基于多电平变换技术的高频感应加热电源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应加热电源在冶金、金属热处理等行业中有着广泛的应用,对国民经济发展有很大的推动作用,随着电力电子技术的不断发展,目前对感应加热电源的研究,尤其对高频电源的研究日益受到重视。为发展高频感应加热电源技术,同时促进多电平逆变器在高频领域的应用,文中对基于多电平变换技术的高频感应加热电源进行了研究。
     分析了感应加热电源应用中,两模块级联的多电平逆变器在传统触发方式下的工作过程,得出了以下的结论:在导通时间短的逆变模块中,存在二极管反向恢复电流的不良影响;逆变器的输出电压存在电位不对称现象,增加了逆变器输出电压谐波调节工作的复杂度。
     提出了感应加热电源级联型多电平逆变器新型的工作方式。通过对功率开关器件触发信号的设置研究,解决了多电平逆变器输出电压波形的调整问题;通过分析负载电流换向点与触发信号死区的关系,研究了负载电压的二次换向问题,给出了避免负载电压在死区工作期发生二次换向的工作条件;详细分析了多电平逆变器在新型工作方式下的工作过程。
     设计了一套无源无损吸收电路,抑制多电平逆变器工作过程中二极管的反向恢复电流,改善功率器件的开关条件。详细分析了无源无损吸收电路的工作过程,并给出了吸收电路的参数设计方法。
     为发展级联型多电平逆变器在单相高频大功率系统中的应用,对多电平逆变器在高频运用中的谐波控制问题进行了研究。采用阶梯波PWM法消除低次谐波时,通过求解功率器件开关角方程组,给出了级联模块电源电压比值不同时开关角的选择范围及输出电压基波幅值的调节范围,并依据输出电压谐波畸变率与基波幅值的关系,得出了级联模块电源电压比值的选择原则。
     提出了一种基于波形合成消除多电平逆变器输出电压特定谐波的方法。当级联模块数增加或待消除谐波次数增加时,避免了采用阶梯波PWM法中对高次多变量方程组的求解,利用此方法可通过简单的三角公式递推计算获得实现多个特定谐波消除的开关角。详细论述了该方法的基本原理和数学递推过程。
     提出了高频感应加热电源级联型多电平逆变器输出电压的谐波控制方法。通过对感应加热电源输出功率特性的分析,为提高逆变电源容量的利用率,应尽可能提高感应加热电源逆变器输出电压中的基波含量,减小输出电压的谐波畸变率。利用多电平逆变器谐波控制方法及感应加热电源多电平逆变器输出电压的特点,对两模块级联多电平逆变器输出电压的特定谐波消除方法进行了数学推导,给出了功率器件开关角的取值建议。
     通过仿真与实验研究,验证了文中的理论分析结果及设计方法的正确性。
Induction heating power supply is widely used in metallurgy, metal heating treatment field and has a powerful pushing force for national economy. With power electronics technology improving, research on the induction heating power supply especially on high frequency application is emphasis more than ever. For developing the technology of high frequency induction heating power supply and promoting the high frequency application of multilevel inverter, high frequency induction heating power supply based on multilevel technology is studied in this paper.
     It is analyzed that the work process of two H-bridges cascaded multilevel inverter in induction heating power supply with traditional driving signal. The conclusion is that reverse recovery current in diode could cause ill effect in inverter module in case of short turn-on time, and an asymmetry output voltage level of inverter could increase the complexity of harmonics control.
     A novel working mode of multilevel inverter in induction heating power supply is presented. The output voltage of multilevel inverter could be adjusted by setting driving signal of power switch; the relationships between the dead region of driving signals and the phase commutating points of load current are investigated to analyze the problem of load voltage commutating, the working conditions are given to avoid repetitious commutation of load voltage polarity in dead region; the operation process of multilevel inverter with novel working mode is analyzed in detail.
     A passive lossless snubber circuit is designed for restraining the reverse recovery current in diode and improving the turn-on condition of power switch. The operation process of snubber circuit is investigated in detail and corresponding method of parameters designing is given.
     The harmonics controlling means of cascaded multilevel inverter applicable to high frequency field are discussed for developing high frequency application of multilevel inverter in single-phase power system. In order to eliminate lower order harmonic in the multilevel inverter with different DC source ratio, the range of switching angles and fundamental voltage amplitude are given by solving the switching angles equation system. According to the relationship between the total harmonic distortion and fundamental voltage amplitude, the method of selecting module source ratio is presented.
     A method of eliminating specified harmonics based waveform resultant principle in cascaded multilevel inverter is given to avoid solution of the multi-variable high-order equation system, when the number of modules cascaded in inverter or the order of the harmonics to be eliminated increase. The switching angles can be easily obtained by simple trigonometry formula deduction for eliminating specified multi-harmonics. Basic principle and deduction procedure are explained.
     A harmonics control way of output voltage of cascaded multilevel inverter in high frequency induction hearting power supply is presented. According to the characteristic of output power in induction hearting power supply, the fundamental voltage content in output waveform of inverter should be increased as high as possible, which decreases total harmonic distortion ratio of output voltage, for improving the utilization ratio of inverter power supply. Based on the harmonics control way of multilevel inverter and the characteristic of output voltage of multilevel inverter in induction hearting power supply, basic procedure of eliminating specified harmonics in two modules cascaded multilevel inverter is deduced and the reasonable values of switching angles are advised.
     The results of simulation and experiment have verified the validity of design methods and the conclusions given by theoretically analyzing in this paper.
引文
[1]王英.固态高频LLC电压型感应加热谐振逆变器研究[D].杭州:浙江大学,2005:3.
    [2]潘天明.现代感应加热装置[M].北京:冶金工业出版社,1996:3.
    [3]H. Kifune, Y. Hatanaka, M. Nakaoka. Cost Effective Phase Shifted Pulse Modulation Soft Switching High Frequency Inverter for Induction Heating Applications[J]. IEEE Proc.-Electr. Power Appl.,2004, 151(1):19-25.
    [4]N. S. Baytndtr, O. Kukrer, M. Yakup. DSP-based PLL-controlled 50-100kHz 20kW High Frequency Induction Heating System for Surface Hardening and Welding Applications[J]. IEEE Proc-Electr. Power Appl.,2003,150(3):365-371.
    [5]S. Moisseev, H. Muraoka, M. Nakamura et al. Zero Voltage Soft Switching PWM High-frequency Inverter Using IGBTs for Induction Heated Fixing Roller[J]. IEEE Proc-Electr. Power Appl., 2003,150(2):237-244.
    [6]尹正凯,王宣银,吴江宁.大功率集肤效应电伴热系统的研究[J].浙江大学学报:工学版,2004,38(5):636-639.
    [7]Enrique J.Dede, Jose V.Gonzalez.25-kW/50-kHz Generator for Induction Heating[J]. IEEE Trans. on Industry Electronics,1991,35(3):203-209.
    [8]S.V.Mollov, M.Theodoridis, A.J.Forsyth. High Frequency Voltage-fed Inverter with Phase-shift Control for Induction Heating[J]. IEEE Proc. Electr. Power Appl.,2004,151(1):12-18.
    [9]H.Calleja, R.Ordonez, Improved Induction-heating Inverter with Factor Correction[C]. IEEE-PESC Conference. Charleston, South Carolina,1999:1132-1137.
    [10]张春林,严萍.移相式并联谐振变换器的分析与仿真[J].电力电子技术,2007,41(3):4-5.
    [11]刘庆丰,王华民,孙立萌等.基于IGBT并联谐振逆变器工作方式的分析研究[J].电力电子技术,2004,38(4):56-58.
    [12]刘庆丰,王华民,孙立萌等.感应加热用IGBT电压源逆变器工作方式分析[J].电力电子技术,2006,40(1):112-114.
    [13]赵异波.电力电子器件发展概况及应用现状[J].半导体杂志,1999,24(3):23-29.
    [14]孟庆宗.国内外电力电子器件发展现状[J].电力设备,2003,4(2):18-22.
    [15]钱照明,陈辉明,吕征宇.电力电子器件的最新发展[J].电气时代,2001,(5):1-4.
    [16]H. Akagi, T. Sawae, A. Nabae.130kHz 7.5kW Current Source Inverter Using Static Induction Transistors for Induction Heating Applications[J]. IEEE Trans. on Power Electronics,1988,3(3):303-309.
    [17]张仲超,陈辉明.50kHz IGBT超音频感应加热电源[J].电力电子技术,1995,29(2):6-8.
    [18]吴靖,王正仕,赵荣祥等.倍频式高频感应加热电源工作模式[J].电工技术学报,2007,22(2):153-158.
    [19]李海涛,臧振刚,刘平.功率MOSFET串联驱动电路设计[J].微机算计信息,2008,24(1):278-279.
    [20]周军伟,陈辉明.一种适合高频感应加热电源的MOSFET驱动电路[J].电力电子技术,2005, 39(2):84-85.
    [21]Rodriguez J. I., Leeb S. B.. A Multilevel Inverter Topology for Inductively-coupled Power Transfer[C]. IEEE APEC, US Florida,2003:1118-1126.
    [22]K. Matsuse, K. Nomura, S. Okudaira. New Quasi-resonant Inverter for Induction Heating[C]. Power Conversion Conference, Yokohama,1993:117-122.
    [23]K. Matsuse, S. Okudaira. Power Control of an Adjustable Frequency Quasi-resonant inverter for dual frequency induction heating[C]. Proceeding of IPEMC, Beijing,2000:968-973.
    [24]S. Okudaira, K. Matsuse. Dual Frequency Output Quasi-resonant Inverter for Induction Heating[J]. Trans. Institute of Electrical Engineers of Japan,2001,121(5):563-568.
    [25]K. Matsuse, S. Okudaira. A New Quasi-resonant Inverter with Two-way Short-circuit Switch Across a Resonant Capacitor[C]. Proceeding of Power Conversion Conference, Osaka,2002:1496-1501.
    [26]Jose M. Burdio, Jose R. Garcia, Luis A. Barragan et al. A Two-Output Series-Resonant Inverter for Induction-Heating Cooking Appliances[J]. IEEE Trans. on Power Electronics,2005,20(4):815-821.
    [27]Francois Forest, Eric Laboure, Francois Costa et al. Principle of a Multi-Load/Single Converter System for Low Power Induction Heating[J]. IEEE Trans. on Power Electronics,2000,15(2):223-230.
    [28]Fermando Monterde, Pablo Hernandez, Jose Burdio et al. A New Two-Output Series-Resonant Inverter for Induction Cookers Obtained by a synthesus Method[C]. IEEE PESC, Canada,2000:1284-1290.
    [29]John Rodrigues, Steven B.Leeb. Resonant Frequency Selectable Induction Heating Targets[C].IEEE APEC, California,2004:1877-1884.
    [30]J. P. Ferrieux, M. C. Pera-Marion, J. P. Rognon et al. Power Control of Two Induction Loads Supplied by a Single Generator:Two Solutions[C].. Power Electronics Specialist Conference, European,1995:379-384.
    [31]Bill Diong, Sarala Basireddy, Keith Corzine et la. Multilevel Inverters with Equal or Unequal Sources for Dual-frequency Induction Heating[C]. IEEE APEC, California,2004:825-831.
    [32].丁凯,邹云屏,王展等.一种适用于高压大功率的新型混合二极管钳位级联多电平变换器[J].中国电机工程学报,2004,24(9):62-67.
    [33]李永东,倚鹏.大功率高性能逆变器技术发展综述[J].电气传动,2000,(6):3-8.
    [34]Madhav D., Manjrekar. Hybird Multilevel Power Conversion System:A Competitive Soultion for High-power Application[J]. IEEE Trans. on Industrial Applications,2000,36(3):834-841.
    [35]L. Tolbert, F. Z. Peng, T. Habetler. Multilevel Converters for Large Electric Drives[J]. IEEE Tran. on Industrial Application,1999,35(1):36-44.
    [36]J. S. Lai, F. Z. Peng. Multilevel Converter-A New Breed of Power Converters[J]. IEEE Tran. on Industrial Application,1996,32(3):509-517.
    [37]金科,院新波.零电压开关多谐振三电平直流变换器[J].中国电机工程学报,2004,24(7):156-161.
    [38]陈阿莲,何湘宁,赵荣祥.一种改进的级联型多电平变换器拓扑[J],中国电机工程学报,2003,23(11):9-12.
    [39]Corzine K, Familiant Y. A new cascaded multilevel H-bridge drive[J]. IEEE Trans on PE,2002, 17(1):125-131.
    [40]Jose Rodriguez, Lai JiSheng, Peng FangZheng. Multilevel inverters:a survey of topologies, control, and applications[J]. IEEE Trans. on Industrial Electronics,2002,49(4):724-738.
    [41]单庆晓,李永东,潘孟春.级联型逆变器的新进展[J].电工技术学报,2004,19(2):1-9.
    [42]王广柱.二极管箝位式多电平逆变器直流侧电容电压不平衡机理的研究[J].中国电机工程学报,2002,22(12):111-117.
    [43]周京华,苏彦民,沈传文等.基于多电平逆变器通用组合拓扑结构的调制策略研究[J].电工技术学报,2005,20(8):39-47.
    [44]吴志红,陶生桂,崔俊国等.二极管钳位式多电平逆变器的拓扑结果分析[J].同济大学学报,2003,31(10):1217-1222.
    [45]Liang Y., Nwankpa C.O. A Power-line Conditioner Based on Flying-capacitor Multilevel Voltage-source Converter with Phase-shift SPWM[J]. IEEE Trans. on Industry Application,2000,36(4):965-971.
    [46]Mendes, M.A.S. A Space Vector PWM Method for Three-level Flying-capacitor Inverter[C]. IEEE PESC, Vancouver,2001:182-187.
    [47]王鸿雁,邓焰,赵荣祥等,飞跨电容多电平逆变器开关损耗最小PWM方法[J].中国电机工程学报,2004,24(8):51-55.
    [48]王毅,石新春,李和明等.级联型多电平逆变器的新型直接转矩控制方法[J].中国电机工程学报,2005,25(22):83-88.
    [49]吴洪洋,何湘宁.级联型多电平变换器PWM控制方法的仿真研究[J].中国电机工程学报,2001,21(8):42-46.
    [50]吴洪洋,何湘宁.多电平载波PWM法与SVPWM法之间的本质联系及其应用[J].中国电机工程学报,2002,22(5):10-15.
    [51]王毅,李和明,石新春等.多电平PWM逆变电路谐波分析与输出滤波器设计[J].中国电机工程学报,2003,23(10):78-82.
    [52]费万民,吕征宇,姚文熙.三电平逆变器特定谐波消除脉宽调制方法的研究[J].中国电机工程学报,2003,23(9):11-15.
    [53]费万民,吕征宇,姚文熙等.主从式级联多电平变换器及其控制方法的研究[J].电工技术学报,2004,19(8):61-66.
    [54]费万民,吕征宇,姚文熙.多电平逆变器特定谐波消除脉宽调制方法的仿真研究[J].中国电机工程学报,2004,24(1):102-106.
    [55]John Chiasson, Leon Tolbert, Keith McKenzie et al. Eliminating Harmonics in a Multilevel Converter Using Resultant Theory[C]. IEEE APEC, Dallas,2002:503-508.
    [56]John N. Chiasson, Leon M. Tolbert, Keith J. McKenzie et al. Control of a Multilevel Converter Using Resultant Theory[J]. IEEE Trans. on Control Systems Technology,2003, 11(3):345-354.
    [57]Rech C., Grundling H. A. et al. A Generalized Design Methodology for Hybrid Multilevel Inverters[ C]. IEEE 28th Annual Conference of the Industrial Electronics Society, Sevilla, Spain 2002:834-839.
    [58]Leon M. Tolbert, John N. Chiasson, Zhong Du et al. Elimination of Harmonics in a Multilevel Converter with Noequal DC Sources[J]. IEEE Trans. on Industry Applications,2005,41(1):75-82.
    [59]L. Li, Czarkowski D., Liu Y. et al. Multilevel Space Vector PWM Technique Based on Phase-shift Harmonic Suppression[C]. IEEE APEC, New Orleans,2000:535-541.
    [60]Mc Grath B. P., Holmes D. G., Lipo T. A. Optimized Space Vector Switching Sequences for Multilevel Inverters[C]. IEEE APEC, Anaheim,2001:1123-1129.
    [61]Li Li, Dariusz Czarkowski, Yaguang Liu et al. Multilevel Selective Harmonic Elimination PWM Technique in Series-connected Voltage Inverters[J]. IEEE Trans. on Industry Applications,2000, 36(1):160-170.
    [62]Peng F. Z., Lai J. S., Mckeever J. W. et al. A Multilevel Voltage-source Inverter with Separate DC Sources for Static Var Generation[J]. IEEE Trans. on Industrial Application,2002,32(5):1130-1138.
    [63]Calais M, Borle L.j., Agelidis V. G. Analysis of Multicarrier PWM Methods for a Single-phase five level inverter[C]. IEEE PESC, Vancouver,2001:1216-1222.
    [64]John Chiasson, Leon M. Tolbert, Keith McKenzie et al. A Complete Solution to the Harmonic Elimination Problem[J]. IEEE Trans. on Power Electronics,2004,19(2):491-499.
    [65]Fu San Shyu, Yen Shin Lai. Virtual Stage Pulse-width Modulation Technique for Multilevel Inverter/Converter[J]. IEEE Trans. on Power Electronics,2002,17(3):332-341.
    [66]B. Ozpineci, Leon M. Tolbert, John N. Chiasson. Harmonic Optimization of Multilevel Converters Using Genetic Algorithms[C]. IEEE PESC, Aachen,2004:3911-3916.
    [67]Burak Ozpineci, Leon M. Tolbert, Zhong Du. Optimum Fuel Utilization with Multilevel Inverters[C]. IEEE PESC, Aachen,2004:4798-4802.
    [68]Keith Corzine, Yakov Familiant. A New Cascaded Multilevel H-bridge Drive[J]. IEEE Tran. on Power Electronics,2002,17(1):125-131.
    [69]蔡慧,赵荣祥,陈辉明等.倍频式IGBT高频感应加热电源的研究[J].中国电机工程学报,2006,26(2):154-158.
    [70]王生德,翟玉.MOSFET高频感应加热电源的研究[J],郑州大学学报(自然科学版),2001,33(3):54-57.
    [7l]陈辉明,王英,张仲超.高频LLC感应加热电源及降低开关损耗策略研究[J],中国电机工程学报,2006,26(17):67-71.
    [72]汪军,陈辉明.基于LLC谐振负载的高频感应加热电源[J],电力电子技术,2005,39(6):78-80.
    [73]王力,齐铂金,赵晶等.串联式感应加热输出回路伪谐振现象的探讨[J],焊接技术,2002,31(5):10-11.
    [74]Mu Ping Chen, Jan Ku Chen, Katsuaki Murata et al. Surge Analysis of Induction Heating Power Supply with PLL[J]. IEEE Trans. on Power Electronics,2001,16(5):702-709.
    [75]杨德刚,赵良炳.软开关技术回顾与展望[J].电力电子技术,1998,(2):96-101.
    [76]K. Mark Smith Jr, K. M. Smedley. Lossless Passive Soft Switching Methods for Inverters and Amplifiers[J]. IEEE Trans. on Power Electronics,2000,15(1):164-173.
    [77]Lucio dos R. Barbosa, Joao B. Vieira Jr., Luiz C.de Freitas et al. An Improved Boost PWM Soft-single-switched Converter with Low Voltage and Current Stresses[C]. IEEE APEC, New Orleans, 2000:723-728.
    [78]Jin He. An Improved Energy Recovery Soft-switching Turm-on/turn-off Passive Boost Snubber with Peak Voltage Clamp[C]. IEEE APEC, New Orleans,2000:699-707.
    [79]林周布.一种具有最简拓扑的无源软开关新技术[J].电工技术学报,2002,17(2):65-70.
    [80]杜忠,陈治明.一种新颖的PFC无损吸收方法[J].电力电子技术,2003,37(5):12-15.
    [81]Lin R. L., Zhao Y. Q., Lee F. C. Improve Soft-switching ZVT Converters with Active Snubber[C]. IEEE APEC, Anaheim,1998:1063-1069.
    [82]杜忠,陈治明,严百平.一种基于Boost变换器的无源无损吸收方法[J].电工技术学报,2003,18(4):36-40.
    [83]冯波,吴国忠,徐德鸿等.一种新型有源箝位Boost变换器[J].中国电机工程学报,2002,22(10):62-66.
    [84]邓焰,叶浩屹,何湘宁.完全的无源软开关功率逆变器研究[J].电工技术学报,2002,17(1):41-46.
    [85]王京梅,兰中文,余忠等.全桥结构中的无源、无损耗软开关技术[J].仪器仪表学报,2003,24(4):1-3.
    [86]齐群,张波.软开关PWM变换器发展综述[J].电路与系统学报,2000,5(3):50-56.
    [87]丘东元,张波,潘虹.级联型多电平变换器一般构成方式及原则研究[J].电工技术学报,2005,20(3):24-29.
    [88]贺洪江,王振涛.电路基础[M].北京:高等教育出版社,2004:277.
    [89]黄纯,江亚群.电功率微机测量新算法[J].中国电机工程学报,2008,28(4):54-57.
    [90]陈允平,彭辉,樊友平.基于任意周期电压电流的无功功率定义及其数学模型[J].中国电机工程学报,2006,26(4):105-112.
    [91]郑常宝,王群京,郑长勇等.用小波包测量无功功率[J].系统仿真学报,2006,18(7):1902-1905.
    [92]Tolbert Leon M., Fang Zheng Peng, Tim Cunnygham. Charge Balance Control Schemes for Cascade Multilevel Converter in Hybrid Electric Vehicles[J]. IEEE Trans. on Industrial Electronics,2002, 49(5):1058-1064.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700