阿特拉津在室内滴灌施药条件和农田尺度下运移的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药在现代农业中是必不可少的。它们在植物保护方面扮演着十分重要的角色,为提高作物产量、保证粮食安全作出了积极的贡献。但另一方面,农药的使用也引起了环境问题,人们已经认识到农药对人类健康和环境的危害。目前已在地下水、湖泊和沿海流域中发现了多种痕量的农药,而这些痕量农药对水生生态系统及饮用水质量有很大的影响。阿特拉津(Atrazine)是世界范围内最常在地下水中被检测出的农药之一,它广泛应用于我国华北和东北地区的玉米田中,是对我国地下水构成潜在威胁的一种农业化学污染物。随着中国农业的发展,节水农业和生态农业是必由之路。在我国的植物保护政策的制定上,应该制定使用Atrazine的如下重要策略:减少对该农药的依赖、使用;减少该农药向地下水和地表水的迁移。本论文研究了Atrazine在农田土壤中的运移,主要包括三个方面:(1)滴灌施药条件下Atrazine运移的物理模拟与数学仿真;(2)数值模拟入渗—重分布及田间气象条件下Atrazine在农田尺度上淋溶动态的空间分布;(3)构造一种尺度提升算法模拟淹灌条件下大尺度平面非均质土壤中非饱和流动的数值方法,评价有效参数的幂平均技术对农田尺度土壤中Atrazine淋溶模拟的影响。显然,从定量描述Atrazine在土壤中运移的机理方面看,开展滴灌施药条件下Atrazine在土壤中分布规律的数值模拟和农田尺度下Atrazine淋溶风险评价数值预报的研究,在理论和实践上都具有重要的意义。
     第一章详细阐述了本论文的研究目的和意义,简要地回顾了有关Atrazine运移和转化方面的研究成果,重点综述了田间尺度土壤中Atrazine运移及滴灌施药条件下农药运移数值模拟方面的研究文献,并在此基础上制定了本文的研究目标、主要研究内容和所遵循的技术路线。
     利用滴灌系统将农药直接施加到作物根区已成为近年来一种先进的灌溉、施药方法,所以在本文第二章中开展了室内滴灌施用Atrazine的物理实验和数值模拟的研究。我们在应用批量平衡技术和批培养方法,采用Freundlich吸附等温线和一级动力学方程获得Atrazine在供试土壤中的吸附特性参数和降解速率常数的基础上,运用基于Richards方程和考虑吸附与降解的对流—弥散方程的HYDRUS-2D软件,成功地仿真了物理模拟的实验结果,同时,对Atrazine运移参数、吸附特性和降解特性参数进行了灵敏度分析,表明:对Atrazine运移动态最敏感的参数是吸附等温线参数。最后,就不同初始含水量、不同滴灌流量对土壤水分和Atrazine动态分布的影响进行了数值分析,结果表明:随着初始含水量的增加,土壤水分的湿润范围增大,而Atrazine分布范围基本不变;当初始含水量分别为5%、10%和15%,滴灌施药历时为9 h时,水分在水平方向上的运动距离分别为26.0、27.8和32.3 cm,而在垂向上的运动距离分别为27.0、28.8和33.7 cm,湿润土体占整个土体的比例分别约为21.7%、26.5%和42.0%;Atrazine在水平方向上的运移距离均为20.5cm,而在垂向上的运动距离分别为20.4、20.0cm和20.0 cm;含药土体占整个土体的比例分别约为10.0%、9.7%和9.7%。当滴灌施药历时相同、滴头流量不同时,随着滴头流量的增加,土壤水分和Atrazine的运移范围均增大;对应于由低到高的4个滴头流量(0.5、1.0、1.5和2.0 L/h),当灌溉施药历时为9h时,水分在土体内的水平运动距离分别为27.8、29.5、30.4和31.0 cm,而在垂直方向上的运动距离分别为:28.8、30.5、31.4和32.3 cm;Atrazine在水平方向上的运移距离分别为:20.5、21.5、22.5和22.9 cm,而在垂直方向上的运移距离分别为:20.0、21.3、21.5和22.0 cm)湿润土体的体积分别约占整个土体体积的26.5%、31.5%、34.5%和37.4%;含药土体
    
    约占整个土体的比例分别为:9.7%、11.4%、12.4%和13.2%。
     人们己逐渐认识到农田尺度下农药淋溶风险的定量评价,对保护地下水环境是十分重要的。
    故第三章中以Atrazine为研究对象,通过在北京郊区永乐店试验站一个面积为27 x27澎的田间
    采集100个土壤样品,分别测定其主要理化特性,由上壤的机械组成和干容重测试数据,采用土
    壤传递函数生成了van Genuchten型的水力学参数,并进一步间接计算得到溶质运移的弥散度,
    同时,由实测的土壤有机碳含量估算了Atrazine的吸附参数。在此基础上,根据柱模型假设,运
    用HYDRUS一ID软件,就所设计的由实际背景概化而来的降雨入渗一重分布算例,对Atrazine在
    农田尺度非饱和土壤中的淋溶动态进行了数值模拟。模拟表明:对一场雨量为90 mm、雨强为30
    mm/d的降雨,在连续3天降雨接着重分布20天的情况下,若忽略蒸腾作用对土壤水分和溶质运
    动的影响,则降雨入渗和重分布过程结束时,通过土壤20 cm耕层的Atrazine的最大累积淋溶量
    分别占施用量的1 7.87%和75.41%;采样区域内AtraZine淋溶通量的空间分布存在较大差异。所
    探明的Atrazine易淋溶带,不仅为合理使用该农药,保护土壤环境提供了定量的依据,而且为预
    防该农药对浅层地下水的污染提供了重要的信息。
     由于Atrazin。是我国华北地区夏玉米田常角的除草剂,而夏玉米生育期又是该地区的主要降
    雨季节。因而在第四章中,以北京市
Pesticides are indispensable in modern agriculture. They are highly beneficial to corps being grown and play an important role in improving the production and safety of foodstuff. But on the other hand, the use of pesticides has caused environment concerns. The hazards of pesticides with regard to public health and the environment have been recognized for some time. Traces of pesticides are found in groundwater, lakes and coastal waters. These traces may have a strong impact on aquatic ecosystems and/or on the quality of drinking water supplies. Atrazine is one of the most frequently detected herbicide in groundwater throughout the world. In China, it is widely used in summer maize in the north and northeast of China, and is a potential contaminant agrochemical to groundwater. With the development of agriculture in China, water saving agriculture and ecological agriculture must be put into practice. In the Chinese Crop Protection Policy, the following important strategic objectives for the use of atrazine we
    re formulated: reduction of dependency, the use and the transfer of atrazine to groundwater, surface water and air. This thesis reports on a study of atrazine leaching through soils in agricultural areas. The study comprises three aspects: (1) physical simulation and numerical modeling of atrazine transport in soil from trickle irrigation (2) spatial variability of atrazine leaching in soils at field scale under infiltration-redistribution or agricultural meteorology by numerical simulation (3) an upscaling numerical method to simulate unsaturated flow in horizontally heterogeneous soils at large scale under flood irrigation and evaluation of a power averaging technique of effective parameters on simulation of atrazine leached in soils at field scale. Obviously, from the viewpoint to quantitatively describe the transport mechanism of atrazine in soils, it was very important both in theory and in practice to carry out the research on numerical simulation of spatial and temporal distribution of atrazine in soi
    ls under trickle irrigation and of risk assessment of atrazine leaching through soils at agricultural field scale.
    In chapter 1, firstly, the main target and its significance of this paper were addressed in detail, secondly, we briefly reviewed the previous study about atrazine transport and transformation, and the literature with a focus on numerical simulation of pesticide leaching under drip irrigation and of atrazine transport at field scale because much information was available in the literature about atrazine transport through soils, lastly, based on the reviewed literature, the objectives and technical procedure were made for this study.
    In recent years, the use of chemigation has become a method to apply pesticides directly to the plant root zone through trickle irrigation systems. We, therefore, studied the spatial distribution of atrazine in soil under chemigation in chapter 2. The distribution of atrazine in a sandy loam soil was monitored in a drip chemigation experiment and numerical simulations were conducted. In addition, adsorption and degradation parameters of atrazine on the test soil were obtained by batch equilibrium and batch incubation experiments. HYDRUS-2D software was used to simulate the moisture movement and atrazine transport in the soil. The mathematical model considered unsaturated, non-steady flow in a
    
    
    sandy loam and taking into account adsorptive and degradable herbicide. Freundlich equation and first order kinetic equation were used to describe the adsorption and degradation of atrazine respectively. Based on the observed data obtained from a trickle chemigation device to the fan-shaped soil box and result of the sensitivity analysis, the numerical model was validated and it was shown that the numerical simulation of atrazine dynamics in the soil was most sensitive to Freundlich adsorption parameters. Then the mathematical model was used to analyze the effects of different initial water contents and different application rates on the spatial distribution of moi
引文
[1]张桃林,潘剑君,赵其国。土壤质量研究进展与方向。土壤,1999(1):1-7
    [2]蔡道基主编。农药环境毒理学研究。北京:中国环境科学出版社,1999:8,11
    [3]张大弟,张晓红编著。农药污染与防治。北京:化学工业出版社,2001:1,85-87
    [4]朱忠林。合理使用农药,防止对地下水的污染。农药科学与管理,1994(3):34-37
    [5]华小梅,单正军。我国农药的生产,使用状况及其污染环境因子分析。环境科学进展,1996,4(2):33-45
    [6]王慎强,陈怀满,司友斌。我国土壤环境保护研究的回顾与展望。土壤,1995(5):255-260
    [7]林玉锁,龚瑞忠,朱忠林编著。农药与生态环境保护。北京:化学工业出版社,2001:13-21
    [8]朱荫湄,周启星。土壤污染与我国农业环境保护的现状、理论和展望。土壤通报,1999,30(3):132-135
    [9]林玉锁,龚瑞忠。农药环境管理与污染控制。环境导报,2000(3):4-6
    [10]Wagenet R. J., and P. S. C., Rao. Modeling pesticide fate in soils. In: Cheng, H. H., eds. Pesticides in the soil environment: processes, impacts, and modeling. Soil Sci. Soc. Am. Book Series, 2. Soil Science Society of America, Madison, Wisconsin, USA. 1990:351-399
    [11]Vrba,J.和E.Romijn著,朱西岭和仇祥华译,尚若筠校。农业活动对地下水的影响。北京:地质出版社,1991:78-79,148-149
    [12]Flury M. Experimental evidence of transport of pesticides through field soils-A review. J. Environ. Qual. 1996, 25:25-45
    [13]Cambardella, C. A., T. B. Moorman, J. M. Novak, et al. Field- scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58:1501-1511
    [14]Wagenet, R. J. Scale issues in agroecological research chains. Nutrient Cycling in Agroecosystems. 1998, 50:23-34
    [15]Bristow, K. L., C. M. Cote, P. J. Thorburn, et al. Soil wetting and solute transport in trickle irrigation systems. 6th International Micro-irrigation Congress 'Micro-irrigation Technology for Developing Agriculture' Conference Papers, South Africa, 2000.
    [16]贾大林,姜文来。试论提高农业用水效率。见:匡尚富,高占义,许迪主编。农业高效用水排灌技术与应用研究。北京:农业出版社,2001:1
    [17]Butters, G. L., J. G. Benjamin, L.R. Ahuja, et al. Bromide and atrazine leaching in furrowand spinkler-irrigated corn. Soil Sci. Soc. Am. J. 2000, 64:1723-1732
    [18]Gerstl, Z., S. Saltzman, L. Kliger, et al. Distribution of herbicides in soil in a simulated drip irrigation system. Irrig. Sci. 1981, 2:155-166
    [19]农业部农药检定所主编。新编农药手册。北京:农业出版社,1991:522
    [20]农药商品大全编委会。农药商品大全。北京:中国商业出版社,1998:640
    [21]Ahrens, W. H. WSSA herbicide handbook. 7th edition. USA: Champaign, Illinois 61821-3133. 1994:20-22
    
    
    [22]弓爱君,叶常明。除草剂阿特拉津(Atrazine)的环境行为综述。环境科学进展,1997,5(2):37-47
    [23]任晋,蒋可。阿特拉津及其降解产物对张家口地区饮用水资源的影响。科学通报,2002,47(10):758-762
    [24]任晋,蒋可,周怀东。官厅水库水中阿特拉津残留的分析及污染来源。环境科学,2002,23(1):126-128
    [25]Cann, C. Equations of atrazine transfer from agricultural land to surface water. Phys. Chem. Earth, 1995, 20(3-4): 359-367
    [26]Bintein, S., and J. Devillers. Evaluating the environmental fate of atrazine in france. Chemosphere, 1996, 32(12): 2441-2456
    [27]叶常明,雷志芳,弓爱君,等。阿特拉津生产废水排放对水稻危害的风险分析。环境科学,1999,20(3):82-84
    [28]申继忠,刘伊玲。莠去津在单用和混用条件下土壤中残留规律的研究。杂草学报,1992,6(4):7-10
    [29]叶常明,雷志芳,殷兴军,等。含莠去津和乙草胺河水灌溉对苗期水稻危害的研究。环境科学进展,1997,5(5):51-57
    [30]林长福。玉米田化学除草现状及发展趋势。农药,1999,38(9):3-4
    [31]Gfrerer, M., D. Martens, B. M. Gawlik, et al. Triazines in the aquatic systems of the Eastern Chinese Rivers Liao-He and Yangtse. Chemosphere, 2002, 47:455-466
    [32]Kruger, E. L., L. Somasundaram, R. S. Kanwar, et al. Movement and degradation of [~(14)C]atrazine in undisturbed soil columns. Environ. Toxicol. Chem. 1993, 12:1969-1975
    [33]Gaber H M, Inskeep W P, Comfort S D, et al. Nonequilibfium transport of atrazine through large intact soil cores. Soil Sci Soc Am J, 1995, 59:60-67
    [34]Fermanich, K. J., W. L. Bland, B. Lowery, et al. Irrigation and tillage effects on atrazine and metabolite leaching from a sandy soil. J. Environ. Qual. 1996, 25:1291-1299
    [35]Seybold, C. A., and W. Mersie. Adsorption and desorption of atrazine, deethylatrazine, deisopropylatrazine, hydroxyatrazine, and metolachlor in two soils from Virginia. J. Environ. Qual. 1996, 25:1179-1185
    [36]Graymore, M., F. Stagnitti, and G. Allinson. Impacts of atrazine in aquatic ecosystems. Environment International 2001, 26:483-495
    [37]米长虹,蔡思义,郑振华。水田环境中阿特拉津允许浓度研究。农业环境保护,1996,15(2):89-90
    [38]钟虹敏,许峰,罗丽梅,等。莠去津吸附的土壤淋溶柱色谱法研究。色谱,1999,17(6):522-524
    [39]杨炜春,王琪全,刘维屏。除草剂莠去津在土壤—水环境中的吸附及其机理。环境科学,2000,21(4):94-97
    [40]毛萌,任理。砂质壤土中农药阿特拉津阻滞因子的研究,环境科学学报,2003,23(2):276-281
    [41]乔雄梧,马利平,H.E.Hummel。阿特拉津在土壤中的降解途径及其对持留性的影响。农村生态环境,1995,11(4):5-8
    
    
    [42]龚勇,秦冬梅。莠去津在土壤中的残留试验研究。农药科学与管理,1999,20(4):14-15,37
    [43]叶常明,王杏君,弓爱君,等。阿特拉津在土壤中的生物降解研究。环境化学,2000,19(4):300-305
    [44]叶常明,雷志芳,王杏军,等。除草剂阿特拉津的多介质环境行为。环境科学,2001,22(2):69-73
    [45]任理,毛萌。应用传递函数模型预报农药阿特拉津在土壤中的运移。水利学报,2002,4:39-45
    [46]任理,毛萌。阿特拉津在饱和砂质壤土中非平衡运移的模拟。土壤学报,2003,40(6):829-837
    [47]Mao, M. and L. Ren. Simulating nonequilibrium transport of atrazine through saturated soil. Ground Water 2004, 42(4): (galley proofs, in press)
    [48]任理,毛萌,张仁铎。稳定流场饱和均质土壤中农药淋溶动态预报模式的探讨。环境科学学报,2003,23(6):786-791
    [49]X. Zhang, and L. Ren. Lattice Boltzmann model for agrochemical transport in soils. J. Contam. Hydrol. 2003, 67:27-42
    [50]van Genuchten, M. Th, and R. J. Wagenet. Two-site/two-region models for pesticide transport and degradation: Theoretical development and analytical solutions. Soil Sci. Soc. Am. J., 1989, 53:1303-1310
    [51]Gamerdinger, A. P, R. J. Wagenet, and M. Th. van Genuchten. Application of two-site/two-region models for studying simultaneous nonequilibrium transport and degradation of pesticides. Soil Sci. Soc. Am. J., 1990, 54:957-963
    [52]Gamerdinger, A. P., A. T. LemLey, and R. J. Wagenet Nonequilibrium sorption and degradation of three 2-Chloro-s-triazine herbicides in soil-water systems. J. Environ. Oual. 1991, 20:815-822
    [53]Ma, L., and H. M. Selim. Evaluation of non-equilibrium models for predicting atrazine transport in soils. Soil Sci. Soc. Am. J. 1997, 61:1299-1307
    [54]Chen, W., and R. J. Wagenet. Description of atrazine transport in soil with heterogeneous non-equilibrium sorption. Soil Sci. Soc. Am. J., 1997, 61:360-371
    [55]Kamra, S. K., B. Lennartz, M. Th. van Genuchten, and P. Widmoser. Evaluating non-equilibrium solute transport in small soil columns. J. Contain. Hydrol. 2001, 48:189-212
    [56]Chinkuyu, A. J., and R.S. Kanwar. Effect of lime application on the movement of atrazine and nitrate-nitrogen through undisturbed-saturated soil columns. Water, Air, and Soil Pollution 1999, 115:371-384
    [57]Abu-Zreig, M., and R. P. Rudra. Modelling of atrazine transport in the presence of surfactants. J. Environ. Sci. Health 2002, B 37(1): 15-32
    [58]Novak, J. M., T. B. Moorman, and C. A. Cambardella. Atrazine sorption at the field scale in relation to soils and landscape position. J. Environ. Qual. 1997, 26:1271-1277
    [59]Jacques, D., C. Mouvet, B. Mohanty, et al. Spatial variability of atrazine sorption parameters and other soil properties in a podzoluvisol. J. Contam. Hydrol. 1999, 36:31-52
    
    
    [60]Lafrance, P., and O. Banton. Implication of spatial variability of organic carbon on predicting pesticide mobility in soil. Geoderma. 1995, 65:331-338
    [61]Persicani D. Evaluation of soil classification and kriging for mapping herbicide leaching simulated by two models. Soil Tech. 1995, 8:17-30
    [62]Persicani D. Pesticide leaching into field soils: sensitivity analysis of four mathematical models. Ecol. Model. 1996, 84:265-280
    [63]Persicani D., G. Gasparetti, P. Siro, et al. Measurement and simulation of atrazine and alachlor leaching into two fiel soils. J. Contam. Hydrol. 1995, 19:127-144
    [64]Persicani D., P. Siro, G. Gasparetti, et al i. Comparison of measured and simulated atrazine mobility in two alluvial soils. Soil Tech. 1996, 9:281-298
    [65]Levy, J., and G.Chesters. Simulation of atrazine and metabolite transport and fate in a sandy-till aquifer. J. Contam. Hydrol. 1995, 20:67-88
    [66]Liu, C., D. H. Bennett, W. E. Kastenberg, et al. A multimedia, multiple pathway exposure assessment of atrazine: fate, transport and uncertainty analysis. Reliability Engineering and Systems Safety 1999, 63:169-184
    [67]Azevedo, A. S., R. S. Kanwar, and L. S. Pereiral. Atrazine Transport in Irrigated Heavy-and Coarse-Textured Soils, Part Ⅰ: Field Studies. J. agric. Engng. Res. 2000, 76:165-174
    [68]Pang, L., M. E. Close, J. P.C. Watt, et al. Simulation of picloram, atrazine, and simazine leaching through two New Zealand soils and into groundwater using HYDRUS-2D. J. Contam. Hydrol.2000, 44:19-46
    [69]Asare, D. K., T. W. Sammis, D. Smeal, et al. Modeling an irrigation management strategy for minimizing the leaching of atrazine. Agri. Water Manag. 2001, 48: 225-238
    [70]Holman, I. P., I. G. Dubus, J. M. Hollis, et al. Using a linked soil model emulator and unsaturated zone leaching model to account for preferential flow when assessing the spatially distributed risk of pesticide leaching to groundwater in England and Wales. The Science of the Total Environment, 2004, 318:73-88
    [71]Omary, M., and J. T. Ligon. Three-dimensional movement of water and pesticide from trickle irrigation: finite element model. Transactions of ASAE. 1992, 35:811-821
    [72]Wang, D., J. A. Knuteson, and S. R. Yates. Two-dimensional model simulation of 1,3-dichloropropene volatilization and transport in a field soil, J. Environ. Qual. 2000, 29: 639-644
    [73]Russo, D., J. Zaidel, A. Laufer, et al. Numerical analysis of transport of trifluralin from a subsurface dipper. Soil Sci. Soc. Am. J. 2001, 65:1648-1658
    [74]Leib, B. G., and A. R. Jarrett. Comparing soil pesticide movement for a finite-element model and field measurements under drip chemigation. Computers and Electronics in Agriculture, 2003, 38: 55-69
    [75]Wang, D., M. C. Shannon, C. M. Grieve, et al. Soil water and temperature regimes in drip and sprinkler irrigation, and implications to soybean emergence. Agric. Water Manage. 2000, 43:
    
    15-28
    [76]Khan, A. A., M. Yitayew, and A. W. Warrick. Filed evaluation of water and solute distribution from a point source. J. Irrig. Drain. Eng. 1996: 122(4): 221-227
    [77]imunek, J., M. ejna, and M. Th. van Genuchten. The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 2.0. IGWMC-TPS-53, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado. 1999.
    [78]Sharmasarkar, E C., S. Sharmasarkar, R. Zhang, et al. Modeling nitrate movement in sugarbeet soils under flood and drip irrigation. J. ICID. 2000, 49, 43-54
    [79]Selim, H. M. and L. Ma. Transport of reactive solutes in soils: A modified two-region approach. Soil Sci. Soc. Am. J. 1995, 59:75-82
    [80]Moolenaar, S. W. Sustainable management of heavy metals in agro-ecosystems. [Ph. D dissertation]. Wageningen University, 1998, 44
    [81]Zheng, C., and G.D. Bennett. Applied Contaminant Transport Modeling. 2nd ed. New York: John Wiley and Sons. 2002:343-347
    [82]Green, R.E., and Karickhoff, S. W. Sorption estimates for modeling. (In:) Cheng, H. H. (ed.) Pesticides in the soil environment: processes, impacts, and modeling. Soil Sci. Soc. Am. Book Series, 2. Soil Science Society of America, Madison, Wisconsin, USA. 1990, 83
    [83]Revol, P.,B. E. Clothier, J.-C. Mailhol, et al. Infiltration from a surface point source and drip irrigation, 2. An approximate time-dependent solution for wet-front position. Water Resour. Res.1997, 33(8): 1869-1874
    [84]Jisheng Li, Jianjun Zhang and Li Ren, Water and nitrogen distribution as affected by fertigation of ammonium nitrate from a point source. Irrigation Science. 2003, 22:19-30
    [85]谢永华,黄冠华。土壤水张力时变空间结构的初步研究。水科学进展,1999,10(2):113-117
    [86]中国土壤学会农业化学专业委员会编。土壤农业化学常规分析方法。北京:科学出版社,1989:23-42,67-75
    [87]imunek, J., M.ejna, and M. Th. van Genuchten. The HYDRUS-1D software package for simulating water flow, heat, and solute transport in one-dimensional variably saturated media. Version 2.0. IGWMC-TPS-70, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, 1998.
    [88]陈国平编著。夏玉米的栽培。北京:农业出版社,1994:1,77
    [89]Warrick, A. W. Soil physics companion. CRC Press, 2003: 59, 345
    [90]郑斐能,洪锡午,韩德元,等。农药使用技术手册。北京:中国农业出版社,2000:220-221
    [91]屠予钦主编。农药科学使用指南。北京:金盾出版社,2000:391
    [92]Schaap, M. G. Rosetta (Ver 1.1). U. S. Salinity Laboratory, ARS-USDA, Copyright (C) 1999
    [93]Perfect, E. A pedotransfer function for predicting solute dispetsivity: Model testing and upscaling. 2003, 89-96. In: Pachepsky, Y., D. E. Radcliffe, and H. M. Selim (ed.). Scaling methods in soil physics. CRC Press.
    
    
    [94]Perfect, E., M. C. Sukop, and R. Haszler. Prediction of dispersivity for undisturbed soil columns from water retention parameters. Soil Sci. Soc. Am. J. 2002, 66:696-701
    [95]Yates, S. R., and M. V. Yates. Geostatistics for waste management: A user's manual for the GEOPACK (Version 1.0) geostatistical software system, Interagency Agreement No. DW12932632. U. S. Environmental Protection Agency, ADA, OKLAHOMA. 1990.
    [96]Rover, M., and E.-A. Kaiser. Spatial heterogeneity within the plough layer.: low and moderate variability of soil properties. Soil Biology and Biochemistry, 1999, 31:175-187
    [97]Lopez-Granados, F., M. Jurado-Expositol, S. Atencianol, et al. Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 2002, 246:97-105
    [98]Sovik, A. K., and P. Aagaard. Spatial variability of a solid porous framework with regard to chemical and physical properties. Geoderma 2003, 113:47-76
    [99]Scheibe, T., and S. Yabusaki. Scaling of flow and transport behavior in heterogeneous groundwater systems. Adv. Water Resour. 1998, 22(3): 223-238
    [100]Kelleners, T. J., J. Beekma, and M. R. Chaudhry. Spatially variable soil hydraulic properties for simulation of field-scale solute transport in the unsaturated zone. Geoderma 1999, 92:199-215
    [101]Khaleel, R., Yeh, T.-C. J., and Lu, Z.. Upscaled flow and transport properties for heterogeneous unsaturated media. Water Resour. Res. 2002, 38(5): 11-1~11-12
    [102]王树安。作物栽培学各论。北京:中国农业出版社,1995:136,169-170
    [103]王忠孝主编。山东玉米。北京:中国农业出版社,1999:481
    [104]陈玉民,郭国双,王广兴,等著。中国主要作物需水量与灌溉。北京:水利水电出版社,1995:87-91
    [105]许迪,蔡林根,王少丽,等编著。农业持续发展的农田水土管理研究。北京:中国水利水电出版社,2000:137,142,227
    [106]赵秉强,张福锁,李增嘉,等。间套作条件下作物根系数量与活性的空间分布及变化规律研究Ⅱ.间作早春玉米根系数量与活性的空间分布及变化规律。作物学报,2001,27(6):974-979
    [107]许迪,刘钰。测定和估算田间作物腾发量方法研究综述。灌溉排水,1997,16(4):54-59
    [108]Allen, R. G., L. S. Pereira, D. Raes, et al. Crop evapotranspiration Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. 1998
    [109]刘群昌,谢森传。华北地区夏玉米田间水分转化规律研究。水利学报,1998(4):62-68
    [110]Ritchie, J. T. and D. Godwin. Chapter 3: soil water balance. In CERES Wheat 2.0.
    [111]虎胆·吐马尔拜。作物在秸杆覆盖条件下土壤水分运动的实验分析与数值模拟。[博士学位论文]。武汉:武汉水利电力大学,1996。
    [112]林忠辉,项月琴,莫兴国,等。夏玉米叶面积指数增长模型的研究。中国生态农业学报,2003,11(4):69-72
    [113]孙洪泉。地质统计学及其应用。北京:中国矿业大学出版社出版。1990:68
    [114]Renard, Ph., and G.de Marsily. Calculating equivalent permeability: A review. Adv. Water Resour. 1997, 20:253-278
    
    
    [115]Warrick, A. W., Lomen, D. O., and Yates, S. R. A generalized solution to infiltration. Soil Sci. Soc. Am. J. 1985, 49:34-38
    [116]Dagan, G., and E. Bresler. 1979. Solute dispersion in unsaturated heterogeneous soil at field scale:Ⅰ. Theory. Soil Sci. Soc. Am. J. 43:461-467
    [117]Bresler, E., and G. Dagan. 1979. Solute dispersion in unsaturated heterogeneous soil at field scale:Ⅱ. Application. Soil Sci. Soc. Am. J. 43:467-472
    [118]Toride, N., F. J. Leij. 1996. Convective-dispersive Stream tube model for field-scale solute transport: Ⅰ. Moment analysis. Soil Sci. Soc. Am. J. 60:342-352
    [119]Warrick, A. W., J. W. Biggar, and D. R. Nielsen. Simultaneous solute and water transfer for an unsaturated soil. Water Resour. Res. 1971, 7(5): 1216-1225
    [120]van Genuchten, M. Th. A comparison of numerical solutions of the one-dimensional unsaturated-saturated flow and mass transport equations. Adv. Water Resour. 1982, 5:47-55
    [121]Babajimopoulos, C. A Douglas-Jones predictor-corrector program for simulating one-dimensional unsaturated flow in soil. Ground Water, 1991, 29(2): 267-270
    [122]Kabat, P., R. W. A. Hutjes, and R. A. Feddes. The scaling characteristics of soil parameters: From plot scale heterogeneity to subgrid parameterization. J. Hydrol. 1997, 190:363-396
    [123]Lunati, I., D. Bernard, M. Giudici, et al. A numerical comparison between two up scaling techniques: non-local inverse based scaling and simplified renormalization. Adv. Water Resour. 2001, 24:913-929
    [124]Feyen, J., D. Jacques, A. Timmerman, et al. Modeling water flow and solute transport in heterogeneous soils: A review of recent approaches. J. Agric. Engng. Res. 1998, 70:231-256
    [125]Wen, X-H, J. J. Gómez-Hernández. Upscaling hydraulic conductivities in heterogeneous media: An overview. J. Hydrol. 1996, 183: ix-xxxii
    [126]Djurhuus, J., S. Hansen, K. Schelde, et al. Modeling mean nitrate leaching from spatially variable fields using effective hydraulic parameters. Geoderma, 1999, 87: 261-279
    [127]Feddes, R. A., G. H. de Rooij, J. C. van Dam, et al. Estimation of regional effective soil hydraulic parameters by inverse modeling. In: D. Russo and G. Dagan. eds. Water flow and solute transport in soils: modeling and application. Springer Verlag, Berlin, 1993:211-231
    [128]Fetter, C. W. Contaminant hydrogeology. Prentice-Hall, Inc., A Simon & Schuster Company, Upper Saddle River, New Jersey, 1993:71
    [129]Seyfried, M. S. Incorporation of Remote Sensing Data in an Upscaled Soil Water Model. 2003, 309-345. In: Pachepsky, Y., D. E. Radcliffe, and H. M. Selim (ed.). Scaling methods in soil physics. CRC Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700