水中纳米TiO_2特性及对SBR活性污泥系统稳定性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术是世界发达国家最优先发展的科技领域之一,纳米材料已广泛应用于工业、农业和科技等领域。在创造产业利益的同时,纳米材料通过直接或间接方式被排放入环境,由此引发的环境风险问题受到广泛关注。水环境是纳米材料的主要归宿地之一,复杂的水环境会改变纳米颗粒在水中的环境行为与稳定性,与活性污泥的相互作用也会对污水处理效能和微生物特性产生抑制作用,最终危害水生环境安全。针对此问题,本文以应用最为广泛的纳米二氧化钛(纳米TiO_2)为研究对象,研究纳米TiO_2在水中的存在特性,分析TiO_2在天然水与污水中的粒度分布、稳定性及其影响因素。同时研究纳米TiO_2对污水生物处理系统中活性污泥絮体稳定性和表面特性的影响,确定纳米TiO_2对活性污泥絮体物理化学稳定性的影响机制。采用最新的焦磷酸测序技术解析纳米TiO_2对活性污泥絮体生物稳定性的作用行为,考察了微生物生理生化特性及群落生态结构对纳米TiO_2长期影响下的环境响应,为深入研究纳米材料对水环境的潜在危害提供理论基础。
     纳米TiO_2在水中的表面电荷、粒径范围和浓度是影响其在水环境中迁移转化的关键因素。在去离子水中,纳米TiO_2颗粒分布均匀,粒径大小差异较小,分散程度较好。纳米TiO_2的等电点为pH=6.50,当pH<6.50时,纳米TiO_2颗粒表面带正电荷,而溶液pH>6.50时带负电荷。纳米TiO_2与水中溶解性有机质(天然有机物DOM、污水中有机物)之间的相互作用形式主要为配位体交换和静电力作用,其中配位体交换作用主要为羧基和酚羟基官能团的相互作用。天然水环境条件下,当pH为7时,纳米TiO_2与低分子量DOM配位体反应程度较高,而静电排斥为高分子量DOM与纳米TiO_2的作用主导,导致水体颗粒聚集体稳定性增加。pH为5时,纳米TiO_2与DOM之间的相互作用由两种方式共同完成。与天然水环境相似,城市污水环境中低分子量有机物与纳米TiO_2相互作用主要以配位体交换反应为主,而静电斥力作用是高分子量有机物与纳米TiO_2作用的主导,因此城市污水环境中主要为小分子量有机物与纳米TiO_2的相互作用,这为有效去除进入进入城市污水处理厂后的纳米材料提供理论依据。
     通过扩展的DLVO理论的解析和热力学分析手段,应用开尔文显微镜原位检测活性污泥絮体表面电势的创新手段,考察了纳米TiO_2对活性污泥生物处理系统中活性污泥絮体物化稳定性的影响。理论分析与实验结果表明,长期暴露的纳米TiO_2使活性污泥絮体与纳米颗粒碰撞几率增加。由于活性污泥胞外聚合物(EPS)的作用使纳米TiO_2包裹于絮体表面。通过活性污泥絮体表面电势的表征,分析了纳米TiO_2对活性污泥絮体表面电势的影响。结果显示纳米TiO_2的存在导致系统内微生物胶体稳定性增加,降低了絮体沉淀性能,从而增加了活性污泥处理系统运行失效的风险。通过扩展的DLVO理论解析了纳米TiO_2存在的活性污泥微生物体系的稳定性。在范德华吸引作用、静电力作用和水合作用共同作用下,短程范围内活性污泥微生物体系中的纵斥力势垒不断增加,吸引作用和有效Hamaker值均呈下降趋势。在中程范围内静电力自由能对总位能的贡献呈现优势,而且随着纳米TiO_2浓度的增加呈增加趋势,导致活性污泥的稳定性增加、凝聚能力降低,直接降低泥水分离效果。
     采用序批式活性污泥工艺(SBR)模拟城市污水活性污泥生物处理系统,研究长期暴露下(30天)不同浓度纳米TiO_2对稳定运行状态下SBR系统处理效能和微生物生理生化与菌群群落生态的影响。实验结果表明,不同浓度纳米TiO_2对活性污泥系统有机物和NH3-N的去除能力具有显著的抑制作用,且随着投加量的增加抑制程度加强,而整个过程对PO43-去除没有影响。不同浓度纳米TiO_2对微生物数量和活性影响研究结果证实,微生物数量和活性受纳米TiO_2的影响结果与污水处理效能结果一致,在低浓度投加条件下,系统微生物浓度和活性并未受到较大影响,而当投加浓度提高后(25和100mg/L),由于活性污泥胞外聚合物(EPS)中的羧基和羰基与纳米TiO_2发生了配位体作用,导致系统MLVSS含量与未投加系统相比分别降低了18.4%和22.9%,以TTC-电子传递体系(TTC-ETS)表征的污泥活性分别降低了19.95%和44.77%,EPS中蛋白质和多糖含量均有不同程度的降低。
     应用焦磷酸测序技术深度分析了微生物对纳米TiO_2长期影响的群落结构响应,实验结果表明在纳米TiO_2长期存在下的活性污泥微生物群落结构与无纳米TiO_2存在时存在明显差异。活性污泥菌群Shannon指数随着纳米TiO_2投加浓度的提高逐渐降低,生物群落多样性受抑制于纳米TiO_2,导致菌群稳定性降低。微生物群落差异性分析结果显示,活性污泥系统中优势菌群结构对不同浓度的纳米TiO_2存在相应的菌落响应,且在聚类关系上存在差异。纳米TiO_2对微生物在门、纲、属水平均有一定程度的影响,以Nitrospirae门硝化细菌和Actinobacteria门异氧菌受抑制程度最高,而对Proteobacteria门除磷菌具有促进作用。
Nanotechnology was of priority in the developed countries, and has been applied inthe areas of industry, farming and science and technology. In the meantime, it willinevitable cause the release of nanoparticles to the environment by direct or indirectways. Thus the corresponding environmental implications arise great concerns. Aquaticenvironment was the main receptor of nanoparticles, and the behavior and stability ofnanoparticles would change under the complicated water conditions. Also the inhibitionof wastewater treatment efficiency and organism’ property may also be inhibited for thereason of the interaction of activated sludge and nanoparticles, which will threaten thewater safety eventually. For these reasons, the nano TiO_2, one of the most commonnanomaterials was selected for the study of the surface characteristic in aquatic system.And the diameter distribution, stability and the effect factors of nano TiO_2in surfacewater and wastewater were analyzed. On the other hand, effects of nano TiO_2on thefloc stability and surface characteristic in biological wastewater treatment plant(WWTP)were studied to confirm the physical and chemical mechanism. Additional, the newpyrosequencing was employed to investigate the effects of nano TiO_2on the biologicalstability. The response of physiological/biochemical characteristics and microbialcommunity structures to nano TiO_2was evaluated. This research will provide theorybasis for the study of potential risks of nanoparticles to aquatic environment.
     The distribution of nano TiO_2was even and the differences of diamater wasneglectable, which resulted in acceptable distribution degree. The zero potential pointlocation was between the pH6and7, and the absolute value of potential increased asthe pH deviated from the isoelectric point. The results of the fourier transform infraredspectroscopy and three-dimensional fluorescence spectrum showed that the interactionof nano TiO_2and dissolved organic matters was the electrostatic repulsion and ligandexchange, in which the ligand exchange was dominated by the interaction of thefunctional group of carboxyl and phenol hydroxyl groups. The stronger reaction wasdrived by ligand exchange in the situation of smaller molecular weight of dissolvedorganic matters as the pH was7. However, the electrostatic repulsion dominated theinteraction of high molecular weight dissolved organic matters and nano TiO_2, whichresulted in more stability of particles’aggregators. On the contrary, at pH was5, theadsorption of nano TiO_2and dissolved organic matters was accompliced by both thesetwo effects, and the adsorption was greater in smaller molecular weight of dissolvedorganic matters and nano TiO_2. In consistent with the situation of natural aquaticenvironment, the dominated effect of nano TiO_2and dissolved organic carbon waselectrostatic repulsion and ligand exchange for bigger and smaller molecular weight of dissolved organic carbon respectively in wastewater environment, and the interactionwas principally achieved by smaller molecular weight of dissolved organic matters.These results would be a theory basis for the removal of nanoparticles in WWTP.
     The wide application of nanosized titanium dioxide (nano TiO_2) will result in highconcentrations of the molecule in the aquatic environment, especially in the influent ofWWTP. The present study focuses on the potential effect of nano TiO_2on thephysicochemical stability of activated sludge flocs after long-term exposure, on whichlimited information is currently available. Kelvin probe force microscopy (KPFM) wasinnovatively applied to assess the surface potential of the activated sludge in situ. Thephysicochemical characteristics of the bioflocs with and without long-term exposure tonano TiO_2were well elucidated by the thermodynamic approach. The results showedthat the repulsive force predominated the bioflocs system as the concentration of nanoTiO_2increased, owing to the corresponding increase in the density of the negativecharge. The bioflocs exposed to100ppm nano TiO_2presented the strongest stabilitycompared to the other two samples with low concentrations of nano TiO_2, which alsoindicated that the bioflocs with long-term exposure to nano TiO_2had a low settlementefficiency of the corresponding activated sludge. Further, the extended Derjaugin,Landau, Verwey, and Overbeek (XDLVO) theory was used to explore the flocculationstability of the bioflocs system. As the concentration of nano TiO_2increased, the van derWaals interaction and the effective Hamaker constant decreased, the electrostaticdouble-layers interaction increasingly contributed to the interfacial repulsion, the Lewisacid–base interaction also exhibited a repulsive contribution to the total interactionenergy and the total free energy of interaction exhibited a repulsive contribution. Theseresults are the keys for interpreting the adverse effects of nano TiO_2on the activatedsludge flocs of WWTP.
     The effects of long-term exposure of nano TiO_2at different concentration on thepollutions removal, physiological/biochemical characteristics and microbial communitystructures were evaluated in sequencing batch reactor. The results suggested that, theNH3-N and TOC removal was remarkable inhibited by nano TiO_2, and the inhibitionwas enhanced along with the increase dosage of nano TiO_2, whereas the biologicalphosphorus removal was unaffected. In accordance with the removal efficiency, theMLVSS and activities of microorganism were effected directly by the nanoTiO_2in theinfluent. For the reason of the ligand exchange, the MLVSS decreased to18.4%and22.9%, and the TTC-ETS decreased19.95%and44.77%as the dosage was25and100mg/L respectively, also the protein and carbohydrate in extracellular polymericsubstances were inhibited.
     The response of physiological/biochemical characteristics and microbial community structures to nano TiO_2were analyzed by pyrosequencing. The resultsillustrated that nano TiO_2obviously reduced the diversity of microbial community inactivated sludge. The Shannon index was highly decreased after long-term exposure tonano TiO_2, which resulted in the deterioration of activated sludge floc stability. Furtherstudy revealed that the predominance microbial community was changed afterlong-term exposure to nano TiO_2. The response of predominance microbial communitywere consistent with the observed influences of nano TiO_2on biological nitrogen andphosphorus removal, and the differences were found in cluster relation. The effects werefound on the levels at phylum, class and genus, especially on Actinobacteria andActinobacteria which were in charge of nitration and heterotrophism, and the proportionof Proteobacteria was increased.
引文
[1] V., Nagalaxmi. Small wonders paving a great future-Nanotechnology[J]. Annalsand Essence of Dentistry.2012,4(1):99-10.
    [2]白春礼.纳米科技及其发展前景[J].科学通报.2001,2(48):89-92.
    [3] Anisa Mnyusiwalla,Abdallah S. Daar,Peter A. Singer. Mind the gap: science andethics in nanotechnology[J]. Nanotechnology.2003,14(3):R9.
    [4] Mark R. Wiesner,Greg V. Lowry,Pedro Alvarez. Assessing the risks ofmanufactured nanomaterials[J]. Environmental Science&Technology.2006,40(14):4336-4345.
    [5]赵宇亮,白春礼.纳米安全性:纳米材料的生物效应[J].世界科学技术:中医药现代化.2005,7(4):104-107.
    [6]汪冰,丰伟悦,赵宇亮.纳米材料生物效应及其毒理学研究进展[J].中国科学:B辑.2005,35(1):1-10.
    [7] Annabelle Hett. Nanotechnology: Small matter, many unknowns[M]. SwissReinsurance Co.:2004.
    [8] Robin Fretwell Wilson. Nanotechnology: The challenge of regulating knownunknowns[J]. The Journal of Law, Medicine&Ethics.2006,34(4):704-713.
    [9]常雪灵,祖艳,赵宇亮.纳米毒理学与安全性中的纳米尺寸与纳米结构效应[J].科学通报.2011,56(2):108-118.
    [10] Yuliang Zhao,Hari Singh Nalwa. Nanotoxicology: Interactions of nanomaterialswith biological systems[M]. American Scientific Publishers,2007.
    [11] Erzsebet Illes, Etelka Tombacz. The effect of humic acid adsorption onpH-dependent surface charging and aggregation of magnetite nanoparticles[J].Journal of Colloid and Interface Science.2006,295(1):115-123.
    [12]夏萍萍,郭新彪.纳米材料安全性的国内外研究动向[J].中国职业医学.2007,34(5):423.
    [13] H. S. Zhou,I. Honma,H. Komiyama. Controlled synthesis and quantum-sizeeffect in gold-coated nanoparticles[J]. Physical Review B.1994,50(16):12052.
    [14] R. Behra, H. Krug. Nanoecotoxicology: Nanoparticles at large[J]. NatureNanotechnology.2008,3(5):253-254.
    [15] Xiaoshan Zhu,Lin Zhu,Shengyan Tian. Aquatic ecotoxicities of nanoscale TiO2,ZnO and Al2O3water suspensions[J]. Acta ecologica sinica.2008,28(8):3507-3516.
    [16] Arturo A. Keller,Suzanne McFerran,Anastasiya Lazareva. Global life cyclereleases of engineered nanomaterials[J]. Journal of Nanoparticle Research,15(6):1-17.
    [17] Christopher Palmberg, Helene Dernis, Claire Miguet. Nanotechnology: anoverview based on indicators and statistics[M]. OECD,2009.
    [18] Alex Weir,Paul Westerhoff,Lars Fabricius. Titanium dioxide nanoparticles infood and personal care products[J]. Environmental Science&Technology.2012,46(4):2242-2250.
    [19] Shuangyin Wang,Noel Kristian,Sanping Jiang. Controlled deposition of Pt on Aunanorods and their catalytic activity towards formic acid oxidation[J].Electrochemistry Communications.2008,10(7):961-964.
    [20] H. J. Lee,S. Y. Yeo,S. H. Jeong. Antibacterial effect of nanosized silver colloidalsolution on textile fabrics[J]. Journal of Materials Science.2003,38(10):2199-2204.
    [21] R. Nagarajan. Nanoparticle: Building blocks for nanotechnology[J]. Nanoparticles:Synthesis,Stabilization,Passivation and Functionalization.2008:2-14.
    [22] Eunkeu Oh,Kimihiro Susumu,Ramasis Goswami. One-phase synthesis ofwater-soluble gold nanoparticles with control over size and surfacefunctionalities[J]. Langmuir.2010,26(10):7604-7613.
    [23] Yugang Sun, Younan Xia. Shape-controlled synthesis of gold and silvernanoparticles[J]. Science.2002,298(5601):2176-2179.
    [24] Stuti Goyal. Small wonders, paving a great future-nanotechnology[J]. Annals andEssences of Dentistry.2012,4(1):99-101.
    [25]黄艳娥,琚行松.纳米二氧化钛光催化降解水中有机污染物的研究进展[J].化工环保.2002,22(1):23-27.
    [26]万益群,钟己未,郭岚.网络状纳米氧化锌光催化降解水中有机染料的研究[J].分析科学学报.2007,23(1):48-50.
    [27]郭志新,李玉良,朱道本.富勒烯的化学研究进展[J].化学进展.1998,10(1):1-15.
    [28]刘书芝,唐光诗.[60]富勒烯衍生物的对称性,碳笼结构与13C NMR谱[J].化学进展.2004,16(4):561-573.
    [29]高利珍,李贺,梁奇.碳纳米管的生产及其应用[J].科技导报.2001,6:16-19.
    [30] A. C. Dillon,K. M. Jones,T. A. Bekkedahl. Storage of hydrogen in single-walledcarbon nanotubes[J]. Nature.1997,386(6623):377-379.
    [31] A. Striolo,A. A. Chialvo,K. E. Gubbins. Water in carbon nanotubes: Adsorptionisotherms and thermodynamic properties from molecular simulation[J]. TheJournal of Chemical Physics.2005,122(23):234712-234714.
    [32] Yanhui Li,Shuguang Wang,Zhaokun Luan. Adsorption of cadmium (II) fromaqueous solution by surface oxidized carbon nanotubes[J]. Carbon.2003,41(5):1057-1062.
    [33] Chungsying Lu,YaoLei Chung,Kuan-Foo Chang. Adsorption of trihalomethanesfrom water with carbon nanotubes[J]. Water Research.2005,39(6):1183-1189.
    [34] Xianjia Peng,Yanhui Li,Zhaokun Luan. Adsorption of1,2-dichlorobenzene fromwater to carbon nanotubes[J]. Chemical Physics Letters.2003,376(1):154-158.
    [35] M. Auffan,J. Rose,M. R. Wiesner. Chemical stability of metallic nanoparticles: Aparameter controlling their potential cellular toxicity in vitro[J]. EnvironmentalPollution.2009,157(4):1127-1133.
    [36] G. Lowry,E. Casman. Nanomaterial transport, transformation, and fate in theEnvironment. Nanomaterials: Risks and Benefits[M]. Springer,2009:125-137.
    [37] Jacques Theron,J. A. Walker,T. E. Cloete. Nanotechnology and water treatment:applications and emerging opportunities[J]. Critical Reviews in Microbiology.2008,34(1):43-69.
    [38] Christine Ogilvie Robichaud,Dicksen Tanzil,Ulrich Weilenmann. Relative riskanalysis of several manufactured nanomaterials: An insurance industry context[J].Environmental Science&Technology.2005,39(22):8985-8994.
    [39] Ajit K. Sarmah,Michael T. Meyer,Alistair Boxall. A global perspective on the use,sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics(VAs) in the environment[J]. Chemosphere.2006,65(5):725-759.
    [40] Dale A. Pelletier,Anil K. Suresh,Gregory A. Holton. Effects of engineered ceriumoxide nanoparticles on bacterial growth and viability[J]. Applied andEnvironmental Microbiology.2010,76(24):7981-7989.
    [41] Sarah B. Lovern,Rebecca Klaper. Daphnia magna mortality when exposed totitanium dioxide and fullerene (C60) nanoparticles[J]. Environmental Toxicologyand Chemistry.2006,25(4):1132-1137.
    [42] Enrique Navarro,Anders Baun,Renata Behra. Environmental behavior andecotoxicity of engineered nanoparticles to algae, plants, and fungi[J].Ecotoxicology.2008,17(5):372-386.
    [43] P. V. Asharani,Yilian Wu,Zhiyuan Gong. Toxicity of silver nanoparticles inzebrafish models[J]. Nanotechnology.2008,19(25):255102.
    [44] S. M. Hussain,K. L. Hess,J. M. Gearhart. In vitro toxicity of nanoparticles inBRL3A rat liver cells[J]. Toxicology in Vitro.2005,19(7):975-984.
    [45] Andrea Gojova,Bing Guo,Rama S. Kota. Induction of inflammation in vascularendothelial cells by metal oxide nanoparticles: effect of particle composition[J].Environmental Health Perspectives.2007,115(3):403.
    [46] Fin Dechsakulthorn,Amanda Hayes,Shahnaz Bakand. In vitro cytotoxicityassessment of selected nanoparticles using human skin fibroblasts[J]. AATEX.2007,14:397-400.
    [47] Gerko Oskam,Abhinav Nellore,R. Lee Penn. The growth kinetics of TiO2nanoparticles from titanium (IV) alkoxide at high water/titanium ratio[J]. TheJournal of Physical Chemistry B.2003,107(8):1734-1738.
    [48] S. Pal,Y. K. Tak,J. M. Song. Does the antibacterial activity of silver nanoparticlesdepend on the shape of the nanoparticle? A study of the gram-negative bacteriumEscherichia coli[J]. Applied and Environmental Microbiology.2007,73(6):1712-1720.
    [49] Tanapon Phenrat,Navid Saleh,Kevin Sirk. Aggregation and sedimentation ofaqueous nanoscale zerovalent iron dispersions[J]. Environmental Science&Technology.2007,41(1):284-290.
    [50] Jonathan Brant,Matt Hotze. Comparison of electrokinetic properties of colloidalfullerenes (n-C60) formed using two procedures[J]. Environmental Science&Technology.2005,39(17):6343-6351.
    [51] Jonathan Brant,Helene Lecoanet,Mark R Wiesner. Aggregation and depositioncharacteristics of fullerene nanoparticles in aqueous systems[J]. Journal ofNanoparticle Research.2005,7(4-5):545-553.
    [52] Zhaoxia Ji,Xue Jin,Saji George. Dispersion and stability optimization of TiO2nanoparticles in cell culture media[J]. Environmental Science&Technology.2010,44(19):7309-7314.
    [53] Wen Zhang, Madhavi Kalive, David G. Capco. Adsorption of hematitenanoparticles onto Caco-2cells and the cellular impairments: Effect of particlesize[J]. Nanotechnology.2010,21(35):355103.
    [54] Wen Zhang,Bruce Rittmann,Yongsheng Chen. Size effects on adsorption ofhematite nanoparticles on E. coli cells[J]. Environmental Science&Technology.2011,45(6):2172-2178.
    [55] Jingyu Liu,Robert H. Hurt. Ion release kinetics and particle persistence in aqueousnano-silver colloids[J]. Environmental Science&Technology.2010,44(6):2169-2175.
    [56] Wen Zhang,Ying Yao,Kungang Li. Influence of dissolved oxygen on aggregationkinetics of citrate-coated silver nanoparticles[J]. Environmental Pollution.2011,159(12):3757-3762.
    [57] Jared V. Goldstone,Rossana Del Vecchio,Nell V. Blough. A multicomponentmodel of chromophoric dissolved organic matter photobleaching[J].Photochemistry and Photobiology.2004,80(1):52-60.
    [58] Sushil Raj Kanel,Bruce Manning,Laurent Charlet. Removal of arsenic (III) fromgroundwater by nanoscale zero-valent iron[J]. Environmental Science&Technology.2005,39(5):1291-1298.
    [59] Keith Bradley,Mikhail Briman,Alexander star. Charge transfer from adsorbedproteins[J]. Nano Letters.2004,4(2):253-256.
    [60] B. Devika Chithrani,Arezou A. Ghazani,Warren C. W. Chan. Determining theSize and Shape Dependence of Gold Nanoparticle Uptake into MammalianCells[J]. Nano Letters.2006,6(4):662-668.
    [61] Gregory L. Kenausis,Janos V r s,Donald L. Elbert. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism andeffects of polymer architecture on resistance to protein adsorption[J]. The Journalof Physical Chemistry B.2000,104(14):3298-3309.
    [62] E. J. Petersen,Q. Huang,W. J. Weber Jr. Ecological uptake and depuration ofcarbon nanotubes by Lumbriculus variegatus[J]. Environmental HealthPerspectives.2008,116(4):496.
    [63] P. Lee Ferguson,G. Thomas Chandler,Ryan C. Templeton. Influence ofSediment Amendment with Single-walled Carbon Nanotubes and Diesel Soot onBioaccumulation of Hydrophobic Organic Contaminants by BenthicInvertebrates[J]. Environmental science&technology.2008,42(10):3879-3885.
    [64] Parnian Ghafari, Christine H. St-Denis, Mary E. Power. Impact of carbonnanotubes on the ingestion and digestion of bacteria by ciliated protozoa[J].Nature Nanotechnology.2008,3(6):347-351.
    [65] Julia Farkas,Paul Christian,Julian Alberto Gallego-Urrea. Uptake and effects ofmanufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gillcells[J]. Aquatic Toxicology.2011,101(1):117-125.
    [66] Rebecca Klaper,Jordan Crago,Jessica Barr. Toxicity biomarker expression indaphnids exposed to manufactured nanoparticles: changes in toxicity withfunctionalization[J]. Environmental Pollution.2009,157(4):1152-1156.
    [67] Karen Van Hoecke,Karel A. C. De Schamphelaere,Paul Van der Meeren.Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriellasubcapitata: importance of surface area[J]. Environmental Toxicology andChemistry.2008,27(9):1948-1957.
    [68] Si-Won Lee,Sung-Man Kim,Jinhee Choi. Genotoxicity and ecotoxicity assaysusing the freshwater crustacean Daphnia magna and the larva of the aquatic midgeChironomus ripariusto screen the ecological risks of nanoparticle exposure[J].Environmental Toxicology and Pharmacology.2009,28(1):86-91.
    [69] Xiaoshan Zhu,Lin Zhu,Zhenghua Duan. Comparative toxicity of several metaloxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) earlydevelopmental stage[J]. Journal of Environmental Science and Health Part A.2008,43(3):278-284.
    [70] Harold Kroto. Space, stars, C60, and soot[J]. Science.1988,242(4882):1139-1145.
    [71] W. Kr tschmer,Lowell D. Lamb,K. Fostiropoulos. C60:a new form of carbon[J].Nature.1990,347(6291):354-358.
    [72] Sumio Iijima. Helical microtubules of graphitic carbon[J]. Nature.1991,354(6348):56-58.
    [73] Masashi Shiraishi,Masafumi Ata. Work function of carbon nanotubes[J]. Carbon.2001,39(12):1913-1917.
    [74] Bin Zhao,Hui Hu,Robert C. Haddon. Synthesis and properties of a water‐soluble single-walled carbon nanotube-poly (m-aminobenzene sulfonic acid) graftcopolymer[J]. Advanced Functional Materials.2004,14(1):71-76.
    [75] Venkata K. K. Upadhyayula,Shuguang Deng,Martha C. Mitchell. Application ofcarbon nanotube technology for removal of contaminants in drinking water: areview[J]. Science of the Total Environment.2009,408(1):1-13.
    [76] F. Jorand,F. Zartarian,F. Thomas. Chemical and structural (2D) linkage betweenbacteria within activated sludge flocs[J]. Water Research.1995,29(7):1639-1647.
    [77] Eva Oberd rster. Manufactured nanomaterials (fullerenes, C60) induce oxidativestress in the brain of juvenile largemouth bass[J]. Environmental HealthPerspectives.2004,112(10):1058.
    [78] Jinping Cheng,Chung Man Chan,L. Monica Veca. Acute and long-term effectsafter single loading of functionalized multi-walled carbon nanotubes into zebrafish[J]. Toxicology and Applied Pharmacology.2009,235(2):216-225.
    [79] Ryan C. Templeton,P. Lee Ferguson,Kate M. Washburn. Life-cycle effects ofsingle-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod[J].Environmental Science&Technology.2006,40(23):7387-7393.
    [80]朱小山,朱琳,田胜艳.三种碳纳米材料对水生生物的毒性效应[J].中国环境科学.2008,28(3):269-273.
    [81] Sarah B. Lovern,J. Rudi Strickler,Rebecca Klaper. Behavioral and physiologicalchanges in Daphnia magna when exposed to nanoparticle suspensions (titaniumdioxide, nano-C60, and C60HxC70Hx)[J]. Environmental Science&Technology.2007,41(12):4465-4470.
    [82] Xiaoshan Zhu,Lin Zhu,Yongsheng Chen. Acute toxicities of six manufacturednanomaterial suspensions to Daphnia magna[J]. Journal of Nanoparticle Research.2009,11(1):67-75.
    [83] Jinping Cheng,Emmanuel Flahaut,Shuk Han Cheng. Effect of carbon nanotubeson developing zebrafish (Danio rerio) embryos[J]. Environmental Toxicology andChemistry.2007,26(4):708-716.
    [84] Kerstin Hund-Rinke,Markus Simon. Ecotoxic effect of photocatalytic activenanoparticles (TiO2) on algae and daphnids[J]. Environmental Science andPollution Research.2006,13(4):225-232.
    [85] G. Federici,B. J. Shaw,R. D. Handy. Toxicity of titanium dioxide nanoparticles torainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and otherphysiological effects[J]. Aquatic Toxicology.2007,84(4):415-430.
    [86] Margit Heinlaan,Angela Ivask,Irina Blinova. Toxicity of nanosized and bulk ZnO,CuO and TiO2to bacteria Vibrio fischeri and crustaceans Daphnia magna andThamnocephalus platyurus[J]. Chemosphere.2008,71(7):1308-1316.
    [87] Laura K. Adams,Delina. Y. Lyon,Pedro J. J. Alvarez. Comparative eco-toxicity ofnanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research.2006,40(19):3527-3532.
    [88] Robert J. Griffitt,Roxana Weil,Kelly A. Hyndman. Exposure to coppernanoparticles causes gill injury and acute lethality in Zebrafish (Danio rerio)[J].Environmental Science&Technology.2007,41(23):8178-8186.
    [89] Robert J, Griffitt,Roxana Weil,Kelly A, Hyndman. Exposure to coppernanoparticles causes gill injury and acute lethality in Zebrafish (Danio rerio)[J].Environmental Science&Technology.2007,41(23):8178-8186.
    [90] Anja Menard,Damjana Drobne,Anita Jemec. Ecotoxicity of nanosized TiO2.Review of in vivo data[J]. Environmental Pollution.2011,159(3):677-684.
    [91]钟金栋,夏雪山,张若愚.纳米银材料抗菌效果研究及其安全性初步评价[J].昆明理工大学学报(理工版).2005,30(5):91-93.
    [92] Enrique Navarro, Flavio Piccapietra, Bettina Wagner. Toxicity of silvernanoparticles to Chlamydomonas reinhardtii[J]. Environmental Science&Technology.2008,42(23):8959-8964.
    [93] Okkyoung Choi,Zhiqiang Hu. Size dependent and reactive oxygen species relatednanosilver toxicity to nitrifying bacteria[J]. Environmental Science&Technology.2008,42(12):4583-4588.
    [94] Sarah B. Lovern,Heather A. Owen,Rebecca Klaper. Electron microscopy of goldnanoparticle intake in the gut of Daphnia magna[J]. Nanotoxicology.2008,(21):43-48.
    [95] Adam Bradford,Richard D. Handy,James W. Readman. Impact of silvernanoparticle contamination on the genetic diversity of natural bacterialassemblages in estuarine sediments[J]. Environmental Science&Technology.2009,43(12):4530-4536.
    [96] Dieter Bimberg, Marius Grundmann, Nikolai N. Ledentsov. Quantum dotheterostructures[M]. John Wiley Chichester,1999.
    [97] Ron Hardman. A toxicologic review of quantum dots: toxicity depends onphysicochemical and environmental factors[J]. Environmental Health Perspectives.2006,114(2):165.
    [98] G. Sarusi,G. Cinader,A. Zemel. Application of CdTe epitaxial layers forpassivation of p-type Hg0.77Cd0.23Te[J]. Journal of Applied Physics.1992,71(10):5070-5076.
    [99] F. Gagne,J. Auclair,P. Turcotte. Ecotoxicity of CdTe quantum dots to freshwatermussels: impacts on immune system, oxidative stress and genotoxicity[J]. AquaticToxicology.2008,86(3):333-340.
    [100]Jasmina Lovri,Hassan S Bazzi,Yan Cuie. Differences in subcellular distributionand toxicity of green and red emitting CdTe quantum dots[J]. Journal of MolecularMedicine.2005,83(5):377-385.
    [101]Austin M. Derfus,Warren C. W. Chan,Sangeeta N. Bhatia. Probing thecytotoxicity of semiconductor quantum dots[J]. Nano Letters.2004,4(1):11-18.
    [102]Jennifer L. Bouldin,Taylor M. Ingle,Anindita Sengupta. Aqueous toxicity andfood chain transfer of quantum dots in freshwater algae and Ceriodaphniadubia[J]. Environmental Toxicology and Chemistry.2008,27(9):1958-1963.
    [103]Jiyoun Lee,Kyunghee Ji,Jungkon Kim. Acute toxicity of two CdSe/ZnSequantum dots with different surface coating in Daphnia magna under various lightconditions[J]. Environmental Toxicology.2010,25(6):593-600.
    [104]董文福,傅德黔.我国城市污水处理厂现状,存在问题及对策研究[J].环境科学导刊.2008,27(3):40-42.
    [105]Leslie Grady, C. P., Daigger, G. T., Love, N. G. Biological wastewatertreatment[M]. IWA Publishing,2011.
    [106]Mogens Henze,Poul Harremoes,Jes la Cour Jansen. Wastewater treatment:biological and chemical processes[M]. Springer,2001.
    [107]Thomas Schwartz, Wolfgang Kohnen, Bernd Jansen. Detection ofantibiotic-resistant bacteria and their resistance genes in wastewater, surface water,and drinking water biofilms[J]. FEMS Microbiology Ecology.2003,43(3):325-335.
    [108]Thomas A. Ternes,Adriano Joss,Hansruedi Siegrist. Peer reviewed: scrutinizingpharmaceuticals and personal care products in wastewater treatment[J].Environmental Science&Technology.2004,38(20):392A-399A.
    [109]Satinder K. Brar,Mausam Verma,R. D. Tyagi. Engineered nanoparticles inwastewater and wastewater sludge-Evidence and impacts[J]. Waste Management.2010,30(3):504-520.
    [110]Paul Westerhoff,Guixue Song,Kiril Hristovski. Occurrence and removal oftitanium at full scale wastewater treatment plants: implications for TiO2nanomaterials[J]. Journal of Environmental Monitoring.2011,13(5):1195-1203.
    [111]Joyce S. Tsuji,Andrew D. Maynard,Paul C. Howard. Research strategies forsafety evaluation of nanomaterials, part IV: risk assessment of nanoparticles[J].Toxicological Sciences.2006,89(1):42-50.
    [112]Todd M. Osman, Daniel E. Rardon, Lawrence B. Friedman. Thecommercialization of nanomaterials: Today and tomorrow[J]. JOM.2006,58(4):21-24.
    [113]Itamar Willner,Bilha Willner. Functional nanoparticle architectures for sensoric,optoelectronic, and bioelectronic applications[J]. Pure and Applied Chemistry.2002,74(9):1773-1783.
    [114]Wolfgang Luther. Industrial application of nanomaterials: chances and risks(Technological Analysis). VDITechnologiezentrum, Germany[J]. FutureTechnologies.2004,54:1-112.
    [115]Troy M. Benn,Paul Westerhoff. Nanoparticle silver released into water fromcommercially available sock fabrics[J]. Environmental Science&Technology.2008,42(11):4133-4139.
    [116]Mark R. Wiesner,Gregory V. Lowry,Kimberly L. Jones. Decreasing uncertaintiesin assessing environmental exposure, risk, and ecological implications ofnanomaterials[J]. Environmental Science&Technology.2009,43(17):6458-6462.
    [117]D. P. Macwan,Pragnesh N. Dave,Shalini Chaturvedi. A review on nano-TiO2sol-gel type syntheses and its applications[J]. Journal of Materials Science.2011,46(11):3669-3686.
    [118]Virender K. Sharma. Aggregation and toxicity of titanium dioxide nanoparticles inaquatic environment-a review[J]. Journal of Environmental Science and HealthPart A.2009,44(14):1485-1495.
    [119]R. Kaegi,A. Ulrich,B. Sinnet. Synthetic TiO2nanoparticle emission from exteriorfacades into the aquatic environment[J]. Environmental Pollution.2008,156(2):233-239.
    [120]Lauren A. Luongo,Xiaoqi Zhang. Toxicity of carbon nanotubes to the activatedsludge process[J]. Journal of Hazardous Materials.2010,178(1-3):356-362.
    [121]Terrell L. Hill. Theory of physical adsorption[J]. Adv. Catal.1952,4(21):1.
    [122]A. Dabrowski. Adsorption-from theory to practice[J]. Advances in Colloid andInterface Science.2001,93(1-3):135-224.
    [123]M. A. Kiser,P.Westerhoff,T. Benn. Titanium nanomaterial removal and releasefrom wastewater treatment plants[J]. Environmental Science&Technology.2009,43(17):6757-6763.
    [124]Enrique Navarro,Anders Baun,Renata Behra. Environmental behavior andecotoxicity of engineered nanoparticles to algae, plants, and fungi[J].Ecotoxicology.2008,17(5):372-386.
    [125]Wen-Tso Liu. Nanoparticles and their biological and environmental applications[J].Journal of Bioscience and Bioengineering.2006,102(1):1-7.
    [126]Naomi Lubick. Nanosilver toxicity: ions, nanoparticles or both?[J]. EnvironmentalScience&Technology.2008,42(23):8617-8617.
    [127]Yang Zhang,Yongsheng Chen,Paul Westerhoff. Impact of natural organic matterand divalent cations on the stability of aqueous nanoparticles[J]. Water Research.2009,43(17):4249-4257.
    [128]Markus Delay,Tamara Dolt,Annette Woellhaf. Interactions and stability of silvernanoparticles in the aqueous phase: Influence of natural organic matter (NOM)and ionic strength[J]. Journal of Chromatography A,1218(27):4206-4212.
    [129]M. Baalousha. Aggregation and disaggregation of iron oxide nanoparticles:Influence of particle concentration, pH and natural organic matter[J]. Science ofthe Total Environment.2009,407(6):2093-2101.
    [130]Bin Xie,Zhihua Xu,Wenhua Guo. Impact of natural organic matter on thephysicochemical properties of aqueous C60nanoparticles[J]. EnvironmentalScience&Technology.2008,42(8):2853-2859.
    [131]Khin Yin Win,Si-Shen Feng. Effects of particle size and surface coating oncellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs[J].Biomaterials.2005,26(15):2713-2722.
    [132]Amro M. El Badawy, Todd P. Luxton, Rendahandi G. Silva. Impact ofenvironmental conditions (pH, ionic strength, and electrolyte type) on the surfacecharge and aggregation of silver nanoparticles suspensions[J]. EnvironmentalScience&Technology,44(4):1260-1266.
    [133]Kai Loon Chen,Menachem Elimelech. Relating colloidal stability of fullerene(C60) nanoparticles to nanoparticle charge and electrokinetic properties[J].Environmental Science&Technology.2009,43(19):7270-7276.
    [134]Günter Langergraber,Leiv Rieger,Stefan Winkler. A guideline for simulationstudies of wastewater treatment plants[J]. Water Science&Technology.2004,50(7):131-138.
    [135]Stacey Marie Louie,Robert D. Tilton,Gregory Victor Lowry. Effects of molecularweight distribution and chemical properties of natural organic matter on goldnanoparticle aggregation[J]. Environmental Science&Technology.2013,47(9):4245-4254.
    [136]Kun Yang,Baoshan Xing. Adsorption of fulvic acid by carbon nanotubes fromwater[J]. Environmental Pollution.2009,157(4):1095-1100.
    [137]Paolo Roccaro,Federico G. A. Vagliasindi,Gregory V. Korshin. Changes in NOMfluorescence caused by chlorination and their associations with disinfectionby-products formation[J]. Environmental Science&Technology.2009,43(3):724-729.
    [138]Anu Matilainen,Egil T. Gjessing,Tanja Lahtinen. An overview of the methodsused in the characterisation of natural organic matter (NOM) in relation todrinking water treatment[J]. Chemosphere.2011,83(11):1431-1442.
    [139]P. K. Sharma,K. Hanumantha Rao. Adhesion of Paenibacillus polymyxa onchalcopyrite and pyrite: surface thermodynamics and extended DLVO theory[J].Colloids and Surfaces B: Biointerfaces.2003,29(1):21-38.
    [140]P. K. Sharma,K. Hanumantha Rao. Analysis of different approaches for evaluationof surface energy of microbial cells by contact angle goniometry[J]. Advances inColloid and Interface Science.2002,98(3):341-463.
    [141]Che Ok Jeon,Dae Sung Lee,Jong Moon Park. Microbial communities in activatedsludge performing enhanced biological phosphorus removal in a sequencing batchreactor[J]. Water Research.2003,37(9):2195-2205.
    [142]A. W. Zularisam,Ahmad Fauzi Ismail,M. R. Salim. The effects of natural organicmatter (NOM) fractions on fouling characteristics and flux recovery ofultrafiltration membranes[J]. Desalination.2007,212(1):191-208.
    [143]华蔚颖.应用454测序技术分析菌群结构的方法学研究[D].上海交通大学.2010.
    [144]Robert C. Edgar. MUSCLE: multiple sequence alignment with high accuracy andhigh throughput[J]. Nucleic Acids Research.2004,32(5):1792-1797.
    [145]Julie D. Thompson,Desmond G. Higgins,Toby J. Gibson. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment throughsequence weighting, position-specific gap penalties and weight matrix choice[J].Nucleic Acids Research.1994,22(22):4673-4680.
    [146]Patrick D. Schloss,Sarah L. Westcott,Thomas Ryabin. Introducing mothur:open-source, platform-independent, community-supported software for describingand comparing microbial communities[J]. Applied and EnvironmentalMicrobiology.2009,75(23):7537-7541.
    [147]Qiong Wang,George M. Garrity,James M. Tiedje. Naive Bayesian classifier forrapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appliedand Environmental Microbiology.2007,73(16):5261-5267.
    [148]Todd Z. DeSantis, Philip Hugenholtz, Neils Larsen. Greengenes, achimera-checked16SrRNA gene database and workbench compatible withARB[J]. Applied and Environmental Microbiology.2006,72(7):5069-5072.
    [149]Stephen F. Altschul,Warren Gish,Webb Miller. Basic local alignment searchtool[J]. Journal of Molecular Biology.1990,215(3):403-410.
    [150]Koichiro Tamura,Daniel Peterson,Nicholas Peterson. MEGA5: molecularevolutionary genetics analysis using maximum likelihood, evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution.2011,28(10):2731-2739.
    [151]Morgan N. Price,Paramvir S. Dehal,Adam P. Arkin. FastTree: computing largeminimum evolution trees with profiles instead of a distance matrix[J]. MolecularBiology and Evolution.2009,26(7):1641-1650.
    [152]Micah Hamady,Catherine Lozupone,Rob Knight. Fast UniFrac: facilitatinghigh-throughput phylogenetic analyses of microbial communities includinganalysis of pyrosequencing and PhyloChip data[J]. The ISME journal.2009,4(1):17-27.
    [153]魏复盛,国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].中国环境科学出版社,2002.
    [154]Andrew D. Eaton,Mary Ann H. Franson. Standard methods for the examination ofwater&wastewater[M]. American Public Health Association,2005.
    [155]Britt-Marie Wilén,Bo Jin,Paul Lant. The influence of key chemical constituentsin activated sludge on surface and flocculating properties[J]. Water Research.2003,37(9):2127-2139.
    [156]Yehuda Miron,Grietje Zeeman,Jules B. Van Lier The role of sludge retention timein the hydrolysis and acidification of lipids, carbohydrates and proteins duringdigestion of primary sludge in CSTR systems[J]. Water Research.2000,34(5):1705-1713.
    [157]Caroline Rondel, Claire-Emmanuelle Marcato-Romain. Development andvalidation of a colorimetric assay for simultaneous quantification of neutral anduronic sugars[J]. Water Research.2013,47(8):2901-2908.
    [158]Wen-Tso Liu,Takashi Mino,Kazunori Nakamura. Glycogen accumulatingpopulation and its anaerobic substrate uptake in anaerobic-aerobic activated sludgewithout biological phosphorus removal[J]. Water Research.1996,30(1):75-82.
    [159]J. T. Trevors,C. I. Mayfield,W. E. Inniss. Measurement of electron transportsystem (ETS) activity in soil[J]. Microbial Ecology.1982,8(2):163-168.
    [160]Li Cheng,Xiaochen Li,Ruixue Jiang. Effects of Cr (VI) on the performance andkinetics of the activated sludge process[J]. Bioresource Technology.2011,102(2):797-804.
    [161]Tamara Galloway,Ceri Lewis,Ida Dolciotti. Sublethal toxicity of nano-titaniumdioxide and carbon nanotubes in a sediment dwelling marine polychaete[J].Environmental Pollution.2010,158(5):1748-1755.
    [162]Alistair BA Boxall,Karen Tiede,Qasim Chaudhry. Engineered nanomaterials insoils and water: how do they behave and could they pose a risk to humanhealth?[J]. Nanomedicine.2007,2(6):919-927.
    [163]Kerry J. Howe,Kenneth P. Ishida,Mark M. Clark. Use of ATR/FTIR spectrometryto study fouling of microfiltration membranes by natural waters[J]. Desalination.2002,147(1):251-255.
    [164]Justin E. Birdwell,Annette Summers Engel. Characterization of dissolved organicmatter in cave and spring waters using UV-Vis absorbance and fluorescencespectroscopy[J]. Organic Geochemistry.2010,41(3):270-280.
    [165]Youhei Yamashita,Rudolf Jaffe,Nagamitsu Male. Assessing the dynamics ofdissolved organic matter (DOM) in coastal environments by excitation emissionmatrix fluorescence and parallel factor analysis (EEM-PARAFAC)[J]. Limnologyand Oceanography.2008,53(5):1900.
    [166]Brandon M. Stephens,Elizabeth C. Minor. DOM characteristics along thecontinuum from river to receiving basin: a comparison of freshwater and salinetransects[J]. Aquatic Sciences.2010,72(4):403-417.
    [167]L. Martin-Neto,D. M. B. P. Milori,W. T. L. Da Silva. EPR, FTIR, Raman,UV-Visible Absorption, and Fluorescence Spectroscopies in Studies of NOM[J].Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter inEnvironmental Systems.2009:651-727.
    [168]Jie Chen,Baohua Gu,Eugene J. LeBoeuf. Spectroscopic characterization of thestructural and functional properties of natural organic matter fractions[J].Chemosphere.2002,48(1):59-68.
    [169]Muhammad Tariq Khan,C. L. Manes,Cyril Aubry. Source water quality shapingdifferent fouling scenarios in a full-scale desalination plant at the Red Sea[J].Water Research.2012,47(2):558–568.
    [170]Jiangnan Shen,Dandan Li,Feiyan Jiang. Purification and concentration ofcollagen by charged ultrafiltration membrane of hydrophilic polyacrylonitrileblend[J]. Separation and Purification Technology.2009,66(2):257-262.
    [171]Ceyda Senem Uyguner, Miray Bekbolet. Implementation of spectroscopicparameters for practical monitoring of natural organic matter[J]. Desalination.2005,176(1):47-55.
    [172]XiaoHong Guan,Chii Shang,GuangHao Chen. ATR-FTIR investigation of therole of phenolic groups in the interaction of some NOM model compounds withaluminum hydroxide[J]. Chemosphere.2006,65(11):2074-2081.
    [173]Henry F. Wilson,Marguerite A. Xenopoulos. Effects of agricultural land use onthe composition of fluvial dissolved organic matter[J]. Nature Geoscience.2008,2(1):37-41.
    [174]Jie Chen,Eugene J. LeBoeuf,Sheng Dai. Fluorescence spectroscopic studies ofnatural organic matter fractions[J]. Chemosphere.2003,50(5):639-647.
    [175]Sanghyun Jeong,Lan Hee Kim,Sung-Jo Kim. Biofouling potential reductionsusing a membrane hybrid system as a pre-treatment to seawater reverse osmosis[J].Applied Biochemistry and Biotechnology.2012,167(6):1716-1727.
    [176]D. J. Greenland. Interactions between humic and fulvic acids and clays[J]. SoilScience.1971,111(1):34-41.
    [177]Margarida Campinas,Maria Jo o Rosa. The ionic strength effect on microcystinand natural organic matter surrogate adsorption onto PAC[J]. Journal of Colloidand Interface Science.2006,299(2):520-529.
    [178]A. W. Zularisam,A. F. Ismail,Razman Salim. Behaviours of natural organicmatter in membrane filtration for surface water treatment-a review[J]. Desalination.2006,194(1):211-231.
    [179]Namguk Her, Gary Amy, Chalor Jarusutthirak. Seasonal variations ofnanofiltration (NF) foulants: identification and control[J]. Desalination.2000,132(1):143-160.
    [180]L. C. Hsu,S. L. Wang,Y. C. Lin. Cr (VI) removal on fungal biomass ofNeurospora crassa: The importance of dissolved organic carbons derived from thebiomass to Cr (VI) reduction[J]. Environmental Science&Technology.2010,44(16):6202-6208.
    [181]James A. Davis. Adsorption of natural dissolved organic matter at the oxide/waterinterface[J]. Geochimica et Cosmochimica Acta.2012,46(11):2381-2393.
    [182]Emma L. Sharp,Peter Jarvis,Simon A. Parsons. The impact of zeta potential onthe physical properties of ferric-NOM flocs[J]. Environmental Science&Technology.2006,40(12):3934-3940.
    [183]John Coates. Interpretation of infrared spectra, a practical approach[M].Encyclopedia of Analytical Chemistry.2000.
    [184]Kun Yang,Daohui Lin,Baoshan Xing. Interactions of humic acid with nanosizedinorganic oxides[J]. Langmuir.2009,25(6):3571-3576.
    [185]Klaus Kaiser,Georg Guggenberger. The role of DOM sorption to mineral surfacesin the preservation of organic matter in soils[J]. Organic Geochemistry.2000,31(7):711-725.
    [186]Abhijit Maiti,Mohtada Sadrezadeh,Subhayan Guha Thakurta. Characterization ofBoiler Blowdown Water from Steam-Assisted Gravity Drainage andSilica-Organic Coprecipitation during Acidification and Ultrafiltration[J]. Energy&Fuels.2012,26(9):5604-5612.
    [187]Hussain A. N. Abdulla,Elizabeth C. Minor,Robert F. Dias. Changes in thecompound classes of dissolved organic matter along an estuarine transect: A studyusing FTIR and13C NMR[J]. Geochimica et Cosmochimica Acta.2010,74(13):3815-3838.
    [188]Jacob Hoygaard Bruus,Per Halkjaer Nielsen,Kristian Keiding. On the stability ofactivated sludge flocs with implications to dewatering[J]. Water Research.1992,26(12):1597-1604.
    [189]Elisabeth Neyens,Jan Baeyens,Raf Dewil. Advanced sludge treatment affectsextracellular polymeric substances to improve activated sludge dewatering[J].Journal of Hazardous Materials.2004,106(2):83-92.
    [190]V. Urbain,J. C. Block,J. Manem. Bioflocculation in activated sludge:an analyticapproach[J]. Water Research.1993,27(5):829-838.
    [191]Britt-Marie Wilen,Bo Jin,Paul Lant. Impacts of structural characteristics onactivated sludge floc stability[J]. Water Research.2003,37(15):3632-3645.
    [192]Bo Jin,Britt-Marie Wilen,Paul Lant. Impacts of morphological, physical andchemical properties of sludge flocs on dewaterability of activated sludge[J].Chemical Engineering Journal.2004,98(1):115-126.
    [193]Delia Teresa Sponza. Investigation of extracellular polymer substances (EPS) andphysicochemical properties of different activated sludge flocs under steady-stateconditions[J]. Enzyme and Microbial Technology.2003,32(3):375-385.
    [194]Anna Zita,Malte Hermansson. Effects of ionic strength on bacterial adhesion andstability of flocs in a wastewater activated sludge system[J]. Applied andEnvironmental Microbiology.1994,60(9):3041-3048.
    [195]Kevin C. Marshall. Mechanisms of bacterial adhesion at solid-water interfaces[J].Bacterial adhesion.1985:133-161.
    [196]Malte Hermansson. The DLVO theory in microbial adhesion[J]. Colloids andSurfaces B:Biointerfaces.1999,14(1):105-119.
    [197]Graeme Williams,Terence Chan. Bacterial Adhesion Phenomenon in WastewaterTreatment Applications[D]. University of Waterloo.2008.
    [198]Xiaomeng Liu,Guoping Sheng,Hongwei Luo. Contribution of extracellularpolymeric substances (EPS) to the sludge aggregation[J]. Environmental Science&Technology.2010,44(11):4355-4360.
    [199]Anna Zita,Malte Hermansson. Effects of bacterial cell surface structures andhydrophobicity on attachment to activated sludge flocs[J]. Applied andEnvironmental Microbiology.1997,63(3):1168.
    [200]Ann-Cathrin Olofsson,Anna Zita,Malte Hermansson. Floc stability and adhesionof green-fluorescent-protein-marked bacteria to flocs in activated sludge[J].Microbiology.1998,144(2):519-528.
    [201]Guanghui Yu,Pinjing He,Liming Shao. Characteristics of extracellular polymericsubstances (EPS) fractions from excess sludges and their effects onbioflocculability[J]. Bioresource Technology.2009,100(13):3193-3198.
    [202]J. W. Morgan,C. F. Forster,L. Evison. A comparative study of the nature ofbiopolymers extracted from anaerobic and activated sludges[J]. Water Research.1990,24(6):743-750.
    [203]Lene Haugaard Mikkelsen. Applications and limitations of the colloid titrationmethod for measuring activated sludge surface charges[J]. Water Research.2003,37(10):2458-2466.
    [204]Yu Liu,Shufang Yang,Yong Li. The influence of cell and substratum surfacehydrophobicities on microbial attachment[J]. Journal of Biotechnology.2004,110(3):251-256.
    [205]C. J. Van Oss,R. J. Good,M. K. Chaudhury. The role of van der Waals forces andhydrogen bonds in “hydrophobic interactions” between biopolymers and lowenergy surfaces[J]. Journal of Colloid and Interface Science.1986,111(2):378-390.
    [206]Carel Jan van Oss. Long-range and short-range mechanisms of hydrophobicattraction and hydrophilic repulsion in specific and aspecific interactions[J].Journal of Molecular Recognition.2003,16(4):177-190.
    [207]D. M. Grasso,K. M. Subramaniam,M. M. Butkus. A review of non-DLVOinteractions in environmental colloidal systems[J]. Reviews in EnvironmentalScience and Biotechnology.2002,1(1):17-38.
    [208]Keith AM Strevett, Gang Chen. Microbial surface thermodynamics andapplications[J]. Research in Microbiology.2003,154(5):329-335.
    [209]XiaoMeng Liu,GuoPing Sheng,Jin Wang. Quantifying the surface characteristicsand flocculability of Ralstonia eutropha[J]. Applied Microbiology andBiotechnology.2008,79(2):187-194.
    [210]Stewart D. Valin, Donald J. Sutherland. Predicting bioflocculation: newdevelopments in the application of flocculation theory[J]. EnvironmentalTechnology.1982,3(1-11):363-374.
    [211]C. J. Van Oss. Hydrophobicity of biosurfaces: Origin, quantitative determinationand interaction energies[J]. Colloids and Surfaces B:Biointerfaces.1995,5(3-4):91-110.
    [212]B. Q. Liao,D. G. Allen,I. G. Droppo. Surface properties of sludge and their rolein bioflocculation and settleability[J]. Water Research.2001,35(2):339-350.
    [213]Natuscka M. Lee,Hans Carlsson,Henrik Aspegren. Stability and variation insludge properties in two parallel systems for enhanced biological phosphorusremoval operated with and without nitrogen removal[J]. Water Science andTechnology.1996,34(1):101-109.
    [214]Xiong Zheng,Yinguang Chen,Rui Wu. Long-term effects of titanium dioxidenanoparticles on nitrogen and phosphorus removal from wastewater and bacterialcommunity shift in activated sludge[J]. Environmental Science&Technology.2011,45(17):7284-7290.
    [215]Euan W. Low,Howard A. Chase. Reducing production of excess biomass duringwastewater treatment[J]. Water Research.1999,33(5):1119-1132.
    [216]H. McShane,M. Sarrazin,J. K. Whalen. Reproductive and behavioral responses ofearthworms exposed to nano-sized titanium dioxide in soil[J]. EnvironmentalToxicology and Chemistry.2005,31(1):184-193.
    [217]Ines D. SL Henriques,Nancy GL Love. The role of extracellular polymericsubstances in the toxicity response of activated sludge bacteria to chemicaltoxins[J]. Water Research.2007,41(18):4177-4185.
    [218]Wenming Xie,Bingjie Ni,T. Seviour. Characterization of Autotrophic andHeterotrophic Soluble Microbial Product (Smp) Fractions from Activated Sludge.Water Research.2012,46(19):6210-6217.
    [219]L. Dominguez,M. Rodriguez,D. Prats. Effect of different extraction methods onbound EPS from MBR sludges. Part I: Influence of extraction methods overthree-dimensional EEM fluorescence spectroscopy fingerprint[J]. Desalination.2010,261(1):19-26.
    [220]R. Lange,J. Frank,J.-L Saldana. Fourth derivative UV-spectroscopy of proteinsunder high pressure I. Factors affecting the fourth derivative spectrum of thearomatic amino acids[J]. European Biophysics Journal.1996,24(5):277-283.
    [221]Daowen Xiong,Tao Fang,Linpeng Yu. Effects of nano-scale TiO2, ZnO and theirbulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidativedamage[J]. Science of the Total Environment.2011,409(8):1444-1452.
    [222]Michael Wagner,Rudolf Amann,Hilde Lemmer. Probing activated sludge witholigonucleotides specific for proteobacteria: inadequacy of culture-dependentmethods for describing microbial community structure[J]. Applied andEnvironmental Microbiology.1993,59(5):1520-1525.
    [223]Michael Wagner,Alexander Loy. Bacterial community composition and functionin sewage treatment systems[J]. Current Opinion in Biotechnology.2002,13(3):218-227.
    [224]Nico Boon,Wim Windt,Willy Verstraete. Evaluation of nested PCR-DGGE(denaturing gradient gel electrophoresis) with group-specific16S rRNA primersfor the analysis of bacterial communities from different wastewater treatmentplants[J]. FEMS Microbiology Ecology.2002,39(2):101-112.
    [225]A. Mark Osborn,Edward R. B. Moore,Kenneth N. Timmis. An evaluation ofterminal-restriction fragment length polymorphism (T-RFLP) analysis for thestudy of microbial community structure and dynamics[J]. EnvironmentalMicrobiology.2000,2(1):39-50.
    [226]Wen-Tso Liu,Terence L. Marsh,Hans Cheng. Characterization of microbialdiversity by determining terminal restriction fragment length polymorphisms ofgenes encoding16SrRNA[J]. Applied and Environmental microbiology.1997,63(11):4516-4522.
    [227]Tong Zhang,Mingfei Shao,Lin Ye.454Pyrosequencing reveals bacterial diversityof activated sludge from14sewage treatment plants[J]. The ISME journal.2011,6(6):1137-1147.
    [228]王敏,尚海涛,郝春博.饮用水深度处理活性炭池中微生物群落分布研究[J].环境科学.2011,32(5):1497-1504.
    [229]刘倩,阳习龙.不同污水除磷工艺中α-变形杆菌群落结构的分析[J].工业用水与废水.2011,42(6):20-24.
    [230]Vanni Bucci,Nehreen Majed,Ferdi L. Hellweger. Heterogeneity of intracellularpolymer storage states in enhanced biological phosphorus removal(EBPR)-Observation and modeling[J]. Environmental Science&Technology.2012,46(6):3244-3252.
    [231]Dimitry Y. Sorokin,Sebastian Lucker,Dana Vejmelkova. Nitrification expanded:discovery, physiology and genomics of a nitrite-oxidizing bacterium from thephylum Chloroflexi[J]. The ISME journal.2012,6(12):2245-2256.
    [232]P. Somasundaran,X. Fang,S. Ponnurangam. Nanoparticles: Characteristics,Mechanisms and Modulation of Biotoxicity[J]. KONA Powder and ParticleJournal.2010,28:38-49.
    [233]A. Rivadeneyra Torres, M. V. Martinez-Toledo, A. Gonzalez-Martinez.Precipitation of carbonates by bacteria isolated from wastewater samples collectedin a conventional wastewater treatment plant[J]. International Journal ofEnvironmental Science and Technology.2013,10(1):141-150.
    [234]SooYeon Lim,Seil Kim,Kyung-Min Yeon. Correlation between microbialcommunity structure and biofouling in a laboratory scale membrane bioreactorwith synthetic wastewater[J]. Desalination.2012,287:209-215.
    [235]Ping Li,Yanxin Wang,Kun Liu. Bacterial community structure and diversityduring establishment of an anaerobic bioreactor to treat swine wastewater[J].Water Science&Technology.2010,61(1):243-252.
    [236]Janaina F. Araujo,Alinne P. de Castro,Marcos M. C. Costa. Characterization ofsoil bacterial assemblies in Brazilian Savanna-like vegetation revealsAcidobacteria dominance[J]. Microbial Ecology.2012,64(3):760-770.
    [237]C-L de O. Manes,C. Barbe,N. J. West. Impact of seawater-quality and watertreatment procedures on the active bacterial assemblages at two desalinationsites[J]. Environmental Science&Technology.2011,45(14):5943-5951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700