饮用水紫外线消毒生物安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过实验室配水试验、中试试验及实际工程,系统研究了针对我国饮用水水源水质的紫外线消毒生物安全性和系统可靠性;提出紫外线消毒后管网水质微生物稳定性特征,揭示紫外线及辅助消毒剂剂量、管网水力学及水质条件与微生物生长速率的定量关系;根据生物安全性的研究结果确定紫外线反应器的设计原则和方法;构建饮用水紫外线消毒综合设计框架。
     研究结果表明:紫外线消毒对大肠杆菌、细菌总数和管网中分离的抗氯菌Sphingomonas TS001灭活效果显著;枯草芽孢杆菌和MS2噬菌体对紫外线有一定的抗性,在0~80mJ/cm~2的剂量范围内,紫外线剂量与其灭活率呈较好的线性关系;紫外线对藻的灭活效果根据藻种不同有较大的差异;颗粒物对紫外线消毒的影响可以用基于游离细菌和结合细菌的二重动力学方程描述。
     紫外线消毒在正常剂量下不会影响水体中的AOC浓度,不改变水体的耗氯量,不影响总三卤甲烷和总卤乙酸的生成特性,也不会增加水体的遗传毒性风险。
     紫外线消毒管网生物安全性与AOC直接相关,当管网水AOC<15μg/L时,单独紫外线消毒可以维持管网的生物安全性,当管网的AOC=100~200μg/L时,管网余氯需要控制在0.5mg/L以上;对于本研究采用的中试试验的模拟管网系统,紫外线单独消毒不能够满足其生物安全性要求;对于供水管线较短且管网状况良好的小型管网,单独紫外线消毒基本上可以保证其生物安全性;根据消毒方式和管材的不同,管网微生物群落结构表现出较大的差异,紫外线联合氯或氯胺消毒可以有效控制管网微生物种类;紫外线与氯联合消毒对模拟管网生物膜的控制具有协同作用。
     微生物在紫外线反应器中的平均灭活率取决于微生物经过紫外线反应器的路径和其对紫外线的敏感度。紫外线联合氯胺的多级屏障消毒模式是保障生物安全性和副产物安全性的合理方法。紫外线消毒综合设计框架方法可以为紫外线技术在饮用水处理中的应用提供一定的技术参考。
Biological safety and system stability of UV disinfection according to the drinking water quality in China was studied in this paper, based on lab-, pilot- and field experiments. Microbial stability characteristic in water distribution system after UV disinfection was presented, revealing the quantitative relation among UV and assistant disinfectant, hydraulics and water quality, microbe growth rate; establishing the design principles and methods of UV reactor derived from the results on microbial safety, constructing the control theory of biological safety and technical index system as well as integrated design framework, providing theoretical and technical support for safe drinking water disinfection along with transporting through the water distribution system.
     The results showed that UV is effective for E. coli, total bacteria counts, and Sphingomonas TS001 which is chorine resistant and separated from model distribution systems. Bacillus subttilis and MS2 phage are not very UV sensitive. When UV dose is 0~80mJ/cm~2, the UV dose and the inactivation rate have a good linear relationship. While, the inactivation effect on algae is not so good, with the significant difference in different species. Impact of UV on particles could be described by two-kinetic model based on the free and partical-associated microbe.
     UV does not impact the AOC with the normal doses. And UV does not change the chlorine demand of water and the formation characteristic of THMs and HAAs. Also, UV could not increase the genotoxicity risk in the water.
     The biological safety of distribution system following UV is direct related to AOC. When the AOC below 15μg/L, UV solely could keep the biological safety of distribution systems; when AOC=100~200μg/L, it need the chlorine residual of at least 0.5mg/L. UV disinfection solely could not keep the biological safety in the model distribution systems of pilot scale in this study. For the small and perfectly sealed distribution system, UV disinfection solely can keep the biological safety. The biofilm community depends on the disinfection manners and pipe materials. UV combined with chlorine or chloramine can decrease the species of microbe in the distribution systems. UV combined with chlorine disinfection has the synergistic effect for controlling the biofilm in the model distribution systems.
     The average inactivation rate of micro-organism in the UV reactor depends on the path and sensitivity of the micro-organism. The multi-barriers model of UV combined chloramine is the reasonable manner for controlling the biological and DBPs safety. The integrated design framework of UV disinfection can provide a certain technical reference for the application of UV on the drinking water treatment.
引文
[1] Montgomery M, AElimelech M. Water and sanitation in developing countries: including health in the equation. Environ Sci Technol, 2007, 41:17-24.
    [2] Clancy J L, Linden K G, Mccuin R M. Cryptosporidium Occurrence in Wastewaters and Control Using UV Disinfection. IUVA News, 2004, 6(3):10-14.
    [3] Fricker C, Clancy J. Crypto’s Protocol Prospects. Water Quality International, 1998, (5):11-15.
    [4] Karanis P, Schoenen D, Seitz H. M. Distribution and Removal of Giardia and Cryptosporidium in Water Supplies in Germany. Water Sci Technol, 1999, 37(2):9-18.
    [5] Kramer M H, Herwaldt B L, Craun. Waterborne Disease: 1993 and 1994. J AWWA, 1996, 88(3):66-80.
    [6] Japan Water Works Association. Cryptosporidium-Interpretation and Method for the Examination. 1996.
    [7]中华人民共和国卫生部,国家标准化管理委员会.生活饮用水卫生规范(GB5749-2006). 2006.
    [8] Rook J J. Formation of haloforms during chlorination of natural waters. J Soc Water Treat Exam, 1974, 23:234-243.
    [9] Richardson S D, Plewa M J, Wagner E D, et al. Occurrence, genotoxicity, and carcinogenicity of emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res, 2007, 636(1–3):178-242.
    [10] Vena J E, Graham S, Freudenheim J, et al. Drinking water fluid intake and bladder cancer in western New York. Archives Envir Health, 1993, 48(3):191-198
    [11] Zimmer J L, Slawson, R M, Huck P M. Inactivation and potential repair of Cryptosporidium parvum following low- and medium-pressure ultraviolet irradiation. Water Res, 2003, 37(14):3517-3523.
    [12] Craik S A, Finch G R, Bolton, J R. Inactivation of Giardia muris cysts using medium-pressure ultraviolet radiation in filtered drinking water. Water Res, 2000 34(18):4325-4332.
    [13] Anon. Sterilization of polluted water by ultra-vilot rays at Marseille (France). Eng News, 64, 633, 1910.
    [14] Masschelein W J. Ultraviolet light in water and wastewater sanitation. Rip G Rice, 2002.
    [15] Smeets P W, Medema G J, van Dijk. The Dutch secret: how to provide safe drinking water without chlorine in the Netherlands. Drink Water Eng Sci, 2009, 2:1-14.
    [16] United States Environmental Protection Agency. 40 CFR parts 9, 141 & 142 National Primary Drinking Water Regulations: Long term 2 enhanced surface water treatment rule; final rule. 2006.
    [17] United States Environmental Protection Agency. 40 CFR parts 9, 141, & 142 National Primary Drinking Water Regulations: Stage 2 disinfectants and disinfection byproducts rule; final rule. 2006.
    [18] Bolton J R, Cotton C A. The Ultraviolet Disinfection Handbook, American Water Works Association, 2008.
    [19] Setlow J K. Comprehensive Biochemistry. Chapter 5 in The Effects of Ultraviolet Radiation and Photoreactivation. 1967, 27:157-209.
    [20] Snowball M R, Hornsey I S. Purification of water supplies using ultraviolet light. New York: Elsevier Applied Science. 1988, 171-191.
    [21] Pfeifer G P. Formation and processing of UV photoproducts: Effects of DNA sequenceand chromatin environment. Photochemistry & Photobiology, 1997, 65:270-283.
    [22] Knudson G B. Photoreactivation of UV-irradiated Legionella pneumoplila and other Legionella species. Appl Environ Microbiol, 1985, 49:975-980.
    [23] United States Environmental Protection Agency. Ultravilot Disinfection Guidance Manual for the Final Long Term 2 Enhanced Surface Water Treatment Rule. 2006.
    [24] Hijnen W, Beerendonk E, Medema G. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res, 2006, 22(3):3-4.
    [25] Linden K G, Thurston J, Schaefer Raymond, et al. Enhanced UV inactivation of adenoviruses under polychromatic UV lamps. Appl Environ Microbiol, 2007, 73(23):7571-7574.
    [26] Sommer R., Haider T, Cabaj A, et al. Time fluence reciprocity in UV disinfection of water. Water Sci Technol, 1998, 38(12):145-150.
    [27] Leinberger J, Data summarized from the US EPA Workshop on UV Disinfection of Drinking Water, April 28-29, 1999, Arlington, VA.
    [28] Koivunen J, Heinonen-Tanski H, Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Res, 2005, 39(8):1519-1526.
    [29] Sommer R, Cabaj A, Schoenen D. Comparison of Three Laboratory Devices for UV-Inactivation of Microorganisms. Water Sci Technol. 1995, 31(5):147-156
    [30] Mamane-Gravetz H, Linden K G, Cabaj A, et al. Spectral sensitivity of Bacillus subtilis spores and MS2 coliphage for validation testing of ultraviolet reactors for water disinfection. Environ Sci Technol, 2005, 39(20):7845-7852.
    [31] Keller R, Passamani F, Vaz L, et al. Inactivation of Salmonella spp. from secondary and tertiary effluents by UV irradiation, Water Sci Technol, 2003, 47(3):147-150.
    [32] Antopol S C, Ellner P D. Susceptibility of Legionella pneumophila to ultraviolet radiation. Appl Environ Microbiol, 1979, 38(2):347-348.
    [33] Mofidi A A, Linden K G. Disinfection-effectiveness of ultraviolet (UV) light for heterotrophic bacteria leaving biologically active filters. J Water Supply Res T-AQUA, 2004, 53(8):553-566.
    [34] Huffman D E, Gennaccaro A, Rose J B, et al. Low- and medium-pressure UV inactivation of microsporidia Encephalitozoon intestinalis, Water Res, 2002, 36(12):3161-3164.
    [35] Gerba C P, Gramos D M, Nwachuku N. Comparative inactivation of Enteroviruses and Adenovirus 2 by UV light. Appl Environ Microbiol, 2002, 68(10):5167-5169.
    [36] Thurston-Enriquez J A, Haas C N, Jacangelo J, et al. Inactivation of feline Calicivirus and Adenovirus Type 40 by UV radiation. Appl Environ Microbiol, 2003, 69(1):577-582.
    [37] Ko G P, Cromeans T L, Sobsey M D. UV inactivation of Adenovirus type 41 measured by cell culture mRNA RT-PCR, Water Res, 2005, 39(15): 3643-3649.
    [38] John D E, Nwachuku N, Pepper I L, et al. Development and optimization of a quantitative cell culture infectivity assay for the microsporidium Encephalitozoon intestinalis and application to ultraviolet light inactivation, J Microbiol Meth, 2003, 52(2):183-196.
    [39] Liltved H, Landfald B. Effects of high intensity light on ultraviolet-irradiated and non-irradiated fish pathogenic bacteria, Water Res, 2000, 34(2):481-486.
    [40] Craik S A, Finch G R, Bolton J R, et al. Inactivation of Giardia muris cysts using medium-pressure ultraviolet radiation in filtered drinking water. Water Res, 2000, 34(18):4325-4332.
    [41] Belosevic M, Craik S A, Stafford J L, et al. Studies on the resistance/reactivation of Giardia muris cysts and Cryptosporidium parvum oocysts exposed to medium-pressure ultraviolet radiation. FEMS Microbiol Lett, 2001, 204:197-203.
    [42] Linden K G, Shin G, Faubert G, et al. UV Disinfection of Giardia lamblia cysts in water. Environ Sci Technol, 2002, 36(11):2519-2522.
    [43] Qian S S, Donnelly M, Schmelling D C, et al. Ultraviolet light inactivation of protozoa in drinking water: a Bayesian meta-analysis. Water Res, 2004, 38(2):317-326.
    [44] Craik S A, Weldon D, Finch G R, et al. Inactivation of Cryptosporidium parvum oocysts using mediumand low-pressure ultraviolet radiation. Water Res, 2001, 35(6):1387-1398.
    [45] Zimmer J L, Slawson R M, Huck P M. Inactivation and potential repair of Cryptosporidium parvum following low- and medium-pressure ultraviolet irradiation. Water Res, 2003, 37(14):3517-3523.
    [46] Mamane-Gravetz H, Linden K G. Relationship between physiochemical properties, aggregation and UV inactivation of isolated environmental spores in water. J Appl Microbiol, 2005, 98:351-363.
    [47] Masschelein W J. Ultraviolet light in water and wastewater sanitation. CRC press LLC, 2002.
    [48] Sommer R, Cabaj A, Pribil W, et al. Influence of Lamp Intensity and Water Transmittance on the UV Disinfection of Water. Water Sci Technol, 1997, 35(11):113-118.
    [49] Van der Kooij D. Assimilable organic carbon as an indicator of bacterial regrowth. J AWWA, 1992, 84(2):57-65.
    [50] Van der Kooij D. Biological stability: a multidimensional quality aspect of treated water. Water Air Soil Poll, 2000, 123:25-34.
    [51] Liu W, Wu H, Wang Z, et al. Investigation of Assimilable Organic Carbon (AOC) and Bacterial Regrowth in Drinking Water Distribution System. Water Res, 2002, 36(4):891~898.
    [52] Rittmann B E, Snoeyink V L. Achieving biologically stable drinking water. J AWWA, 1984, 76(10):106-114.
    [53]姜登岭.营养基质对管网水悬浮菌再生长的影响研究[硕士学位论文].北京:清华大学环境系, 2004.
    [54] Hem L J, Efraimsen H. Assimilable organic carbon in molecular weight fractions of natural organic matter. Water Res, 2001, 35(4):1106-1110.
    [55]刘文君.饮用水中可生物降解有机物和消毒副产物特性研究[博士学位论文].北京:清华大学环境系, 1999.
    [56]李爽.饮用水中AOC和BDOC变化规律及管网中细菌再生长的研究[博士学位论文].北京:清华大学环境系, 2003.
    [57] Pozos N, Scow K, Wuertz S, et al. UV disinfection in a model distribution system: biofilm growth and microbial community. Water Res, 2004, 38:3083-3091.
    [58] Boe-Hansen R, Albrechtsen H J, Arvin E, et al. Bulk water phase and biofilm growth in drinking water at low nutrient conditions. Water Res, 2002, 36(18):4477-4486.
    [59] Yeh H H, Tseng I C, Lai W L. Chlorine residual and assimilable organic carbon (AOC) for drinking water quality control in Taiwan. Water Supply, 1998, 16(3-4):237-243.
    [60] LeChevallier M W, Welch N J, Smith D B. Full-scale studies of factors related to coliform regrowth in drinking water. Appl Environ Microbiol, 1996, 62(7):2201-2211.
    [61] LeChevallier M W. Coliform Regrowth in Drinking Water: A Review. J AWWA, 1990, 82(11):74-86.
    [62] Van der Kooij D, Vrouwenvelder H S, Veenendaal H R. Kinetic aspects of biofilm formation on surfaces exposed to drinking water. Water Sci Technol, 1995, 32(8):61-65.
    [63] Van der Kooij D. The growth of bacteria on organic compounds in drinking water. Ph.D. Thesis. Wagentingen, the Nertherlands. 1984.
    [64] Miettinen I T, Vartiainen T, Nissinen T, et al. Microbial growth in drinking waters treated with ozone, ozone hydrogen peroxide or chlorine. Ozone-Sci Eng, 1998, 20(4):303-315.
    [65]李灵芝,李建渠,王占生.不同消毒剂对饮用水中可同化有机碳的影响.环境污染与防治, 2005, 27 (6):457-458.
    [66] Camper A K, Buls J, Goodrum L. Effect of UV disinfection on humic substance and biofilms. In Proc of the AWWA Water Quality Technology Conference. Denver, Colo, 2002.
    [67] Kashinkunti R D, Metz D H, Linden K G, et al. Microbial inactivation strategies for the future: UV, chlorine and DBPs. In Proc of the AWWA Water Quality Technology Conference. Denver, Colo, 2002.
    [68] Lehtola M J, Miettinen I T, Vartiainen T, et al. Impact of UV disinfection on microbially available phosphorus, organic carbon, and microbial growth in drinking water. Water Res, 2003, 37(5):1064-1070.
    [69] Werner P, Hambsch B. Investigations on the growth of bacteriai drinking water. Water Supply, 1986, 4:227-232.
    [70] Percival S L, Knapp J S, Edyvean R, et al. Biofilm development on stainless steel in mains water. Water Res, 1998, 32(1):243-253.
    [71] Jain D K. Microbial colonization of the surface of stainless steel coupons in a deionized water system. Water Res, 1995, 29:1869-1876.
    [72] Donlan R M, Pipes W O. Selected drinking water charateristics and attached microbial population density. J AWWA, 1988, 80(11):70-76.
    [73] Lechevallier M W, Babcock T M, Lee R G. Eeamination and characterization of distribution system biofilms. Appl Environ Microbiol, 1987, 53(12):2714-2724.
    [74] Mathieu L, Paquin J L, Block JC, et al. Parameters governing bacterial growth in water distribution systems. Revue des Sciences de l’Eau, 1992, 5:91-112
    [75] Van der Kooij D, Veenendaal H R, Baarslorist C, et al. Biofilm formation on surface of glass and teflon exposed to treated water. Water Res, 1995, 29(7):1655-1662.
    [76] Percival S L, Knapp J S, Edyvean R, et al. Biofilm development on stainless steel in mains water. Water Res, 1998, 32(1):243-253.
    [77]鲁巍.给水管网细菌生长特性及其控制的研究[博士学位论文].北京:清华大学环境系, 2005.
    [78] Giese N. Impact of ultraviolet disinfection on biofilm growth in a model distribution system. Doctoral dissertation, Civil and Environmental Engineering. Davis, CA: University of California. 2002.
    [79] Momba M, Cloete T, Venter S, et al. Evaluation of the impact of disinfection processes on the formation of biofilms in potable surface water distribution systems. Water Sci Technol, 1998, 38(8-9):283-289.
    [80] Lund V, Ormerod K. The influence of disinfection processes on biofilm formation in water distribution-systems. Water Res, 1995, 29(4):1013-1021.
    [81] Langmark J, Storey M V, Ashbolt N J, et al. The effects of UV disinfection on distribution pipe biofilm growth and pathogen incidence within the greater Stockholm area, Sweden. Water Res, 2007, 41:3327-3336.
    [82] Rand J L, Hofmann R, Alam M Z B, et al. A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection. Water Res, 2007,41(9):1939-1948.
    [83] Bolton J R. Calculation of Ultraviolet Intensity Distributions in an Annular Reactor: Significance of Refraction and Reflection. Water Res, 2000, 34:3315-3324.
    [84] Blatchley, E R, Shen, C, Scheible, O K, et al. Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres. Water Res, 2008, 42(3): 677-688.
    [85]王占生,刘文君.微污染水源饮用水处理.北京:中国建筑工业出版, 1999.
    [86] Bolton J R, Linden K G. Standardization of methods for fluence (UV Dose) determination in bench-scale UV experiments. Jouranal of Environmental Engineering, 2003, 129(3):209-215.
    [87] Linden K G, Shin G A, Sobsey M D. Relative efficacy of UV wavelengths for the inactivation of Cryptosporidium parvum. Water Sci Technol, 2001, 43(12):171.
    [88] Sommer R, Pribil W, Appelt S, et al. Inactivation of bacteriophages in water by means of non-ionizing (UV-254.7nm) and ionizing (gamma) radiation: a comparative approach. Water Res, 2001, 35(13):3109-3116.
    [89]俞毓馨,吴国庆,孟宪庭.环境工程微生物检验手册.北京:中国环境科学出版社, 1990.
    [90]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.北京:中国环境科学出版社, 1989.
    [91] Reasoner D J, Gleidrich E E. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol., 1985, 49:1-7.
    [92] Liu W, Sun W , Liu C , Zhang J, Response of Marine and fresh water algae to UV, International Ultraviolet Association 5th UV world Congress, September 21-23, 2009,Amsterdam.
    [93] Sun W, Liu W, A Pilot-Scale Study on Ultraviolet Disinfection System for Drinking Water, Journal of Water Supply: Research and Technology-AQUA, 2009, 58(5):346-353.
    [94] Karentz D, Cleaver J E, Mitchell D L. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-b radiation. Journal of Phycology, 2004, 27(3):326-341.
    [95] Stebbing A R, Hormesis D. The stimulation of growth by low levels of inhibitors. The Science of The Total Environment, 1982, 22(3):213-234.
    [96]王悠,杨震,唐学玺,等. 7种海洋微藻对UV-B辐射的敏感性差异分析.环境科学学报, 2002,22(2):225-230.
    [97]于娟,唐学玺,田继远.蒽与UV-B辐射共同作用对2种海洋微藻的毒性效应.中国水产科学, 2002,9(2):157-160.
    [98] Bohrerova Z, Mamane H, Ducoste J. Comparative inactivation of Bacillus subtilis spores and MS2 coliphage in a UV reactor: Implications for validation. J Environ Eng-ASCE 2006. 132(12):1554-1561.
    [99] Mamane-Gravetz H, Linden K G. UV disinfection of indigenous aerobic spores: implications for UV reactor validation in unfiltered waters. Water Res, 2004, 38 (12):2898-2906.
    [100] Clesceri L, Greenberg A, Eaton A. Standard Methods for the Examination of Water and Wastewater 20th ed. American Public Health Association, Washington, DC. 1998.
    [101] Qualls R G, Flynn M P, Johnson J D. The role of suspended particles in ultraviolet disinfection. Water Pollut Control Fed, 1983, 55 (10):1280-1285.
    [102] Batch L F, Schulz C R, Linden K G. Evaluating water quality effects on UV disinfection of MS2 coliphage. Am Water Works Assoc, 2004, 96 (7):75-87.
    [103] Passantino L, Malley J J, Knudson M, et al. Effect of low turbidity and algae on UV disinfection performance. Am Water Works Assoc, 2004, 96 (6):128-137.
    [104] Mamane H, Linden K G, Impact of particle aggregated microbes on UV disinfection. II: Proper absorbance measurement for UV fluence. Environ Eng. 2006, 132 (6):607-615.
    [105] Qualls R G, Flynn M P, Johnson J D. The role of suspended particles in ultraviolet disinfection. Water Pollut Control Fed, 1983, 55 (10):1280-1285.
    [106] Jolis D, Lam C, Pitt P. Particle effects on ultraviolet disinfection of coliform bacteria in recycled water. Water Environ Res, 2001, 73(2):233-236.
    [107] Bohrerova Z, Linden K G. Ultraviolet and chlorine disinfection of Mycobacterium in wastewater: effect of aggregation. Water Environ Res, 2006, 78(6):565-571.
    [108] Parker J A, Darby J L. Particle-associated coliform in secondary effluents: shielding from ultraviolet light disinfection. Water Environ Res, 1995, 67(7):1065-1075.
    [109] Bitton G. Adsorption of viruses onto surfaces in soil and water. Water Res, 1975, 9(5):473-484.
    [110] Meschke J S, Sobsey M D. Comparative adsorption of Norwalk virus, poliovirus 1 and F+RNA coliphageMS2 to soils suspended in treated wastewater. Water Sci Technol, 1998, 38(12):187-189.
    [111] Wait D A, Sobsey M D. Method for recovery of enteric viruses from estuarine sediments with chaotropic agents. Appl Environ. Microbiol, 1983, 46(2):379-385.
    [112]孙文俊,刘文君, Petri B,等.颗粒物对紫外线灭活二级出水中粪大肠菌的影响.环境科学, 2009, 30(5):1095-1098.
    [113] Characklis W G, Roe F L. Monitoring buildup of fouling deposits on surfaces of fluid handling systems. U.S. Patent 4:485,450. 1984.
    [114] Camper, A.K. Factors limiting microbial growth in distribution systems: laboratory and pilot-scale experiments. American Water Works Research Foundation Report, Report No.90708, 1996.
    [115] Van der Kooij D. Characterization and Classification of fluorescent pseudomonas isolated from tap water and surface water. J Microbiol, 1979, 45:225.
    [116] Kemmy F A. Development and operational implementation of a modified and simplified method for determination of assimilable organic carbon (AOC) in drinking water. Water Sci Technol, 1989, 21(3):156-159.
    [117] Frias J, Ribas F. Comparison of methods for the measurement of biodegradable organic carbon and assimilable organic carbon in water. Water Res., 1995, 29(12):2785-2788.
    [118] Van der Kooij D, Hijnen W A. Substrate utilization by an oxalate-consuming spirillum species in relation to its growth in ozonated water. Appl Environ Micro, 1984, 47(3):551-559.
    [119] Prode R D, Amy G L. Predicting the formation of aldehydes and BOM. J AWWA, 1997, 89(6):79-93.
    [120] Sun W, Liu W, Impact of the UV Disinfection Process on Biofilm Controlling of Model Distribution Systems for Drinking Water. Environmental Engineering Science. 2009, 26(4):809-816.
    [121] Trulear M G and Characklis W G. Dynamics of biofilm processes. J. Wat. Pollut. Control Fed., 1982.
    [122]鲁巍,王云,张晓健. BAR反应器中生物膜的分离及定量.中国给水排水, 2005, 21(2):91-94.
    [123] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microb Rev, 1995, 59:143-169.
    [124] Schwartz T, Kalmbach S, Hoffmann S, et al. PCR-based detection of mycobacteria in biofilms from a drinking water distribution system, J Microbiol Meth, 1998, 34(2):113-123.
    [125] Camper A K, Jones W L, Hayes J T. Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms. Appl Environ Micro, 1996, 62(11):4014-4018.
    [126] Peyton B M, Charachlis W G, A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm deatchment. Biotechnology and Bioengineering, 1993, 41(7):728-735.
    [127] Kouame Y, Haas C N, Inactivation of Escherichia coli by combined action of free chlorine and monochloramine. Water Research, 1991, 25(9):1027-1032.
    [128] Rossman L A, Clark R M, Grayman W M. Modeling chlorine residuals in drinking-water distribution-systems. Joural of Environmental Engineering-ASCE, 1994, 120( 4):803-820.
    [129] Vieira, M J, Melo, L F, Effect of clay particles on the behaviour of biofilms formed by Pseudomonas fluorescens, Water Sci Technol, 1995, 32(8): 45-52.
    [130]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社, 2001.
    [131]张向谊,刘文君,潘虹,等.某市给水管网管壁中微生物生长特性研究.给水排水. 2005, 40(10):1-6.
    [132] Busse H J, Denner E B, Buczolits S, et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol, 2003, 53:1253-1260.
    [133] Buonaurio R, Stravato V M, Kosako Y, et al. Sphingomonas melonis sp. nov., a novel pathogen that causes brown spots on yellow Spanish melon fruits. Int J Syst Evol Microbiol , 2002, 52:2081-2087.
    [134] Lee J S, Shin Y K, Yoon J H, et al. Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol, 2001, 51:1491-1498.
    [135] Busse HJ, Hauser E, K¨ampfer P. Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol, 2005, 55:2565-2569.
    [136] Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol, 2001, 51:1405-1417.
    [137] Denner E B, K¨ampfer P, Busse H J et al. Reclassification of Pseudomonas echinoides Heumann 1962, 343AL, in the genus Sphingomonas as Sphingomonas echinoides comb. nov. Int J Syst Bacteriol, 1999, 49 (Part 3):1103-1109.
    [138] Yoon J H, Lee M H, Kang S J, et al. Sphingomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol, 2006, 56:2165-2169.
    [139] Yang D C, Im W T, Kim M K, et al. Sphingomonas soli sp. nov., a beta-glucosidase-producing bacterium in the family Sphingomonadaceae in the alpha-4 subgroup of the Proteobacteria. Int J Syst Evol Microbiol , 2006, 56:703-707.
    [140] Wittekindt, Elisabeth, Fischer, et al. Genotoxicity assay: umu-test (ISO/DIS 13829). 2000.
    [141] Malley J P, Shaw J P, Ropp J R. Evalation of by-products produced by treatment of groundwaters with ultraviolet irradiation. AWWARF and AWWA, Denver, CO, 1995.
    [142] Mofidi A A, Baribeau H, Green J F, et al. Disinfection using highintensity pulsed-ultraviolet irradiation. Proceedings, AWWA WQTC, San Diego, CA, 5A-3, 1998.
    [143] Liu W, Andrews S A, Bolton J R, et al. Comparison of DBP Formation from Different UV Technologies at Bench Scale, Proceedings of IWA 3rd World Water Congress, Melbourne, Australia, 7-12, April, 2002.
    [144] de Veer H J, Moriske H. Ruen. Photochemical decompositon of organic compounds in water after UV-irradiation: investigation of positive mutagenic effects. Toxicology Letters, 1994, 72(1-3):113-119.
    [145] Haider T, Sommer R, Knasmuler S, et al. Genotoxic response of Austrian groundwater samples treated under standardized UV (254nm)-disinfection conditions in a combination of three different bioassays. Water Res, 2002, 36(1):25-32.
    [146]柳清.氯消毒遗传毒性评价及消毒效率优化研究[硕士学位论文].北京:清华大学环境系, 2009.
    [147] Prevost M, Lanrent P, Servais P, et al. Biodegradable organic matter in drinking water treatment and distribution, American Water Works Association, 2005.
    [148]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社. 2004.
    [149]韩占忠,王敬,兰小平. FLUENT-流体工程仿真计算实例与应用.北京:北京理工大学出版社. 2004.
    [150] Hrudey S E, Hrudey E J. Safe Drinking Water– Lessons from Recent Outbreaks in Affluent Nations. IWA Publishing, 2004.
    [151] O’Connor D R. Report of the Walkerton Inquiry– A Strategy for Safe Drinking Water, Part Two”. Ontario Ministry of the Attorney General, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700