地震作用下加筋土挡墙稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震的频发促使人们研究各种结构在地震作用下的响应。本文以重庆市某滨江路护岸工程的加筋土挡墙为例,利用三维快速拉格郎日法(简称FLAC3D)对不同地震荷载作用下的加筋土挡墙稳定和变形进行了数值模拟分析。并与其它相关研究结果进行了比较,获得的主要成果如下:
     (1)在地震荷载作用下,加筋土挡墙墙面的横向位移比静力作用下增加较大,而且随地震设计烈度的增加位移呈较快增长,并随墙高度的增加而增加。
     (2)对一般土质地基上的加筋土挡墙,在强震作用下(如地震设计烈度为8度时),由于加筋体填土在地震作用下逐渐振动密实,填土压缩变形,加筋填土与墙面板间出现差异沉降,筋带产生明显的拉伸变形,呈现上大下小的变化分布。
     (3)在不同的地震荷载作用下,加筋挡墙的筋带拉力随墙高增加而减小,筋带拉力最大值仍出现在加筋体底层。各层筋带最大拉力值点离墙面距离随墙高度增加而缓缓增加。
     (4)随地震设计烈度的增加,加筋体的屈服单元也逐渐增加,在设计烈度为8度时,地震时大部分单元都表现出屈服状态。且随设计烈度增加,加筋土挡墙的潜在破裂面向离墙面较远的区域扩展;地震烈度越高,加筋体发生破坏的范围越大。
Frequent earthquake urged people to study the response of various structures under earthquake. Using three-dimensional fast Lagrangian method (referred to as FLAC3D), it was carried out numerical simulation to stability and deformation of the reinforced retaining wall under different seismic intensity for the embankment of Binjiang Road in Chongqing. Compared with other related study results, the main results as follows:
     (1) The wall’s lateral displacement of the reinforced retaining wall under earthquake was bigger than under static, and the bigger seismic intensity, the faster the displacement increasing. The deformation was bigger and bigger from the bed to top of the wall.
     (2) For the reinforced retaining wall based on soil foundation, there was a differential settlement between filler and wall under strong earthquake( especially under 8 degree). The filler was vibrated and compacted, the bar appeared a distinct stretcher strain, it was presented big in top and small in bottom of wall.
     (3) For different seismic intensity, the bar tension force in reinforced wall was still decreased with the height of wall and the maximum tension was appeared in the bottom layer. The spacing between the wall face and maximum tension point of various layer was increased stably from bottom layer to top layer.
     (4) The yield unit in reinforced retaining wall was increased with the seismic intensity increasing, especially in the intensity of 8 degree, most of the units have been yield. And with the seismic intensity increased, the potential rupture surfaces of the reinforced wall was spread to the rear part of the wall body. The greater the seismic intensity, the greater scope of damage occupied in the reinforced wall.
引文
[1]曾四平,凌建明.流固耦合对加筋土边坡力学行为影响的弹塑性分析[J].水土保持通报,2007, 27(3) .
    [2]吕文良.加筋土挡墙研究现状综述[J].市政技术,2003年3月.
    [3]何光春.加筋土工程设计与施工[M].北京:人民交通出版社,2000.P16-34.
    [4]土工合成材料工程应用手册编写委员会.土工合成材料工程应用手册(第二版)[M].北京:中国建筑工业出版社,2000.P58-76.
    [5]孙钧,迟景魁,曹正康,施建勇.新型土工材料与工程整治[M].北京:中国建筑工业出版社, 1998.P20-35.
    [6] Vidal,H.,The Principle of Reinfoced Earth,Highaway Res Rec, No.282, NCRHRB, Washington, D.C., 1969,1-16.
    [7]何光春.加筋土技术的应用及进展[J].重庆建筑大学学报,2001,23(5):11-15.
    [8]杨果林.现代加筋土技术应用与研究进展[J].力学与实践,2002,24(1):9-17.
    [9]蒋建清.加筋土挡墙动力有限元分析与地震反应分析方法研究[D].湖南:湖南大学,2006.
    [10]刘华北.水平与竖向地震作用下土工筋带加筋土挡墙动力分析[J].岩土工程学报, 2006, 28(5): 594-599.
    [11]黄雨,郑虎,孙启登.加筋土挡墙的抗震性能研究现状[J].工程抗震与加固改造,2010, 32(5):107-112.
    [12] Pierre S,Michel J B.Seismic design of RE retaining walls-the contribution of FEA.In: International Geotechnical Symposium on Theory and Practice of Earth Reinforcement.FuKuoKa, Japan,1998,95-102.
    [13]甘田吕平.加筋土挡墙设计施工指南[M].日本:土木研究所,1981,35-46. [14 ]陈华.塑料土工筋带加筋土挡墙动力有限元分析[D].昆明:昆明理工大学,2002,4-5.
    [15] Richardson G N,Lee K L.Seismic design of reinforced earth walls.Journal of the Geotechnical Engineering Division,ASCE,1975,101(GT5):523-545.
    [16]中华人民共和国行业标准.公路加筋土工程设计规范(JTJ015-91)[S].北京:人民交通出版社,1993.
    [17]中华人民共和国行业标准.水运工程土工织物应用技术规范(JTJ/T239-08)[S].北京:人民交通出版社,2008.
    [18]中华人民共和国行业标准.土工合成材料应用技术规范(GB50290)[S].北京:中国计划出版社,1998.
    [19]中华人民共和国行业标准.水利水电工程土工合成材料应用技术规范(SL/T225-98)[S].北京:中国水利水电出版社,1998.
    [20]李卫平,赵荣国. 2006年国外灾害地震综述[J].国际地震动态, 2007, 338(2): 11-14.
    [21]李卫平,赵荣国. 2007年国外灾害地震综述[J].国际地震动态, 2008, 350(2): 36-40.
    [22] Koseki J,Kuwano J.Japanese experiences on seismic stability of geosynthetic-reinforced soil retaining walls[A].Proceedings of the 3rd Sino-Japan Geotechnical Symposium[C],Chongqing,China.2007:46~56[3].
    [23] Tatsuoka F,Tateyama M,Uchimura T,Koseki J.Geosynthetic-reinforced soil retaining walls as important permanent structures,1996~1997 Mercer Lecture[J].Geosynthetics International,1997,4(2):81~136.
    [24]程火焰,周亦唐,钟国强.加筋土挡土墙地震动力特性研究[J].公路交通科技,2004,21(9):16–20.
    [25]张师德,吴邦颖.加筋土结构原理及应用[M].北京:中国铁道出版社,1986.P30-50
    [26]欧阳仲春.现代土工加筋技术[M].北京:人民交通出版社, 1991.P15-40.
    [27] Yang Z. Strength and deformation characteristic of reinforced sand:[Dissertation].Los Angeles, Calif:University of California.1972.
    [28]介玉新,李广信.加筋土数值计算的等效附加应力法[J].岩土工程报,1999:21(5):614-616.
    [29] M.Bennis,P.De Buhan.A multiphase constitutive model of reinforced soils accounting for soil-inclusion interaction behaviour[J].Mathematical and Computer Modeling,2003,37:P469-475。
    [30]周世良,汪承志,何光春,栾茂田.台阶式筋带加筋挡墙潜在破裂面计算模式研究[J].公路交通科技,2007:24(11):15-20
    [31]刘波,韩彦辉.Flac原理实例与应用指南[M].北京:人民交通出版社, 2005. P122-131.
    [32]陈育民,许鼎平.Flac/Flac3D基础与工程实例[M].北京:水利水电出版社, 2009.P170-230.
    [33]周士良.筋带加筋土挡墙的结构特性及破坏机理研究[D].重庆:重庆大学, 2005.
    [34]李勤民.筋带加筋土挡墙弹塑性动力有限元分析[D] .重庆:重庆交通大学,2008.
    [35]杨正权.加筋土挡墙的稳定性分析研究[D] .大连:大连理工大学, 2006.
    [36]赵建.加筋土边坡稳定分析特征应变研究[D] .天津:天津大学,2007.
    [37]熊乾.土工加筋结构边坡稳定的应用与研究[D] .天津:天津大学,2004.
    [38]杨果林,王永和.加筋土挡墙在重复荷载作用下的模型试验与动态响应分析[J ] .岩土力学与工程学报,2002:21 (10) :1541—1546.
    [39] (美)西德Seed.H.B等.地震中的地面运动和土的液化[M].地震出版社,1988.P42-57.
    [40]李敬梅.地震作用下坝基土体的液化及有限元分析[D].天津:天津大学, 2004.
    [41]严祖文,李敬梅,冯艺.地震作用下坝基土体液化判别及动力有限元分析[J].中国农村水利水电,2006:78-81.
    [42]周睿博.砂土静态液化本构模型及参数确定[D].大连,大连理工大学,2006.
    [43] (日)大崎顺彦著.地震的谱分析入门[M].地震出版社,1980.P70-90.
    [44] (美)纽马克.罗森布卢斯著.地震工程学原理[M].中国建筑工业出版社,1986.P161-180.
    [45]冯德益著.地震波理论与应用[M].地震出版社,1988.1.P25-46.
    [46]吴飞桥.地震荷载作用下内河架空直立式集装箱码头数值分析[D].重庆:重庆交通大学, 2010.
    [47]刘华北.考虑蠕变、地震效应的土工筋带砂性土加筋挡墙弹塑性有限元分析[J].岩土工程学报,2007:29 (6) :917—921.
    [48]刘华北.地震作用下模块面板土工合成材料加筋土挡墙的内部稳定分析[J].岩土工程学报,2008:20 (2) :278—283.
    [49]刘华北,ling H I .土工筋带加筋土挡土墙设计参数的弹塑性有限元研究[J].岩土工程学报,2004:26 (5) :668—673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700