, E12Garem Y, et al.Testicular volume in relation to hormone indices of gonadal function in community-dwelling elderly men[J].Clin Endocrinol Metab,2003:88 (1):179-184.
    78邵迎红,母义明,李明,等.老年雄性大鼠睾丸类固醇合成酶与间质细胞形态的变化[J].中国老年多器官疾病杂志,2006,5(1):44-47.
    79邓春华,郭海彬,刘建中.间质细胞结构和功能变化的实验研究[J].中华男科学杂志,2005,11(10):740-743.
    80武桂新,谢敏豪,冯炜权.运动应激与睾酮生物合成研究进展[J].北京体育大学学报,2001,24(3):342-346.
    81 Miller WL.Steroidogenic acute regulatory protein(StAR), a novel mitochondrial cholesterol transporter[J].Biochim Biophys Acta,2007, 1771(6):663-676.
    82 Duarte A, Castillo AF, Castilla R, et al. An aracbidonic acid generation/export system involved in the regulation of cholesterol transport in mitochondria of steroidogenic cells[J].FEBS Lett,2007, 581(21):4023-4028.
    83 Luo LD, Chen HL, Zirkin BR.Leydig cell aging:steroidogenic acute regulatory protein(StAR) and cholesrerol side-chain cleavage enzyme[J].Androl,2001,22(2):149-156.
    84 Leer-Sucheta S, Stocco DM, Azhar S, et al.Down-regulation of steroidogenic acute regulatory(StAR)protein in rat Leydig cells:implications for regulation of testosterone production during aging[J].Mech Ageing Dev,1999,107:197-203.
    85钟敏,周文,余争平,等.微波辐射对大鼠睾丸StAR、P450scc基因表达影响[J].中国公共卫生,2005,21(5):545-547.
    86谢琳.银杏叶提取物对2型糖尿病大鼠睾丸莱迪希细胞的影响及作用机制.硕士学位论文,2007,温州医学院.
    87 Culty M, Luo LD, Yao ZX, et al.Cholesterol transport, peripheral benzodiazepine receptor, and steroidogenesis in aging Leydig cells [J].Androl, 2002,23:439-447.
    88 Sugawara T, Fujimoto S.The potential function of steroid sulphatase activitity in steroid production and steroidogenic acute regulatory protein expression[J].Biochem,2004,380(pt 1):153-160.
    89 Renlund N, Jo Y, Svechnikova I, et al.Induction of steroidogenesis in immature rat Leydig cells by interleukin-la is dependent on extracellular signal-regulated kinases [J].Mol Endocrinol,2006,36(2):327-336.
    90 Zhou Wen, YangJin-qing, Wang Xu-bu, et al.Change of steroidogenic acute reglllatory protein and cytochrome P450 cholesterol side-chain cleavage mRNA in testis of rats after electmmagnetic irradiation[J].Chinese Journal of Clinical Rehabilitation,2005,9(3):229-231.
    91李蓉,冷言冰,任炯刘,等.大鼠长期摄人贫铀对睾酮合成及StAR、P450scc基因表达的影响[J].中国放射医学与防护杂志,2009,29:(1)13-16.
    92邵迎红.衰老对雄性大鼠睾丸功能的影响[J].博士学位论文,2004,解放军军医进修学院.
    93王鲜忠,孙燕,吴建云,等.不同时期小鼠睾丸合成睾酮能力的差异[J].农业生物技术学报,2007,15(2):207-211.
    94 Simard J, Ricketts ML, Gingras S, et al. Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family [J]. Endocr Rev,2005,26(4)525-582.
    95 Kim HH, Kwak DH, Yon JM, et al. Differential expression of 3beta-hydroxysteroid dehydrogenase mRNA in rat testes exposed to endocrine disruptors[J].Reprod Dev,2007,53(3):465-467.
    96 Lin YM, Liu MY, Poon SL, et al.Gonadotrophin-releasing hormone-I and-II stimulate steroidogenesis in prepubertal murine Leydig cells in vitro[J].Asian Androl,2008,10(6):929-936.
    97柳海燕,陶晓倩,时姗姗,等.大鼠睾丸间质细胞中促性腺激素释放激素激动剂调控睾酮合成的机制[J].南京医科大学学报,2009,29(10):1337-1341.
    98成令忠,钟翠平,蔡文琴,主编.现代组织学.北京:上海科学技术出版社,2003:521-539.
    99 Kaufman JM, Giri M, Deslypere JM, et al. Influence of age on the responsiveness of the gonadotrophs to luteinizing hormonereleasing hormone in males[J].Clin Endocrinol Metab,1991,72:1255-1260.
    100 Smals AG, Hermus AR, Boers GH, et al.Predictive value of luteinizing hormone releasing hormone (LHRH) bolus testing before and after 36 h pulsatile LHRH administration in the differential diagnosis of constitutional delay of puberty and male hypogonadotropic hypogonadism[J].Clin Endocrinol Metab,1994,78:602-608.
    101牛嗣云.松花粉抗下丘脑-垂体-睾丸衰老机理的研究.博士学位论文,2006,河北医科大学.
    102 Wu CY, Yu TJ, Chen MJ.Age related restosterone level changes and male andropause syndrome.Chang Gung Med,2000,23:348-353.
    103 Spetz AC, Palmefors L, Skobe RSP,et al.Testosterone correlated to symptoms of partial androgen deficiency in aging men(PADAM)in an elderly Swidish population[J].Menopause,2007,14:973-1005.
    104 Morley JE, Charlton E, Partrick P, et al.Validation of a screening questionnaire for androngen deficiency in aging males [J].Metabolism, 2000,49:1239-1242.
    105 Hochretter WW, Ackermann DK, Brutsch HP.Andropause[J].Ther Umsch, 2005,62:821-826.
    106 Morales A, Lunenfeld B.Androgen replacement therapy in aging men with secondary hypoganadism.Draft of recommendations for endorsement by ISSAM[J].Aging Male,2001,4:151-162.
    107 Mario Amore, Fabiano Scarlatti, Antonio Lucio Quarta, et al.Partial androgen deficiency, depression and testosterone treatment in aging men[J].Aging Clin Exp Res,2009,21:1-8.
    108 Daig I, Heinemann LA, Kim S, et al.The Aging Males'Symptoms (AMS)scale:review of its methodological characteristics [J].Health Qual Life Outcomes 2003,1:77.
    109 O'Donnell AB, Araujo AB, Goldstein I, et al.The validity of a single question self-report of erectile dysfunction. Results from the Massachusetts Male Aging Study[J].J Gen Intern Med 2005,20:515-9
    110路易,杨东,李国斌,等.补肾益精汤配合理疗治疗男性更年期综合征36例[J].陕西中医,2008,29(4):419-421.
    111戴东曦,谢毅.中老年男子部分雄激素缺乏中药治疗的初步研究[J].中国中医药信息杂志,2005,12(8):63-64.
    112郑雪峰,李沛.针药结合对中老年男性部分雄激素缺乏综合征患者生殖内分泌的影响[J].中国针灸,2007,27(5):333-335.
    113邵欣胤,李金彪,王悦军.安特尔联合绒促性素治疗中老年男子部分性雄激素缺乏综合征的临床研究[J].中国医师杂志,2007,9(2):263-265.
    114蒲军,吴小候,唐伟,等.联合应用西地那非和十一酸睾酮治疗伴PADAM的勃起功能障碍[J].重庆医科大学学报,2009,34(9):1205-1206.
    115邓军,江洋,高坪,等.十一酸睾酮与佳蓉片联合治疗PADAM的疗效观察[J].中国男科学杂志,2004,18(2):43-45.
    116王玺坤.六味地黄汤加减对中老年男性部分雄激素缺乏综合征患者的睾酮、体能及血管舒缩症状评分的影响[J].新医学,2008,39(9):617-618.
    117戴继灿,李江源.PADAM的诊断以及雄激素补充治疗的安全性问题-中国中老年男子健康研究会(CHISAM)专家会议纪要[J].中国内分泌杂志,2006,20(12):68-69.
    118 Morales A, Spevack M, Emerson L, et al. Adding to the controversy: pitfalls in the diagnosis of testosterone deficiency syndromes with questionnaires and biochemistry [J]. Aging Male,2007,10:57-65.
    119 Martinez-Jabaloyas JM, Queipo-Zaragoza A, Rodriguez-Navarro R, et al. Relationship between the Saint Louis University ADAM questionnaire and sexual hormonal levels in a male outpatient population over 50 years of age[J].Eur Urol,2007,52:1760-1767.
    120 Lejeune H, Dechaud H, Pugeat M.Contribution of bioavailable testosterone assay for the diagnosis of androgen deficiency in elderly men[J].Ann Endocrinol (Paris) 2003,64:117-25.
    121 Kelleher S, Conway AJ, Handlsman J.Blood Testosterone Threshold for Androgen Deficiency Symptoms[J].The Clin Endocrinol Metab,2004, 89(8):3813-3817.
    122 Vermeullen A.Hormonal cut-offs of ppartial androgen deficiency:a survy of androgen assays [J].Endocrinol Invest,2005,28:125-127.
    123 Valenti G, Bossoni S, Glustina A, et al.Italian Study Group on Geriatric Endocrinology.Consensus document on substitution therapy with testosterone in hypoandrogenic elderly men.Aging Clin Exp Res,2002, 14:439-464.
    124 Nieschlag E, Swerdloff R, Behre HM, et al.Investigation,treatment and monitoring of late-onset hypogonadism in malles:ISA, ISSAM and EAU recommendations[J].Int Androl,2005,28:125-127.
    125 Jiang-yuan LI, Xiao-ying LI, Ming LI, et al.Decline of serum free testosterone in aging headthy Chinese men[J].Aging Male,2005, 8:203-206.
    126 Boianov M.Andropenua i khormono-zamestitellno lechenie primuzhe [J].Vutr Boles,2000,32(3):5-9.
    127 Page ST, Amory JK, Bowman FD, et al.Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength, and lean body mass in older men with low serum T[J].Clin Endocrinol Metab, 2005,90:1502-1510.
    128 Rochira V, Balestrieri A, Madeo B, et al. Osteoporosis and male age-related hypogonadism:role of sex steroids on bone (patho) physiology[J].Euro Endocrinol,2006,154:175-185.
    129 Aminorroaya A, Kelleher S, Conway AJ, et al.Adequacy of androgen replacement influences bone density response to testosterone replacement in androgen-deficient men[J].European Endocrinology, 2005,152:881-886.
    130Hijazi RA, Cunningham GR.Androppause:is androgen replacement therapy indicated for the aging male[J]?Annu Rev Med,2005, 56:117-137.
    131 Liu PY, Yee B,Wishart SM et al.The short-term effects of high-dose testosterone on sleep, breathing, and function in older men[J].Clin Endocrinol Metab,2003,88:3605-3613.
    132 Bhasin S, Cunningham GR, Haues FJ, et al.Testosterone therapy in adult men with androgen deficiency syndromes:an Endocrine Society Clinical Practice Guideline[J].Clin Endocrinl Metab,2006,1995-2010.
    133 Rhoden EL, Morgentaler A.Risks of testosterone-repplacement therapy and recommendations for monitoring[J].N Engl Med,2004,350:482-492.
    134 Pope HG Jr, Cohane GH, Kanayama G, et al.Testosterone gel supplementation-controlled trial[J].Am Pschiatry,2003,160:105-111.
    135 Kaufman JM, Vermenlen A.The decline of androgen level in elderly men and its clinical an therapeutic implication[J].Endocr Rev,2005, 26:833-876.
    136 Marks LS, Mazer NA, Mostagnel E, et al.Effect of testosterone replacement therapy on prostate tissue in men with late-onset hypogonadism:a randomized trail[J]. JAMA,2006,296:2351-2361.
    137 Rhoden EL, Morgentaler A.Influence of demographic factors and biochemical characteristics on the prostate-specific antigen(PSA)reponse to testosterone replacement therapy[J].Int Impot Res,2006,18:201-205.
    138 Alexandersen P, Christiansen C.The aging male:testosterone deficiency and testosterone replacemen.An up-datet [J].Atherosclerosis,2004, 173:157-169.
    139 Katz A.Androgen replacement therapy in aging men[J].Nurse Pract,2004, 29:58-64.
    140 Tan RS, Culberson JW.An intergrative review on current evidence of tertosterone replacement therapy for the andropause [J].Maturitas,2003, 45:15-27.
    141 Wu FC Von Eckardstein A.Androgens and coronary artery disease[J].Endocr Rev,2003,24:183-217.
    142 薛景凤,宋成军,李健,等.中药天年饮对衰老大鼠睾丸生精细胞增殖及相关因素的作用[J].时珍国医国药,2006,17(11):2161-2162.
    143 孙祥宙,邓春华,郭海彬,等.睾丸间质细胞移植治疗中老年男性雄 激素缺乏症动物模型的实验研究[J].实用医学杂志,2004,20(9):1008-1009.
    144辛钟成,刘武江,田龙,等.老年人睾丸组织退化的基因表达谱研究[J].北京大学学报(医学版),2003,35(4):364-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700