高地应力区复杂岩质边坡开挖稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水电工程的修建过程中,经常会碰到复杂岩质边坡开挖稳定性问题。本文以世界第一高拱坝-锦屏一级水电站为依托工程,从工程地质调查分析入手,提出了高地应力区复杂岩质边坡坡体结构的概念、类型划分及其相应的破坏模式;根据实测的“点”地应力成果,回归反演了坝区的“场”地应力,在此基础上研究了回归地应力施加到计算模型上的方法;分析了边坡开挖的地应力释放规律,利用定性和定量方法对开挖引起的二次应力分区进行了研究,据此分析了边坡稳定性分析中的地应力考虑;然后根据损伤力学理论和岩石经验强度准则,推导了新的岩石统计损伤本构模型,再利用其强度折减原理,提出边坡考虑回归地应力的数值模拟方法以及基于变形-应力场的三维点安全系数法来评价边坡的稳定性;对坡体内含多组贯通结构面的块体组合,运用块体理论编制了相应的计算程序;最后通过现场监测成果,进行了三维监测反馈分析。论文在理论研究的同时,注重应用和试验验证,将研究成果应用于实际工程,接受实际工程的检验。主要取得了如下研究成果:
     (1)高地应力地区复杂岩质边坡坡体结构的概念、类型及其相应失稳破坏模式的确定。对比岩体结构、边坡结构的概念,提出了高地应力地区坡体结构的概念。在总结变形破坏模式和失稳机理的基础上,将坡体结构分为6个大类,并对在坡体内常见的发育1-3组节理的节理控制式坡体结构进行了亚类划分,初步建立起基于坡体结构的高地应力区复杂岩质边坡稳定性分析方法;
     (2)考虑河谷下切及地表剥蚀的区域地应力场回归。分析了坡体地应力的一般影响因素及深切河谷地区的地表剥蚀及河谷下切的特殊影响因素,根据实测的点应力,利用多元线性回归,得到了工程中可以利用的场应力,总结了深切河谷地区地应力场的分布规律,建立了从回归场应力到计算模型应力的施加方法;
     (3)边坡开挖引起的二次应力调整分析及边坡稳定性分析中构造应力的考虑。通过分析边坡开挖引起的地应力释放特点,从定性和定量两个方面分析边坡开挖引起的二次应力分区,在此基础上分析了边坡开挖稳定性中构造应力的考虑;
     (4)边坡开挖稳定性分析中考虑回归地应力的数值模拟方法。根据第1和第2提出的方法建立计算模型及确定模型上的地应力,基于损伤力学及岩石破坏的经验强度准则,通过室内岩石物理力学特性试验,推导了新的岩石损伤本构模型及损伤演化方程,并以FLAC3D为开发平台,利用其内嵌的FISH语言,编制了数据接口程序,在数值计算中反映了岩石破坏的损伤演化过程,从而确定出边坡的潜在破裂面,在此基础上,提出基于单元变形-应力场的三维点安全系数法来评价边坡的开挖稳定性;
     (5)编制了基于块体理论的岩质边坡三维块体稳定性分析程序。对于坡体内含多组贯通结构面的块体组合,根据块体理论的基本知识,利用程序语言编制了三维块体稳定性分析程序,解决了多结构面组合形成的临界失稳块体,特别是半确定性块体及随机块体中临界失稳块体的确定问题;
     (6)边坡的三维监测反馈分析。根据已获得的地质资料和岩石物理力学试验结果,结合计算域实际情况分析,确定待反演参数的变化范围,利用正交试验设计数值模拟方案,采用FLAC3D计算每组模拟方案对应边坡监测点的位移值。根据边坡监测点的位移值与各种参数方案所对应的计算值之间的函数关系(接近程度),确定出与计算模型范围和边界条件相适应的最佳计算参数,最后根据参数反演结果进行了开挖变形的正分析,参数的反演结果可以为数值计算和块体稳定性分析提供相应的参考。
The problem of excavation stability on complex rock slope is frequently encounted in the course of hydropower engineering construction. Thus, this paper will concentrate on the above topic based on the project-JinPing I stage hydropower station-the highest arch dam in the world. Started from the analysis of geological survey in engineering, the concept, classifications as well as the corresponding failure modes of the slope structure of complex rock slope are summarized in areas with high field stress. The field in-situ stress of dam area is inversed with regressive analysis method according to the actual measurement results toward several points. And on the basis the applied method from regressive ground stress to calculation model is studied. Furthermore, the release rules of ground stress caused by slope excavation are analyzed. And the corresponding secondary stress divisions are made by using qualitative and quantitative method. Hereby the condsideration of ground stress in the slope stability is analyzed. Then based on damage mechanics theory and rock empirical strength criterion, new statistical damage constitutive model of rock is derived. By using its strength reduction principle, the numerical simulation method considering regressive ground stress and three-dimensional point safety factor method based on deformation-stress field are put forward to evaluate the excavation stability of slope. As for block combinations including multi-group transfixion structure surface in the slope mass, corresponding calculation program is compiled by using block theory. Finally, three-dimensional monitoring feedback analysis is made by field monitoring results. While theoretical research is made, the application of the theory to practical engineering and checks for the legitimacy of the theoretical results compared with practice are important part in this thesis. The following is the research contents.
     (1) The determination about concept, types and its corresponding instability failure mode of slope mass structure of complex rock slop at high field stress areas. Compared with rock mass structure and slope structure, the concept of slope mass structure is put forward at high field stress areas. Based on the summarization of deformation and failure mode and instability mechanism, slope mass structure is divided into six large classes. And subclass is made to this slope mass structure commonly developed 1-3 group joints in slope mass. The method of the stability analysis of complex rock slope based on slope mass structure is preliminary established.
     (2) The regression of initial stress field considering cutting valley and wastage. The influence factors of ground stress and special factors of cutting valley and wastage at deep-incised valley areas are analyzed. According to actual measured point stress and using multivariate linear regression analysis, the field stress which can be used in engineering is gained. The distribution regular of gound stress field at deep-incised valley areas is summarized. The precise method of stress field from regression to calculation model is built.
     (3) The analysis of secondary stress adjustment caused by slope excavation and the consideration of tectonic stress in slope stability analysis. By analyzing releasing characteristic of groud stress caused by slope excavation, the zones of secondary stress are analyzed from qualitative and quantitative two sides. On the basis, the consideration of ground stress in slope excavation stability is analyzed.
     (4) The numerical simulation method considering regressive initial stress in slope excavation stability analysis. According to the method which is put forward in the first and second, the calculation model is built and the initial ground stress in model is defined. Based on damage mechanics and the empirical strength criterion of rock failure, by the laboratory test of rock physical mechanics properties, new rock damage constitutive model and damage evolution equation are derived. Taking FLAC3D as development platform and using its embedded FISH language, the data interface program is compiled. The damage evolvement process of rock failure is reflected in numerical calculation. So the potential failure surface of slope is defined. On the basis, the three-dimensional point safety factor method based on deformation-stress field is put forward to evaluate the excavation stability of slope.
     (5) The three-dimensional block stability analysis program of rock slope based on block theory is compiled. As to the block combination including multi-group transfixion structure in slope mass, according to the basic knowledge of block theory, three-dimensional block stability analysis program is compiled by using programming language. The problem of the determination of potential instability block formed by muti-group structure surface combination is solved, especially in the semi-deterministic blocks and random block.
     (6) Three-dimensional monitoring feedback analysis of slope. On the basis of the gained geological data and test of rock physical mechanics properties, according to practical situation of the computational domain, the range of waiting for inversion parameters is determined, design scheme of numerical simulation by using orthogonal test, and the displacement of every scheme corresponding monitoring point is calculated by FLAC3D. In accordance to the functional relationship (scilicet degree of closeness) between the displacement of slope monitoring point and the corresponding calculated value of every scheme, the optimum calculation parameters complying with the range of calculation model and boundary is determined. Finally, the face analysis of excavation deformation is done by the result of parameter inversion, which can provide corresponding reference to numerical calculation and block stability analysis.
引文
[1]崔政权,李宁.边坡工程-理论与实践最新发展,中国水利水电出版社,1999.
    [2]曾宪明,林润德,易平.基坑与边坡事故警示录.中国建筑工业出版社,1999.
    [3]孙玉科,李建国.岩质边坡稳定性的工程地质研究[J],地质科学,1965,11(4):330-352.
    [4]孙玉科,杨志法,丁恩保等.中国露天矿边坡稳定性研究[M],中国科学技术出版社,1999.
    [5]谷德振.岩体工程地质力学基础[M].科学出版社,1983.
    [6]孙广忠.论“岩体结构控制论”[J],工程地质学报,1993,9:14-8.
    [7]孙广忠.岩体结构力学.北京:科学出版社,1988.
    [8]傅荣华,李天斌,邓荣贵.专家系统在确定岩体结构类型中的应用[J],地质灾害与环境保护,1993,4(2):15-21.
    [9]王在泉.岩石高边坡岩体结构特征及其工程控制研究[J],中国矿业大学学报,1997,26(3):79-83.
    [10]黄国明,黄润秋.复杂岩体结构的几何描述[J],成都理工学院院报,1998,25(4):552-558.
    [11]徐卫亚,赵立永,梁永平.工程岩体结构类型定量划分问题研究[J],武汉水利电力大学学报,1999,32(2):8-11.
    [12]陶连金,常春,黄润秋等.深切河谷岩体结构的表生改造[J],成都理工学院院报,2000,27(4):383-387.
    [13]杨涛.工程高边坡病害的空间预测理论及其应用.西南交通大学博士学位论文,2006.
    [14]肖世国.岩石高边坡开挖松弛区及加固支挡结构研究.西南交通大学博士学位论文,2003.
    [15]冯君.顺层岩质边坡开挖稳定性及其支护措施研究.西南交通大学博士学位论文,2005.
    [16]王恭先,徐峻龄,刘光代等.滑坡学与滑坡防治技术[M],中国铁道出版社,2004.
    [17]周德培,钟卫,杨涛.基于坡体结构的岩质边坡稳定性分析[J],岩石力学与工程学报,2008,27(4):687-695.
    [18]郭怀志,马启超.岩体地应力场的分析方法.岩土工程学报.1983,5(3):68-71.
    [19]张有天,胡惠昌.地应力场的趋势分析.水利学报.1984,4:31-38.
    [20]Kavanagh K.T.,Clough R.Finite element application in the characterization of elastic solids.International journal of solid structures.1972,7:11-23.
    [21]Kirsten H.A.D.Determination of rock mass elastic moduli by back analysis of deformation measurement.Proc Symp on Expliration for Rock Eng.1976.
    [22]Sakurai S.,Takeuchi K.,Back analysis of measured displacement of tunnel.Rock mechanics and rock engineering.1983,16(3):173-180.
    [23]Gioda G.,Sakurai S.,Back analysis procedures for the interpretation of field measurements in geomechanics.International Journal for Numerical and Analytical Methods in Geomechanics.1987,11:28-33.
    [24]Gioda G.Indirect identification of the average elastic characteristics of rock mass.Proc Int Conf on structural Foundations on Rock.1980.
    [25]Maier G.,Gioda G.Optimization methods for parametric identification of geotechnical system.Maitins J B ed. Num Methods in Geom.1980.
    [26]Gioda GSome remarks on back analysis and characterization problems.Conf on Num Meth in Geom.1985.
    [27]杨志法,刘竹华.位移反分析法在地下工程设计中的初步应用.地下工程.1981,2:9-14.
    [28]白世伟,李光煜.某水电站坝区岩体应力场研究.岩石力学与工程学报.1982,1(1).
    [29]冯紫良,杨林德.地应力的反推原理.同济大学学报.1983,3:18-25.
    [30]杨志法.岩土工程反分析原理及应用.地震出版社,2002.
    [31]冯紫良,杨志法,关于弹塑性位移反分析的若干研究.1990,北京:地震出版社.
    [32]Yang Lin-de,Zhang K.,Wang Y.Back analysis of initial rock stresses and time-dependent parameters.International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts.1996,33(6).
    [33]Yang Lin-de,Sterling R.L.Back analysis of rock tunnel using boundary element method.Journal of Geotechnical Engineering.1989,115(8).
    [34]杨林德,黄伟,王聿.地应力位移反分析计算的有限单元法.同济大学学报(自然科学版).1985,4:69-77.
    [35]杨林德.地应力研究的历史与发展方向.隧道与地下工程.1987,2.
    [36]杨林德,荆华,李德洪.二维粘弹性问题反分析计算的统一模型.地下空间与工程学报.1993,13(4):243-250.
    [37]杨林德.反分析方法的新进展及其工程应用.岩土力学数值方法的工程应用.同济大学出版社,1990.
    [38]杨林德.反演分析法的原理及其在岩土工程中的应用.水利发电.1989,03:48-50.
    [39]肖明,刘志明.锦屏二级水电站三维地应力场反演回归分析.人民长江.2000,31(09):42-44.
    [40]肖明.三维地应力场反演与应力函数拟合.岩石力学与工程学报.1989,3(4):337-345.
    [41]黄宏伟.岩土工程中位移量测的随机逆反分析.岩土工程学报.1995,17(2):36-41.
    [42]庞作会,陈文胜,邓建辉等.复杂地应力场的反分析.岩土工程学报,1998,20(04):4.
    [43]李素华,徐天平.优化反分析方法在桩基工程中的应用.土木工程学报.1993,26(1):12-19.
    [44]李素华,朱维申.优化方法在弹性、横观各向同性以及弹塑性围岩变形观测反分析中的应用.岩石力学与工程学报.1993,12(2):105-114.
    [45]佐洛塔列夫.决定地应力状态的地质因素.地应力测量与研究.地震出版社,1987.
    [46]高莉青,陈宏德.岩体应力状态的影响因素.地应力测量理论研究与应力.地震出版社,1987:86-97.
    [47]陶振宇,杨子文.地应力-岩体性状的一个主要因素.水利学报.1982,23(10):38-43.
    [48]陶振宇,潘别桐.岩石力学原理与方法.中国地质大学出版社,1991:40-57.
    [49]朱焕春,陶振宇.不同岩石中地应力分布.地震学报.1994,1:15.
    [50]朱焕春,陶振宇.地形地貌与地应力分布的初步分析.水利水电技术.1994.1:6.
    [51]朱焕春,陶振宇.论沉积区岩体地应力分布.武汉水利电力大学学报.1993,26(4):1-9.
    [52]白世伟,李光煜.二滩水电站坝区岩体应力场研究.岩石力学与工程学 报.1982,1(1):45-55.
    [53]白晨光,于学馥.基于神经网络的地应力预测方法研究.化工矿山技术.1997,26(1):12-14.
    [54]戴荣,李仲奎.三维地应力场BP反分析的改进.岩石力学与工程学报.2005,24(1):83-88.
    [55]郭锋,马震岳,金长宇.抽水蓄能电站地下洞室地应力场反演分析——基于神经网络和快速拉格朗日算法.地下空间与工程学报.2007,3(2):208-212.
    [56]蒋中明,徐卫亚,邵建富.基于人工神经网络的地应力场三维反分析.河海大学学报.2002,30(3):52-56.
    [57]金长宇,马震岳,张运良等.神经网络在岩体力学参数和地应力场反演中的应用.岩土力学.2006,27(8):1263-1271.
    [58]孔广亚,蔡美峰.基于神经网络的仿真输出方法在地应力场分析中的应用.黄金.1996,11:24-27.
    [59]梁远文,林红梅,潘文彬.基于BP神经网络的三维地应力场反演分析.广西水利水电.2004,4:5-8.
    [60]刘金龙,解加毕,程滨.神经网络方法在地应力反演分析中的应用.山西建筑.2005,31(21):97-98.
    [61]马震岳,金长宇,张运良.基于FLAC及神经网络的地应力场反演.水电能源科学.2005,23(3):44-45.
    [62]石敦敦,傅永华,朱暾等.人工神经网络结合遗传算法反演岩体地应力的研究.武汉大学学报(工学版).2005,38(2):73-76.
    [63]王双红,蔡美峰.利用神经网络对地应力测量的结果进行分析.黄金.1998,19:16-19.
    [64]易达,徐明毅,陈胜宏等.人工神经网络在岩体地应力场反演中的应用.岩土力学.2004,25(06):943-946.
    [65]刘世君,高德军,徐卫亚.复杂岩体地应力场的随机反演及遗传优化.三峡大学学报(自然科学版).2005,27(2):123-127.
    [66]薛娈鸾,陈胜宏.瀑布沟工程地下厂房区地应力场的二次计算研究.岩石力学与工程学报.2006,25(09):1881-1886.
    [67]杨志双,潘懋.基于遗传算法(GA)的地应力有限元反演研究.水文地质工程地质.2006,2:80-83.
    [68]余志雄,周创兵,陈益峰等.基于v-SVR和GA的地应力场位移反分析方法 研究.岩土力学.2007,28(1):151-156.
    [69]丰定祥,谷先荣,杨家岭,等.关于地下工程有限元分析中初始地应力场的假定[J].地下工程,1982,(2):20-27.
    [70]陈祖煜,汪小刚,杨健等,岩质边坡稳定性分析——原理、方法、程序,北京:中国水利水电出版社,2005
    [71]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社1994.
    [72]孙广忠.工程地质与地质工程.北京:地震出版社,1993.
    [73]R.E. Goodman. Methods of Geological Engineering in Discontinuous Rock. West Publishing Company,1976
    [74]Fellenius,w.Erdstatiche Berechnungen mit Reibung and Kohasion, Ernst, Berlin (in German),1927
    [75]Bishop, A.W. The use of the slip circle in the stability analysis of slopes. Geotichnique, London, Vol.5 (1),1955,pp:7-17
    [76]Janbu, N.Earth pressures and bearing capacity calculations by generalized procedure of slices. Proceedings of the fourth international conference on soil mechanics and foundation engineering, Vol.2,1957
    [77]Morgenstern, N.R., and Price, VE. The analysis of the stability of general slip surfaces. Geotechnique, London, Vol.15 (1),1965,pp:79-93
    [78]Spencer, E.A. Method of analysis of the stability of embankments assuming parallel interslice forces. Geotechnique, London, Vol.17(1),1967, pp:11-26
    [79]Janbu, N.Slope stability computions. Soil Mech. And Found. Engrg. Rep., The technical university of Norway, Trondheim, Norway,1968.
    [80]Hoek, E., Bray, J.W., Boyd, J.M. The stability of a rock slope containing a wedge resting on two intersecting discontinuities. Quarterly J. Engineering Geology. Vol.6 (1),1973
    [81]Revilla, J.Castillo, E. The calculus of variation applied to stability of slope. Geotech,27 (1),1977, pp:1-11
    [82]Sarma, S.K. Stability analysis of embankments and slopes. J. Geotech. Engrg. Div., ASCE,105 (12),1979,pp:1511-1524
    [83]潘家铮.建筑物的抗滑稳定和滑坡分析.水利出版社,1980
    [84]陈祖煜.建筑物抗滑稳定分析中“潘家铮最大最小原理”的证明.清华大
    学学报(自然科学版),1998,38(1):1-4
    [85]Leshchinsky, D. Slope stability analysis:Generalized approach. J.Geotech. Eng.Vol.116 (5),1990, pp:851-867
    [86]Li, K.S. and White, W. Rapid evaluation of the critical surface in slope stability problems. International for Numerical and Analytical Methods in Geomechanics.Vol.11 (5),1987,pp:449-473
    [87]Clough, A.K. Variable factor of safety in slopes stability analysis by limit equilibrium method. J.,1st Eng. India Part Ⅱ Vol.69 (3),1988, pp:149-155
    [88]Milutin M Srbalov. Limit equilibrium method with local factors of safety for slope stability. Can. Geotech. J., Vol.24 (4),1987,pp:652-656
    [89]Chen Z.-Y., and Shao, C.-M. Evaluation of minimum factor of safety in slope stability analysis. Can. Geotech. J., Vol.25 (4),1988,pp:735-748
    [90]Meiketsu Enoki, Mori, Yagi, Ryuichi and Yatabe. Generalized slice method for slope stability analysis. Soil. Found. J., Vol.30 (2), pp:1-13
    [91]Espinazo, R,D. Bourdeau, P.L and Mahunthan, B. Unified formulation for analysis of slopes with general surface. Geotech. Eng. Vol.120 (7),1994, pp:185-204
    [92]Baker, R. Determination of the critical slip surface in slope stability computations. International for Numerical and Analytical Methods in Geomechanics. Vol.4,1980, pp:333-359
    [93]Boutrup, E. and Lovell, C.W.Search technique in slope stability analysis. Engrg. Geol.,Vol.16 (1) 1980,pp:51-61
    [94]Cherubini, C. and Creco, V.R. A probabilistic method for locating the critical slip surface in slope stability analysis. Proc.,5th I.C.S.A.P.,2,1987, pp: 1182-1187
    [95]Yamagami, T. and Ueta, Y. Search for noncircular slip surfaces by the Morgenstern-Price method. Proc.,6th Int. Conf. Numer. Methods in Geomech.,1988, pp:1219-1223
    [96]Chen Z.-Yu. Random trials used in determining global minimum factors of safety of slopes, Can. Geotech. J., Vol.29,pp:225-233
    [97]Greco, V.R. Efficient Monte Carlo technique for locating critical slip surface. Geotechl. Eng.Vol.122 (7),1996,pp:517-525
    [98]雷晓燕.接触摩擦单元的理论及其应用.岩土工程学报,1994,16(3)23-32
    [99]Zienkiewicz, O.C., Humpheson, C. and Lewis, R.W. Associated and non-associated visco-plasticity and plasticity in soil mechnics. Geotechnique, Vol.25 (4),1975, pp:671-689
    [100]Griffiths D V, Lane P A. Slope stability analysis by finite elements. Geotechnique,1999,49 (3):387-403
    [101]Dawson E M, Roth W H, Drescher A. Slope stability analysis by strength reduction. Geotechnique,1999,49:835-840
    [102]Matsui T, San K C. Finite element slope stability analysis by shear strength reduction technique. Soils and Foudations,1992,32 (1):59-70
    [103]郑颖人,赵尚毅.用有限元法求边坡稳定安全系数.公路交通技术,2002.3,(1):7-9
    [104]赵尚毅,郑颖人,时卫东,王敬林.用有限元强度折减法求边坡稳定安全系数.岩土工程学报,2002.5,24(3):343-346
    [105]张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析.岩土工程学报,2002.7,24(4):487-490
    [106]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定性分析.中国工程科学,2002.10,4(10):57-61
    [107]Terzaghi,K., Stability of steep slopes on hard unweathered rock. Geotechnique,12,67-71,1962.
    [108]Coates, D. F., Rock mechanics principles. (Revised). Ottawa.1970.
    [109]王兰生,李天斌,赵其华.浅生时效构造与人类工程[M].北京:地质出版社,1994.
    [110]黄润秋,张倬元,王士天.论岩体结构的表生改造,水文地质工程地质,1994,4:1-6.
    [111]陶连金,常春,黄润秋.深切河谷岩体结构的表生改造,成都理工学院学报,2000,27(4):383-387.
    [112]杨林德等著.岩土工程问题的反演理论与工程实践[M].科学出版社,1996.
    [113]武汉测绘学院.最小二乘法.北京:中国工业出版社,1961.7.
    [114]于学馥.信息时代岩土力学与采矿计算初步.北京:科学出版社,1991.
    [115]陶振宇.对岩体初始应力的几点初步认识.水文地质工程地质,1980,第四期.
    [116]蔡美峰,乔兰,李华斌.地应力测量原理和技术.北京:科学出版社,1995.
    [117]李纪人,黄诗峰等.“3S”技术水利应用指南,中国水利水电出版社,2003
    [118]冯君,宋胜武,周德培等.考虑边坡开挖中地应力释放的改进Sarma法,地下空间与工程学报,2009,5(1):50-53.
    [119]盛谦.深挖岩质边坡开挖扰动区与工程岩体力学性状研究[D].中国科学院武汉岩土力学研究所博士学位论文,2002,48-68.
    [120]哈秋舲.三峡工程永久船闸陡高边坡各向异性卸荷岩体力学研究[J]岩石力学与工程学报.2001,(05):605-610.
    [121]黄润秋,林峰,陈德基,等.岩质高边坡卸荷带形成及其工程性状研究[J].工程地质学报,2001,(03):228-229.
    [122]肖世国,周德培.开挖边坡松弛区的确定与数值分析方法[J].西南交通大学学报,2003,38(3):318-321.
    [123]赵晓彦,胡厚田,庞烈鑫,等.类土质边坡开挖的卸荷作用及卸荷带宽度的确定[J].岩石力学与工程学报,2005,(04):710-711.
    [124]邓建辉,李焯芬,葛修润.岩石边坡松动区与位移反分析[J].岩石力学与工程学报,2001,(02):171-174.
    [125]聂德新.岩质高边坡岩体变形参数及松弛带厚度研究[J].地球科学进展,2004,19(3):472-475.
    [126]周维垣.高等岩石力学[M],北京:中国水利水电出版社,1990.
    [127]谢仁海,梁天祥,钱光漠.构造地质学[M].徐州:中国矿业大学出版社,1991
    [128]夏才初.工程岩体节理力学[M].上海:同济大学出版社,2002
    [129]蔡美峰主编.岩石力学与工程[M].北京:科学出版社,2004
    [130]村上澄男.损伤力学,材料损伤与断裂的连续介质力学处理.材料(日),1982,31(340):1-11.
    [131]D Krajeinovic. Statistical aspects of the continuous damage theory. International Journal of Solids Structures,1982,18(7):551-562
    [132]杨友卿.岩石强度的损伤力学分析.岩石力学与工程学报[J],1999,
    18(1):23-27.
    [133]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633.
    [134]Lemaitre J.1984. How to use damage mechanics. Nuclear Engineering and Design Journal. Vol.80.
    [135]谢和平.岩石、混凝土损伤力学[M],中国矿业大学出版社,1990,北京.
    [136]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [137]曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003,25(2):184-187.
    [138]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791.
    [139]赵锡宏,孙红,罗冠威.损伤土力学[M],上海:同济大学出版社,2000:1-11.
    [140]Lemaitre J. A continuous damage mechanics model for ductile fracture[J].J.Eng. Mater. Tech.,1985,107(1):83 - 89.
    [141]李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[博士学位论文][D].徐州:中国矿业大学,1995.
    [142]Hoek E, Brown E T. Underground Excavations in Rock[M]. Hertford, Austin Sons Ltd,1980.
    [143]曹文贵,赵明华,刘成学.基于统计损伤理论的莫尔-库仑岩石强度判据修正方法之研究[J].岩石力学与工程学报,2005,24(14):2403-2408
    [144]曹文贵,张升.基于Mohr-Coulomb准则的岩石损伤统计分析方法研究[J].湖南大学学报(自然科学版),2005,32(1):43-47.
    [145]曹文贵,赵明华,刘成学.基于统计损伤理论的德鲁克-普拉格岩石强度准则的修正[J].水利学报,2004,9:18-23.
    [146]Itasca Consulting Group, Inc.USA.FLAC-3D. Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 2.0, User's Manual,1987.
    [147]Itasca Consulting Group. Theory and background[M]. Minnesota:Itasca Consulting Group,2002.
    [148]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性 [J].岩土工程学报,2001,23(4):407-411.
    [149]DAWSON E M, ROTH W H, DRESCHER A. Slope stability analysis by strength reduction[J], Geotechnique,1999,49(6):835 - 840.
    [150]GRIFFITHS D V, LANE P A. Slope stability analysis by finite elements[J],1999,49(3):387-403.
    [151]赵尚毅,时卫民,郑颖人.边坡稳定分析的有限元法[J].地下窨,2001,21(5):450-454.
    [152]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J],防灾减灾工程学报,2003,23(3):1-8.
    [153]赵少飞,栾茂田,吕爱钟.土工极限平衡问题的非线性有限元数值分析[J].岩土力学,2004,25(增刊):121-125.
    [154]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7.
    [155]郑宏,李春光,李焯芬等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):323-328.
    [156]郑宏,刘德富.弹塑性矩阵Dep的特性和有限元边坡稳定性分析中的极限状态标准[J].岩石力学与工程学报,2005,24(7):1099-1105.
    [157]吴春秋,朱以文,蔡元奇.边坡稳定临界破坏状态的动力学评判方法[J].岩土力学,2005,26(5):784-788.
    [158]林杭,曹平,赵延林等.强度折减法在Hoek-Brown准则中的应用,中南大学学报(自然科学版),2007,38(6):1219-1224.
    [159]李同春,卢智灵,姚纬明,等.边坡抗滑稳定安全系数的有限元迭代解法[J].岩石力学与工程学报,2003,22(3):446-450.
    [160]徐邦栋.滑坡分析与防治[M].北京:中国铁道出版社,2001.
    [161]Richard E.Goodman, Gen-hua Shi. Block theory and its application to rock engineering, Englewood Cliffs, New Jersey:Prentice-Hall,Inc.,1985.
    [162]刘锦华,吕祖珩.块体理论在工程岩体稳定分析中的应用,水利电力出版社,1988.
    [163]许强,黄润秋,巨能攀等.边坡岩体块体稳定性分析系统的开发与研究.工程地质学报,2001,9(4):408-413.
    [164]林锋,黄润秋,史新鹏.块体稳定性分析系统BSA3D的开发与应用,成都理工大学学报(自然科学版)[J],2007,34(1):82-85.
    [165]张奇华,块体理论的应用基础研究与软件开发[D],博士论文,武汉大学,2004.
    [166]怀超,关键块体理论在高速公路连拱隧道围岩稳定性分析中的应用[M],硕士论文,长安大学,2005.
    [167]吴旭东,基于块体理论的岩体稳定性可视化分析软件开发[M],硕士论文,河海大学,2007.
    [168]王隽,块体理论分析与软件开发[M],硕士论文,同济大学,2008.
    [169]P. Fritz, St. Bergamin. Computer Program AutoBlock for Analyzing the Stability of Foundations and Slopes in Rock based on a Digital Terrain Model.72th Annual Meeting of ICOLD, Seoul 2004.
    [170]Mantyla, M., An introduction to solid modeling. Computer Science Press, Rockville, U.S.A.,1988.
    [171]St. Bergamin, J. Kolberg, P. Fritz. Stability Analysis of a Rock Slope on the Bristen Road using AutoBlock.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700