加筋垫层承载机理与工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着土工合成材料在土木工程领域的推广,以土工合成材料作为筋材的加筋垫层得到广泛的应用,社会经济效益显著。工程实践推动加筋垫层应用水平不断提高,但是加筋垫层加筋机理的理论研究还不完善,远远落后于工程实践,加筋垫层设计和计算还没有一套相对成熟的方法,这将直接影响着加筋垫层的进一步推广应用。本文在国内外加筋垫层研究成果的基础上,在筋材选择和布置、加筋垫层应力扩散角的分布规律、设置加筋垫层的地基的承载性能及加筋地基的工程应用做了较深入的研究,得出了一些有益的结论:
    1.在加筋垫层设计中,筋材的长度、间距、层数等对于加筋垫层加筋效果的影响还不是很清楚,加筋垫层的设计往往依靠经验,缺乏必要的理论指导,选择的材料参数过于保守。本文应用有限元研究了设置加筋垫层的地基的承载性能和变形性状,得出了筋材参数(筋材层数、筋材间距、筋材埋深、筋材模量、筋材长度)和砂垫层的性质(砂垫层厚度、砂垫层内摩擦角)对加筋垫层加筋效果的影响规律,研究结果表明筋材参数对加筋垫层加筋效果影响存在最佳值:筋材层数为3层、筋材间距为0.2~0.25的基础宽度、筋材埋深为0.25倍的基础宽度、筋材长度为5倍的基础宽度。
    2.应力扩散角计算是加筋垫层设计的关键,但是目前应力扩散角的计算理论依据不足,规范计算与工程实际有较大的差距。本文应用基底附加应力反算法推导了应力扩散角的计算公式,然后应用该方法研究了加筋垫层设置参数和筋材参数对加筋垫层应力扩散角的影响规律,研究结果表明,加筋垫层应力扩散角的范围45o~60o,且加筋垫层设置参数和筋材参数都存在最优值,此时对应应力扩散角最大。最后采用正交回归分析法研究了应力扩散角的影响因素,结果表明筋材的间距对加筋垫层应力扩散角影响最大,其次是筋材的埋深,对加筋垫层应力扩散角影响最小的是筋材的长度,并推导了考虑各种影响因素的加筋垫层应力扩散角计算公式,弥补了工程实践中加筋垫层应力扩散角计算的不足。
    3.本文在总结归纳前人试验研究的基础上,得到了设置加筋垫层的地基的破坏形式,并应用极限平衡理论推导了设置加筋垫层的地基承载力公式。并用本文得到的计算公式与改进的Terzaghi承载力公式、王钊的极限分析法和有限元法进行比较,结果表明本文的计算公式很好地体现了加筋垫层的加筋机理,可为设置加筋垫层的地基承载力设计提供了参考。
    4.对用加筋垫层处理前后土岩组合地基的变形性状和承载性能进行了研究,
With the development of the geosynthetic, geosynthetic has been widely used in civil engineer. With the application of the geosynthetic, the theory research and design method of the geosynthetic reinforcement layer have been improved, but the mechanism research of the geosynthetic reinforcement layer is not perfect, the design and calculation of the geosynthetic reinforcement layer has no mature method, it affects the application of the geosynthetic reinforcement layer widely. Basing on the history research of the predecessor, this paper studied the choise of geosynthetic、the calculation of the stress diffusion angle and the calculation of the bearing capacity of the geosynthetic reinforcement layer, key results of the study can be summaried as follows:
    1.In design of the geosynthetic reinforcement layer, the effect of geosynthetic parameters (such as geosynthetic space: h , geosynthetic width : b, the embedded depth of the first geosynthetic: u , total numbers of geosynthetic reinforcement layer: N et al.) has no clarity, the design of the geosynthetic reinforcement layer sometimes depends on experience. This paper studied the bearing capability and deformation property of foundation of the geosynthetic reinforcement layer using finite element analysis, results indicate geosynthetic factors exist optimal value: N=3, h=0.2~0.25B, u=0.25B, b=5B.
    2.The calculation of the stress diffusion angle is very important in design of the geosynthetic reinforcement layer, but there is no method in common till now. This paper firstly used additional stress back-analysis and orthogonal regression analysis to acquire the calculation formula of the stress diffusion angle, and then studying geosynthetic parameters and cushion properties on the stress diffusion angle. In addition, through the orthogonal regression analysis, results indicate geosynthetic spacing has a most effect on the stress diffusion angle of the geosynthetic reinforcement layer, secondly the embedded depth of the first geosynthetic, however, geosynthetic width has a slight effect on the stress diffusion angle.
    3.This paper concludes the trial research results of the predecessor, gaining the failure form of foundation of the geosynthetic reinforcement layer, then adopting limit equilibrium theory to get the bearing capacity formula of the geosynthetic reinforcement layer, and then comparing the calculation results of the improving Terzaghi bearing capacity formula、limit analysis method of Wang Zhao、the finite element method and the bearing capacity formula of this paper, results indicate the
    bearing capacity formula of this paper can reflect the geosynthetic mechanism of the geosynthetic reinforcement layer,so this formula can offer theorical guidance for the bearing capacity calculation of foundation of the geosynthetic reinforcement layer. 4.This paper studied the performance of bearing capacity and deformation property of soil-rock composite subgrade improving with the geosynthetic reinforcement layer, results indicate the geosynthetic reinforcement layer can easily deal with soil-rock composite subgrade, improving the stress field and displacement field of the foundation, sharing the stress distribution, decreasing the uneven settlement,improving the performance of bearing capacity of the geosynthetic reinforcement layer.
引文
[1] A. Fakher 、 C.J.F.P. Jones. When the bending stiffness of geosynthetic reinforcement is important[J]. Geosynthetics international, 2001, 8(5): 445-460.
    [2] Adams,M.T.,Colin,J.G. Large model spread footing load tests on geosynthetic reinforced soil foundation[J]. Journal of Geotechnical Engineering ,1997,123(1):66-73.
    [3] Akinmusuru,J.O.,Akinboladeh,J.H. Stability of footings on reinforced soil[J] . Journal of Geotechnical Engineering,1981,107(6):819-827.
    [4] Arvind Kumar , Swami Saran. Closely spaced footings on Geogrid Reinforced sand[J] .Journal of Geotechnical and Geoenvironmental engineering.2003,129(7): 660-664.
    [5] Bergoda etal.,Performance of geotextile-reinforced embankment on soft Bangkok clay[J],Proc.6th Int Conf.On Geosynthetics,Atlanta. 1998,747-754.
    [6] C.C.Huang and F.Y.Menq.Deep-footing and wide-slab effects in reinforced sand ground[J].Joural of Geotechnical and Geoenvironmental engineering.1997,35(4): 30-38.
    [7] Gabr, M., and Dodson, R. E. Stress distribution in geogrid reinforced foundations[M]. Proc., Geo-Congress 98, Geotechnical Special Publication,1998.
    [8] Gens.A.,Carol.I.,and Alonso,E.E. An interface element formulation for the analysis of soil-reinforcement interaction[J].Comp.and Geotech.1989,7(4):133-151.
    [9] George P.M. The influence of geoform creep on performance of a compressible inclusion[J] Geotextiles and Geomembranes .1997 ,15(7): 121-130.
    [10]Giroud,J.P.,Han,J.Design method for geogrid-reinforced unpaved roads.1: Development of design method [J]. Geotech. Geoenviron.Eng., 2004, 130(8): 775-786.
    [11] Gourc,J.P. , Mathichard , Y. , Perrier , H. , and Delmas , P. Bearing capacity of a sand-soft subgrade system with geotextile[J] . In Proceedings of the 2nd International Conference on Geotextiles,1982,411-416.
    [12] Guido,V.A.,Biesiadecki,G.L. and Sulivan,M.J. Bearing capacity of geotextiles reinforced foundation[J]. Proceedings of the 11nd International Conference on Soil Mechanics and Foundation of Engineerings,San Francisco,CA,1985:1777-1780.
    [13] H.A.Alawaji . Settlement and bearing capacity of geogrid-reinforced sand over collapsible soil[J]. Geotextiles and Geomembrances. 2001 ,15(4):75-88.
    [14] Harrison,R. E et al. Elastic theory applied to reinforced earth[M].Soil Mech . Found.Div.1972.
    [15] Hausman , M. R. & Clarke , J ., Flyash-geosynthetic interaction[J], Proc . 5th Int . Conf . On Geotextiles , Geomembranes and Related products , Singapore , 1994,433-436 .
    [16] Javad Hajiani, Boushenhirian and Nader Hataf . Experimental and numberical investigation of the bearing capacity of model circular and ring footing on reinforced sand[J]. Geotextiles and Geomembrances,2003, 32(4): 241-256.
    [17] J.Han and M.A.Gabr ,Numerical Anaslysis of Geosynthetic Reinforced and Pile-Supported Earth Platform over Soft Soil[J].Joural of Geotechnical and Geoenvironmental Engineering.2001,128(1):123-129.
    [18] J.P.LOVE , et al. Analytical and Model Studies of Reinforcement of a layer Granular Fill on a soft clay Subgrade[J]. Can. Geotech. J,1987, 24(7):611-622.
    [19] K.M.Lee,V.R.Manjunath. and D.M.Dewalkar . Numerical and model studies of stirp footing supported by a reinforced granular fill-soft soil system[J]. Canadian Geotechnical Journal, 1999,31(8):793-805.
    [20]Kurian.N.P.,Beena,K.S.,Kumar,R.K. Settlement of reinforced sand in foundations[J].Journal of Geotechnical and Geoenvironmental Engineering. 1997,123(9):818-827.
    [21] Lawton, E. C. Section 5A: Nongrouting techniques. Practical foundation engineering handbook[M], R. W. Brown, ed. in chief,McGraw-Hill,New York. 1996.
    [22] Miyazaki K, Hirokawa E.Foundational Study of Reinforcement Sand Layer in Model Test[J]. Proc. Int. Simposium on Earth Reinforcement. Fukuoka, Japan, 1992, 647-652.
    [23] Nainan P.Kurian.,K.S.Beena and R.Krishna Kumar.Settlement of Reinforced Sand In Foundations[J].Geotechnical and Geoenvironmental Engineering ,1997,14(4):818-826.
    [24] Nagoa.A.,Kitamura.T.,and Mizutani,J. Field experiment on reinforced earth and its evalution using FEM analysis[J]. Proc.Int.Geotech.Symp.on Theory and Practice of Earth Reinforcement,1988,329-334.
    [25] Radoslaw L.Michalowski,Lei Shi. Deformation Patterns of Reinforced Foundation Sand at Failure[J].Journal of Geotechnical and Geoenvironmental engineering,2003,113(7):439-449.
    [26] Radoslaw L.Michalowski. Limit Loads on Reinforced Foundation Soil[J]. Journal of Geotechnical and Geoenvironmental engineering, 2004,123(8):381-389.
    [27] Schlosser , F.and Long,N.T . Recent results in French Research on Reinforced Earth[J], J. of the Construction Div., 1974 ,100(03):78-85.
    [28] Sigurdsson, O. Geosynthetic stabilization of unpaved roads on soft ground: A field evaluation[D]. MS thesis, Univ. of British Columbia,1991,149-152.
    [29] Soni K M,et al. Effect of reinforcement length on bearing capacity[J]. Proc Int Symposium on Earth Reinforcement . Fukuoka, 1992:690-694.
    [30] Yamahouch T Gotoh K . A Proposed Practical Formula of Bearing Capacity for Earthwork Method on Soft Clay Ground Using a Resinous Mesh[J]. Technology Report of Kyushu University ,1972.
    [31] Yeo Won Yoon,Sun Han Cheon and Dae Seong Kang. Bearing capacity and settlement of tire-reinforced sands[J] . Geotextiles and Geomembrances,2003,21(3): 1-15.
    [32] Yetimugtu ,T., Wu,J.T.H.and Saglamar, A. Bearing capacity of rectangular footings on geogrid-reinforced sand[J]. Journal of Geotechnical Engineering ,1994,120(12):2083-2099.
    [33] Yograjah.I,Yeo,K.C. Finite element modeling of pull-out tests with load strain measurements[J]. Geotextiles and Geomembranes. 1994,1(5):254-259.
    [34] Zhao A. Rimoldi F, Montanelli F. Design of reinforced foundation by the slip-line method.Proc Intl Symposium on earth reinforcement[J]. Fukuoka,Japan .1996, 709-715.
    [35] 邓卫东,郑玉琨,土工织物加固软土堤坝静态模型试验[J],全国第三届土工合成材料学术会议论文集,仪征 .1992,38-41.
    [36] 丁建奇、黄晓明.加筋地基的基本性能研究[J].城市道桥与防洪.1999,2(6):11-14.
    [37] 付志前、王广月、姜萍、孙家明.土工合成材料加筋垫层的应用研究[J].山东大学学报,2003,33(5):568-571.
    [38] 付前志、王广月、候岱云、车强. 矩形基础下加筋砂土地基承载力的研究[J]. 山东大学学报(工学版). 2003,33(1): 60-62.
    [39] 高江平、胡长顺、陈忠达、张登良.加筋土地基承载力及其沉降量计算新法[J].西安公路交通大学学报.2001,12(121):10-13.
    [40] 龚晓南. 复合地基理论及工程应用[M]. 北京:中国建筑工业出版社,2002.54-59.
    [41] 郭秀琴.几种土工合成材料在软基处理中的应用[J].西部探矿工程. 2000,3(64): 33-34.
    [42] 何光春、陈洪凯. 加筋地基的承载力与沉降分析.[硕士学位论文].重庆:重庆交通学院.2002.
    [43] 洪楠.Statistica for Windows 统计与图表分析教程[M]. 北京:清华大学出版社.2002.
    [44] 黄仙枝、岂连生、白晓红. 软土地基土工带加筋碎石垫层的应力扩散研究[J]. 岩土工程学报 ,2004,23(17):2992-2997.
    [45] 胡岱文、黄求顺. 垫层法在山区地基中的应用[J]. 重庆建筑大学学报,1995,17(3):126-130.
    [46] 黄广军等.加筋垫层对地基沉降控制效果的多方案比较[J].岩土工程学报.2001,23(5):42-49.
    [47] 黄广军.对“加筋垫层对地基沉降控制效果的多方案比较”的讨论答复[J]. 岩土工程学报. 2002,24(2):78-82..
    [48] 介玉新,加筋土的等效附加应力法分析及模型试验研究.[博士学位论文],北京:清华大学,1998.
    [49] 乐翠英等,利用土工织物加固油罐软基的有限元分析[J],全国第二届土工合成材料学 术会议,沈阳.1990,371-375.
    [50] 林晓玲.土工织物在建筑软基中的应用[J],工业建筑,1994,4:54-55.
    [51] 林开球,包承钢.织物加筋软基的实用计算方法及试验验证[J].长江科学院报.1992,9(1):47-55。
    [52] 刘俊彦、罗强. 采用土工合成材料作软土地基浅层处理的试验研究[J]. 岩土工程.2002,5(15):57-59.
    [53] 刘俊彦、罗强,土工格栅、土工格室加筋垫层对软土地基沉降控制效果的有限元分析[J]. 线路/ 路基. 2002,21(5):5-7.
    [54] 刘宗耀. 土工合成材料工程应用手册(第二版) [M].北京:中国建筑工业出版社,2000.
    [55] 卢 怀、马时冬. 土工格栅加筋垫层的设计和应用[J]. 港工技术.2004,4(12):50-53.
    [56] 孔位学、赵颖人、赵尚毅、唐柏明.地基承载力的有限元计算及其在桥基中的应用[J]. 土木工程学报.2004,38(4):97-102.
    [57] 马时冬.土工格栅加筋垫层的效果检验[J].岩石力学与工程学报.2005,3(24):490-495.
    [58] 潘青青. 中小型建筑土岩组合地基的处理方法[J]. 长江职工大学学报,2001,18(4):35-36.
    [59] 施有志.土工格栅的工程特性与加筋垫层应用研究.[硕士学位论文].泉州:华侨大学,2003.
    [60] 宋飞、赵立鹏、闫澍旺. 弹塑性有限元法确定土工格栅加筋路堤的沉降及承载力[J]. 勘察科学技术.2003,6(10):16-20.
    [61] 宋飞、闫澍旺.土工格栅加筋与排水板联合处理软土地基的弹塑性有限元分析研究[J]. 石油工程建设.2005,31(1):34-39.
    [62] 唐芬、唐红梅、陈洪凯. 对加筋地基承载力与沉降问题的认识[J]. 地下空间. 2001,5(21):532-535.
    [63] 唐芬、何光春、谢远光. 加筋地基极限承载力的极限平衡分析[J].重庆交通学院学报.2003,4(22):57-60.
    [64] 唐建中.有限元法的特点及应用[J].建筑科学.1993,1(11):38-43.
    [65] 王伟、王钊. 有纺土工织物加固软土地基可靠性分析[J]. 岩土力学.2001,22(2): 219-223.
    [66] 王吉力,马时冬,土与土工织物接触界面间摩擦特性的试验研究[J],岩土力学,1992,13(4):45-49.
    [67] 王吉力. 土与土工织物相互作用机理的试验研究[硕士学位论文].武汉: 中国科学院武汉岩土力学研究所, 1991.
    [68] 汪银泉. 山区软土地基处理──浅谈换土垫层法的应用[J]. 安徽建筑,1997,11(5):34-35.
    [69] 王桂尧、张起森. 土工聚合物减小土体差异沉降的机理及最佳埋置深度的计算[J]. 力学与实践,1998,20(12):14-16.
    [70] 王钊, 王协群. 土工合成材料加筋地基的设计[J]. 岩土工程学报, 2000,(6): 731-733.
    [71] 王钊、王协群.加筋地基的极限分析[J].清华大学学报(自然科版).2001,6(11):31-34.
    [72] 王钊.国外土工合成材料的应用研究[M].香港:现代知识出版社.2002.
    [73] 翁升、马时冬. 土工布加筋垫层对路基变形和稳定的影响[J].岩土力学. 2001,22(1):42-46.
    [74] 魏新江, 土工织物加筋垫层处理油罐软基的双参数分析[J]. 应用力学学报. 1998,15(2):137-139.
    [75] 吴玲玲.地工合成材料应用于铁路稳定的设计与成效分析.[硕士学位论文]. 台湾:国立成功大学. 2000.
    [76] 吴景海、王德群、王灵娟、陈环. 土工合成材料加筋的试验研究[J].第五届土工合成材料学术会议论文集.2000.
    [77] 吴景海、王德群、陈环. 土工合成材料加筋砂土三轴试验研究[J].岩土工程报.2000,22(2):199~204.
    [78] 徐少曼.堤坝下软基土工织物加筋机理分析[J].福州大学学报,1996,24(5):76-81.
    [79] 徐少曼.堤坝下软基土工织物加筋效果与尺寸效应[J].岩土工程学报,1999,21(1):121-126.
    [80] 徐少曼. 提高土工织物加筋效果的新途径[J]. 岩土工程学报,1997,19(2):49-55.
    [81] 杨有海. 加筋土变形特征及加筋砂土地基的极限承载力[J]. 西部探矿工程. 1995,6(7):6-8.
    [82] 闫澎旺、Ben Barr. 土工格栅与土相互作用的有限元分析[J]. 岩土工程学报. 1997,6 :142-146.
    [83] 杨世莹. Excel 数据统计与分析范例应用 [M].北京: 中国青年出版社.2003
    [84] 喻泽红,邹银生,王贻荪. 加筋地基竖向位移分析[J].工 程 力 学. 2004,21(5):72-76.
    [85] 俞仲泉,李少青,土工织物加固软基的离心模型试验[J],岩土工程学报.1989,11(2):67-72 .
    [86] 翟剑钧、华勇清、李林福.土工格栅加筋垫层在航道驳岸软基处理中的应用[J].水运工程.2000,315(4):50-53.
    [87] 张苇、白晓红. 土工带加筋碎石垫层的试验研究与有限元分析.[硕士学位论文].太原:太原理工大学. 2003.
    [88] 张道宽,土工织物加强软土路基的研究[博士学位论文],北京:铁道部科学研究院,1987 .
    [89] 张克.土工格栅加筋砂土地基性能的模型试验研究及有限元分析.[硕士学位论文]大连:大连理工大学. 2004.
    [90] 赵柄新,陈镇威. 用土工织物加固岸滩道路的机理及试验研究[J]. 全国第二界土工织物学术会议论文集. 1989, 355-360.
    [91] 朱亚英. 土工织物加筋垫层处理大面积建筑软基实践[J]. 土工基础. 1997. 11(3):52-55.
    [92] 《建筑地基基础设计规范》GB5007-2002 ,中国建筑工业出版社,2002
    [93]《建筑地基处理技术规范》JGJ79-2002,中国计划出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700