干旱区作物—水分关系与田间灌溉水有效性的SWAP模型模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对我国西部干旱区的特大型灌区—河套灌区所具有的独特水文水资源条件,选择两个典型区域分别进行了作物-水分关系和基于SWAP模型模拟的田间灌溉水有效性研究,以揭示和确立水分对干旱区作物产量的影响和量化表达与浅地下水位灌区农田水分运移转化规律和灌溉水对作物生长利用效率的评价方法,为河套灌区以节水为中心的技术改造和可持续发展提供理论基础和技术支撑。研究成果也可为自然环境和农业生产条件类似地区所参考。研究中注重借鉴和采用先进研究手段,在节水灌溉基础理论方面进行新的探索。对于节水灌溉理论的丰富与完善以及我国节水灌溉这一革命性措施的实施和农业的可持续发展具有重要意义。
     在河套灌区开展了春小麦、玉米和葵花三种主要作物的非充分灌溉试验,以研究和确立作物产量与水分的量化关系。针对灌区未来可能的缺水趋势,按我国较少采用的控制灌水定额方法设计缺水试验处理。该方法参考灌水经验减少灌溉定额,与常采用的土壤湿度控制法相比更符合当地灌溉技术水平和管理现状,有利于非充分灌溉的推广应用。
     对国外具有代表性的Jensen等6个作物水分响应模型从按多元线性回归原理推求模型参数出发进行了评述,深入分析和进一步明确了敏感指标的意义。结果表明,敏感指标是以作物水分响应模型所表达的统一回归方程的偏回归系数,反映回归自变量(水分)对因变量(产量)的作用效应,故可度量作物对水分的敏感程度。所选择的6个模型作物对水分的敏感程度均随敏感指标绝对值的增大而增大。受最小二乘法求优数学解的约束,在求解作物水分响应模型的敏感指标时常出现从作物生理和物理上难以科学解释的情况,这除与试验处理数量多少及缺水水平有关外,也与试验数据的统计分布有关。若试验数据为非正态或非对数正态分布,最小二乘法求优会受到限制。作物水分响应模型均为按非充分灌溉试验得到的经验模型,按数理统计和应用要求使用时应限制在非充分灌溉试验处理的水分下限值以内,不宜随意外推,否则预测或模拟的作物产量可能会有较大误差。研究结果有助于完善作物水分响应模型确认方法和避免在应用中出现偏差。
     采用春小麦、玉米两种主要作物的非充分灌溉资料,选择上述6个作物水分响应模型分析和确立了河套灌区这两种主要作物的产量与全生育期和生育阶段水分之间的量化关系。结果表明,两种作物相对减产量与相对亏水量的线性相关系数偏低,显示除缺水程度外缺水时间对产量也有显著影响,线性模型仅比较粗略地表达这两种作物的产量与全生育期水分的关系。5个生育阶段的作物水分响应模型由于数学结构和敏感指标的表达不同对于同一种作物的回归效果存在很大差异,表现出不同的适应性。研究结果表明Minhas模型均能较好的表达本地区这两种作物的产量与生育阶段水分之间的量化关系。这一结果可能是由于Minhas模型的自变量采用b_0和λ_i双重幂指数的数学结构,而能够较好反映干旱区作物对水分敏感的特性。国内外对Minhas模型注意较少,应引起同行的重视。
    
     由于现有作物水分响应模型的数学结构和敏感指标的表达对某些作物品种、受
    旱形式及生长环境等存在着不适性,传统建模方法仍有诸多不便之处。本文依据人
    工神经网络的基本原理在充分吸收其最新理论研究成果的基础上,以非充分灌溉试
    验得到的实测春小麦产量和各生育阶段水分资料为样本建立了基于BP神经网络的
    春小麦作物水分响应模型。BP神经网络的训练采用了附加动量因子和自适应学习速
    率相结合的方法参与连接权值的修正,与常规训练方法相比有助于减少网络陷入误
    差曲面局部极小值的可能性和增大了初始学习速率的任意性。由于训练样本实际存
    在的量测误差,在网络的训练过程中为保证模型的预测效果不必追求过小的拟合误
    差。在不同供水量下对春小麦产量的模拟预测表明,该模型能够正确反映作物产量
    与水分关系的一般规律。通过与当地条件下拟合效果较好的Minhas模型比较,该模
    型所预测的产量随备生育阶段水分的变化规律与Mi讪as模型敏感指标所反映的敏感
    程度变化规律相一致,且两者产量预测值接近。BP神经网络在作物水分响应模型的
    建模和产量模拟预测中是值得借鉴的理论和有效工具。本文开拓了作物水分响应模
    型建模理论的新思路。
     针对一般水平的试验站用水量平衡法计算作物实际腾发量时考虑深层渗漏量和
    地下水补给的困难,以河套灌区曙光试验站春小麦非充分灌溉试验为例,引进SWAP
    模型探讨了其在不同水分处理条件下作物实际腾发量计算的应用问题。研究表明,
    该模型可以可靠地揭示田间水量平衡分量的动态变化过程,与传统水量平衡法相比
    提供了作物根系层水量平衡分量运动过程的清晰图景和较容易准确确定各水分平衡
    分量,是获得不同缺水试验处理作物实际腾发量的有效和实用简便的工具。根据各,
    试验处理实际腾发量模拟结果和实测产量也用上述6个作物水分响应模型分析了春
    小麦的作物产量与水分的量化关系。由于两种方法得到的春小麦各试验处理的实际
    腾发量差别不大,因此所得作物水分响应模型类似。
     通过对传统的田间灌溉水利用率评估方法的
Crop-water relationship and availability of field irrigation water based on SWAP model simulation were studied in two areas of a largest-sized irrigation district-Hetao Irrigation District in the western arid area of China respectively according to its unique characteristics of hydrology and water resources so as to provide a theoretical basis and technical support for its water-saving transformation and agricultural sustainable development. The results can also be applied to other areas with similar natural and agricultural conditions. The study will contribute to the improvement of water-saving irrigation theory and the implementation of water-saving measures as well as agricultural sustainable development of China.
    The physical meaning of sensitive index for six worldwide representative models of crop response to water (Stewart a, Jensen, Minhas, Blank, Stewart band Singh) was analyzed based on multi-variable linear regression theory and was verified by a case study. Results show that sensitivity of drop increases as the absolute value of sensitive index become larger for all the 6 models. The sensitive index obtained by least-squared method sometimes can not be scientifically explained in terms of crop physiology. The phenomenon is related to the statistical distribution of experiment data in addition to the number of experiment treatment and water deficit level. When the data is not in normal or logarithmic normal distribution, the least-squared method is not applicable to obtaining the sensitive index. Because the models are all empirical ones established based on deficit experiment, the application of them should be limited above the low soil moisture of the water deficit experiment according to statistical theory, otherwise the prediction of crop yield by the models may produce considerable error .
    In order to establish relationship between crop yield and water use, a deficit irrigation experiment was conducted each for 3 main crops- spring wheat, maize and sunflower in Hetao Irrigation District. According to the manner of possible water shortage in future, the water deficit treatment was designed with controlled water application method (reduce water application with irrigation date remaining unchanged according to the irrigation schedule in use) which is more suitable to the irrigation management of the local area. The relationship between crop yield and water use of spring wheat and maize was studied using the data respectively. The results show that crop yields of spring wheat and maize hold an roughly good linear relationship with seasonal evapotranspirations respectively. Statistical analysis shows that Minhas model is capable to express the
    
    
    
    relationship of crop yields of spring wheat and maize with their evapotranspirations at different growth stages accurately. The sensitivity indices at different growth stages of the two models differ significantly, which indicates that the time of occurrence of water deficit has a great influence on the reduction of the yield of spring wheat an maize. The evapotranspirations of spring wheat for the field deficit irrigation experiment were calculated using the agro-hydrological simulation model SWAP 2.0. Comparison show the SWAP 2.0 is an attractive and effective tool to obtain evapotranspiration for the study of relationship between crop yield and water use.
    A model of crop response to water based on BP neural network for spring wheat was developed using deficit irrigation experiment data. Analysis of simulation results of the model shows that the model is able to express correctly the relation between the yield and water use of spring wheat and this method has some unique merit. The comparison with Minhas model, which fits well the experiment data, indicated that the spring wheat's sensibility to water expressed by these two models is identical and their results of yield prediction agree with each other for same water application. It can be concluded that the BP neural network is a new method suitable to simulate the crop response to water.
    A eval
引文
[1] 张蔚榛.有关水资源合理利用和农田水利科学研究的几点意见.中国农村水利水电(J),1997年,增刊:7-13.
    [2] 许志方.21世纪的节水农业展望.中国农村水利水电(J),1997年,增刊:55-59.
    [3] 张蔚榛.农业灌溉节水问题.灌溉排水(J),1999年,第18卷增刊:10-17.
    [4] 刘昌明,何希吾.中国21世纪水问题方略(M).北京:科学出版社,1998年6月.
    [5] 刘昌明,王会肖.土壤-作物-大气界面水分过程与节水调控(H).北京:科学出版社,1999年10月.
    [6] 贾大林,张蔚榛,田园等.关于结合国情发展节水农业的建议.灌溉排水(J),1999年,第18卷增刊:1-9.
    [7] 贾大林,姜文来.关于以节水为中心的大中型灌区改造规划的意见.中国农业工程学会农业水土工程专业委员会.农业高效用水与水土环境保护(C).西安:陕西科学技术出版社,2000年11月,9-13.
    [8] 李英能.西北地区农业高效用水浅议.中国农业工程学会农业水土工程专业委员会.农业高效用水与水土环境保护(C).西安:陕西科学技术出版社,2000年11月,14-18。
    [9] 冯尚友.水资源可持续利用与管理导论(H).北京:科学出版社,2000年.
    [10] 陈宜瑜.中国西部与农业相关的水问题(M).北京:中国林业出版社,2001年.
    [11] 宋郁东,樊自立,雷志栋.中国塔里木河水资源与生态问题研究(M).乌鲁木齐:新疆人民出版社,2002年.
    [12] 石玉林,卢良恕.中国作物需水与节水高效农业建设.中国工程院:中国可持续发展水资源战略研究报告(第四卷)(M).北京:中国水利水电出版社,2001年.
    [13] 康绍忠,蔡焕杰.农业水管理学(M).北京:中国农业出版社,1996年12月.
    [14] 康绍忠,梁银丽,蔡焕杰.旱区水-土-作物关系及其最优调控原理(M).北京:中国农业出版社,1998年.
    [15] 康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及其应用(M).北京:水利电力出版社,1994年7月.
    [16] 李保国,龚石元,左强.农田土壤水动态模型及其应用(M).北京:科学出版社,2000年9月.
    117] 许志方.灌溉计划用水(M).北京:中国工业出版社,1963年6月.
    [18] 庞鸿宾,高峰.资源水利与节水农业可持续发展.灌溉排水(J),1999年,第18卷,增刊:18-21。
    [19] 李英能.对我国农业高效用水发展战略的若干建议.灌溉排水(J),1999年,第18卷,增刊:22-28,
    [20] 吴擎龙,雷志栋,杨诗秀.求解SPAC系统水热运移的耦合迭代算法.水利学报(J),1996年,第2期:1-10.
    [21] 陈亚新,史海滨,魏占民.高效节水灌溉的理论基础和研究进展.灌溉排水(J),1999年,第18卷增刊:38-42.
    
    
    [22] 陈亚新,魏占民,史海滨.水管理决策支持系统的开发应用.内蒙古水利(J),1999年,第2期:16-19
    [23] 王伦平,陈亚新,曾国芳.内蒙古河套灌区灌溉排水与盐碱化防治(M).北京:水利电力出版社,1993年8月.
    [24] 陈亚新,康绍忠.非充分灌溉原理(M).北京:水利电力出版社,1995年9月.
    [25] 陈亚新.作物-水模型及其敏感指标的确认.灌溉排水(J),1995年,第14卷,第四期:1-6.
    [26] 陈亚新.灌溉试验设计与方差分析法(M).呼和浩特:内蒙古农业大学,2001年1月.
    [27] 陈亚新,于健.考虑缺水滞后效应的作物-水模型研究.水利学报(J),1998年,第4期:70-74.
    [28] 魏占民,陈亚新,史海滨,孔东.作物水-盐响应模型的研究进展.中国农业工程学会农业水土工程专业委员会.农业高效用水与水土环境保护(C).西安:陕西科技出版社,2000.11,472-478.
    [29] 魏占民,陈亚新,史海滨.关于作物-水模型敏感指标意义的认识.灌溉排水(J),2002年,第21卷节水灌溉理论与实践专刊:62-64.
    [30] 魏占民,陈亚新,史海滨.BP神经网络的作物-水模型的初步研究.灌溉排水(J),2002年,第21卷,第2期:12-16.
    [31] 魏占民,陈亚新,史海滨.控制灌溉定额试验处理的作物-水模型确认分析.中国农业工程学会农业水土工程专业委员会.农业水土工程学(C).呼和浩特:内蒙古教育出版社,2001.8,94-98.
    [32] 陈亚新,魏占民,崔远来.第四章作物水分生产函数.李远华.节水灌溉理论与技术[M].武汉: 武汉水利电力大学出版社,1999年1月,69-99.
    [33] 陈亚新.地面水-土壤水-地下水连续系统田间水有效性评价,灌溉排水(J),1993年,第1期:1-6.
    [34] 陈亚新.黄河内蒙古河套灌区灌溉水利用系数与提高途径.内蒙古水利科技(J),1980年,第1期:7-22.
    [35] 屈忠义,陈亚新,史海滨,魏占民.内蒙古河套灌区节水改造工程实施后地下水变化的BP模型预测.农业工程学报(J),2003年,第19卷,第1期:59-62.
    [36] 吕宏兴.灌溉渠道流量优化调度与水力模拟研究.西北农业大学博士论文(D),1999年.
    [37] 庄楚强,吴亚森.应用数理统计学(M).广州:华南理工大学出版社,2000年7月.
    [38] 浙江大学数学系高等数学教研室.概率论与数理统计(M).北京:人民教育出版社,1979年.
    [39] 莫惠栋.农业试验统计(M).上海:上海科学技术出版社,1984年1月.
    [40] 丛爽.面向MATLAB工具箱的神经网络理论与应用(M).合肥:中国科学技术大学出版社,1998年11月.
    [41] 张立明.人工神经网络的模型及其应用(N).上海:复旦大学出版社,1993年.
    [42] 周继成.人工神经网络-第六代计算机的实现(M).北京:科学普及出版社,1993年.
    [43] 刘国东,丁晶.BP网络用于水文预测的几个问题的探讨(J).水利学报(J),1999年,第1期:65-70.
    [44] 邰生霞,何桥.西北干旱地区作物-水模型的确认.内蒙古水利(J),1996年,第3期:19-22.
    [45] 水利部农村水利司.节水灌溉技术标准选编(M).北京:中国水利水电出版社,1998年.
    
    
    [46] 内蒙古自治区人民政府.2000至2010年内蒙古自治区黄河水分配计划.内蒙古自治区人民政府文件(内政字2000-2),2000年.
    [47] 巴盟水科所.内蒙古河套灌区临河曙光试验场春小麦需水量试验研究成果报告(R).临河:巴盟水科所,1987年3月.
    [48] 内蒙古巴盟水文水资源勘测大队.内蒙古河套灌区水资源及盐碱化防治系统管理模型研究(R).临河:内蒙古巴盟水文水资源勘测大队,1994年9月.
    [49] 陈亚新等.河套灌区灌溉效率测试与评估研究(R).呼和浩特:内蒙古水利局,1989年8月
    [50] 解放闸灌域管理局.灌溉排水资料集(第一集)(R).杭锦后旗:内蒙古河套灌区管理总局解放闸灌域管理局,1999年.
    [51] 国家质量技术监督局,建设部.灌溉排水工程设计规范(GB5028899)(S).北京:中国计划出版社,1999年.
    [52] A.N.Kostickv.土壤改良原理(上册)(M).北京:高等教育出版社,1954年7月.
    [53] Marshall J.,English M.J.,Brian C.,Nakamura B.不充分灌溉.美国灌溉协会会议公报(B).水利电力部农田灌溉所译,1982年.
    [54] 石田朋靖,中野政诗.Soil Water movement in the Soil-plant-atmosphere continuum.农业土木论文集(Tran. JSIDRE)(J),1981年,92:26-34.
    [55] Arkley R. J.. Relationship between plant growth and transpiration. 1963, Hilgardia(J),34: 559-584.
    [56] Barrett J.W., Skogerboe G.V.. Crop production functions and the allocation and use of irrigation water. Agricultural Water Management(J), 1980, 3:53-66.
    [57] Bastiaanssen W.G.M., Huygen J., Schakel J.K., Van den Broek B.J.. Modeling the soil-water-crop-atmosphere system to improve agricultural water management in arid zones (SWATRE). In: Van den Brock B.J. (Ed.). Dutch experience in irrigation water management modeling(M), Report 123, Alterra Green World Research, Wageningen, 1996, 13-30.
    [58] Belmans C., J. G. Wesseling, R. A. Feddes. Simulation of the water balance of a cropped soil: SWATRE. J. Hydrol. (J), 1983, 63: 217-286.
    [59] BlackT. A., GardnerW. R., Thurtell G. W.. The prediction of evaporation, drainage and soil water storage for abare soil. Soil Sci. Soc. Am. J. (J),1969, 33: 655-660.
    [60] Blank H.. Optimal irrigation decisions with limited water(D). Ph.D. Thesis, Department of Civil Engineering, Colorado State University, Fort Collins, CO, 1975.
    [61] Boesten J.J.T.I., Stroosnijder L.. Simple model for daily evaporation from fallow tilled soil under spring conditions in temperate climate. Neth. J. Agri. Sci. (J), 1986, 34: 75-90.
    [62] Boesten, J.J.T.I., A.M.A. van der Linden. Modeling the influence of sorption and transformation on pesticide leaching and persistence. J. Envi. Quality(J), 1991, 20: 425-435.
    [63] Chen Yaxin, Wei Zhanmin, Shihaibin, Qu Zhongyi. Simulative Study on Models of Crop Response to Water for High-efficient Water-Saving Irrigation.Session 2: Sustainable Agriculture(1) (C). Promoting Global Innovation of Agricultural Science & Technology
    
    and Sustainable Agricultural Development, International Conference on Agricultural Science and Technology, Nov. 7-9, 2002, Beijing, China.
    [64] ChenYaxin, Nin Guangyuan. The Evaluation of Irrigation Efficiency and a Water Saving Strategy for Hetao in China. ICID Bulletin(J), 1993, 42(2): 11-21.
    [65] EnglishM. J.. Deficit Irrigation I: Analytical Framework. Journal of Irrigation and Drainage Engineering(J), 1990, 116 (3): 344-412.
    [66] De Wit C.T.. Transpiration and Crop Yields. Verslad, van Landbouck, Onderzoek(M).1958, 64(6).
    [67] Dirksen C., J. B. Kool, P. Koorevaar, Th. M. van Genuchten. Hyswasor: simulation model of Hysteretic water and solute transport in the root zone. InD. Russo, G. Dagan (Eds). Water flow and solute transport in soils(M). Springer-Verlag, Adv. Series in Agric.Sci., 1993, 20: 99-122.
    [68] Doorenbos J., Kassam A.H.. Yield response to water. FAO Irrig. Drain. pap. 33(M), Food and Agriculture Organization of the United Nations, Rome, 1979.
    [69] Doorenbos J., W.O. Pruitt. Guidelines for predicting crop water requirement. FAO Irrigation and Drainage Paper 24(M), Rome, Italy, 1977.
    [70] DowneyL. A.. Water-yield relations for nonforage crops. J. Irrig. Drain. Div. ASCE(J), 1972, 98(IRI): 107-115.
    [71] Droogers P.. Estimating actual evapotranspiration using a detailed agro-hydrological model, f. Hydrol. (J), 2000, 229: 50-58.
    [72] Feddes a.A., Kowalik P.J., Zaradny H.. Simulation of water use and crop yield.Simulation Monograph(M), PUDOC, Wageningen, 1978, 189.
    [73] Hanks, R.J.. Model for predicting plant yield as influenced by water use. Agron. J.(J), 1974, 66: 660-655.
    [74] Hanks R. J., Gardner H. R., Florian R. L.. Plant growth-evapotranspiration relations for several crops in the central plains. Agron. J. (J), 1969, 61: 30-34.
    [75] Hanks R.J.. Yield and water-use relationships: An overview. In: Taylor H.M., Jordan W.R., Sinclair T. R. (Eds.). Limitations to Efficient Water Use in Crop Production(M), ASA, CSSA, and SSSA, Madison, WI, USA, 1983, 393-411.
    [76] Hecht-Nielsen R.. Komogorovs mapping neural network existence theorem. Proceedings of the International Conference on Neural Networks (3) (C), 11-13, IEEE Press, New York 1987a.
    [77] Hiler E.A., Clark R.N. Stress day index to characterize effects of water stress on crop yields. Trans. ASAE(J), 1971, 14(4): 757-761.
    [78] Jensen M. E.. Water consumption by agricultural plants. In: Kozlowski, T. (Ed.). Water Deficits and Plants Growth, Vol. 2(M) Academic Press, New York, 1968, 1-22.
    [79] Kazuhiko r., Salam g.S.. Comparing simulated and measured values using mean squared deviation and its components. Agron. J. (J), 2000, 92: 345-352.
    [80] Kuo-lin Hsu, Hoshin Vijai Gupta, Soroosh Sorooshian. Artificial neural network modeling of rainfall-runoff process. Water Resources Research (J), Oct. 1995, 31(10):
    
    2517-2530,.
    [81] Minhas B.S., Parikh K.S., SrinivasanT. N..Towards the structure of a production function for wheat yields with dated inputs of irrigation water. Water Resour. Res. (J), 1974, 10(3): 383-393.
    [82] MaaS E. V., Hoffman G. J.. Crop salt tolerance-current assessment. J. Irri. Drain. Div.(J), ASCE,, 1977, 103: 115-134.
    [83] Millington R. J., J.P. Quirk. Permeability of porous solids. Trans. Faraday Soc. (J),1961, 57: 1200-1207.
    [84] Mualem Y.. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Res. Re. (J), 1976, 12(3): 513-521.
    [85] Ranjithan S., J.W. Eheart, J.H. Garrett. Neural Network-based Screening for Ground Water Reclamation Under Uncertainty. Water Resources Research(J), March 1993, 29( 3): 563-574.
    [86] Rao N.H., Sarma P.B.S., Subhash C.. A simple dated production function for use in irrigated agriculture. Agri. Water Manage., (J) 1988, 13: 25-32.
    [87] Sarwar A.. A transient model approach to improve on-farm irrigation and drainage in semi-arid zones(D). PhD-Thesis, Wageningen UR, 2000.
    [88] Scott P.S., G.J. Farquhar, N. rouwen. Hysteretic effect on net infiltration. In: Advance in infiltration(M). American Society of Agricultural Engineering. St. Joesph, Mich, 1983, 163-170.
    [89] Shalhevet J.. Using water of marginal water quality for crop production. Agric. War. Manag. (J), 1994, 5 : 233-269.
    [90] Singh P.N., Oshi B. P.. Water use and yield response as a function of soil water availability. Agric.. Wat. Manage. (J), 1987, 12: 323-329.
    [91] Smets S.M.P, Kuper M., Van Dam J.C, Feddes R.A.. Salinization and crop transpiration of irrigated fields in Pakistan Punjab. Agri. Water Manage. (J), 1997, 35: 43-60.
    [92] Smith M. CROPWAT: a computer program for irrigation planning and management. FAO Irrigation and Drainage Paper No. 46(M). Rome, Italy 1992.
    [93] Soil Survey Staff. Agricultural Handbook So. 436(M). Soil Cons. Ser., U.S. Department of Agriculture, Washington DC, 1975.
    [94] Stewart J. I., Hagan R.M.. Functions to predict effects of crop water deficits. J. Irrig. Drain. Div., ASCE(J), 1973, 99(IR4): 421-439.
    [95] Stewart J.I., Hagan R.M., Pruitt W.O.. Production functions and predicted irrigation Programmes for principal crops as required for water resources planning and increased water use efficiency(R). Final Report, U.S. Department of Interior, Washington DC, 1976, 80.
    [96] Stewart J.I., Hanks R.J., Danielson R.E., Jackson E.B., Hagan R.M, Riley J.P., Franklin W.T., Pruitt W.O.. Optimizing crop production through control of water and salinity levels in soil(R). PRWG 151-1, Utah State University, Logan, UT, 1977, 191.
    
    
    [97] Taylor S. A., G. M. Aschcroft. Physical Edaphology(M). W. h. Freeman and Co. San Francisco, 1972,434-435.
    [98] Van Dam J.C., Huygen J., Wesseling J.G., Feddes R.A., Kabat P., Van Walsum P.E.V., Groenendijk P., Van Diepen C.A.,. Theory of SWAP version 2.0(M). Technical Document 45. Wageningen Agricultural University and DLO Winand Staring Center, 1997.
    [99] Van Dam f. C., R. A. Feddes. Numerical simulation infiltration, evaporation and shallow groundwater levels with the Richard equation., J. Hydro.(J), 2000, 233:72-85.
    [100] Vaux H.J., Pruitt W.O.. Crop-water production functions. In: Hillel D. (Ed.). Advances in Irrigation, Vol. 2(M), Academic Press, 1983, 61-97.
    [101] Van Genuchten M. Th.. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. (J), 1980, 44: 892-898.
    [102] Van Genuchten M. Th.. A numerical model for water and solute movement in and below the root zone(R). Res. Report, US Salinity Laboratory, Riverside, CA., 1987.
    [103] Van den Broek B. J., J. C. Van Dam, J. A., Elbers, R. A. Feddes, J. Huygen, P. Kabat, J.G. Wesseling. SWAP 1993: input instructions manual(M). Report 45, Dept. of Water Resources, Wageningen Agricultural University, The Netherlands, 1994.
    [104] Mort Hoyningen-Hüne J.. Die Interception des Niederschlags in landwirtschaftlichen Bestanden. Schriftenreihe des DVWK(J), 1983, 5: 1-57.
    [105] Wei Zhanmin, J.G. Van Dam, R.A. Feddes, Chen Yaxin. Crop yield and water use of spring wheat in arid area of China. Proceding of International Conference on Water-Saving Agriculture and Sustainable Use of Water and Land Resources(C)(in press), 2003, Shanxi, China
    [106] Wesseling, J.G.. Meerjarige simulaties van grondwateronttrekking voor verschillende bodemprofielen, grondwatertrappen en gewassen met bet model SWATRE(M). Report 152, Winand Staring Centre, Wageningen, 1991.
    [107] Wsten J.H.M., Lilly A., Nemes A., Le Bas C.. Using existing soil data to derive hydraulic parameters for simulation models in environmental studies and in land use planning(M) Report 156, Alterra Green World Research, Wageningen, 1998, 106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700